黄芪多糖对TNBS诱导大鼠实验性结肠炎的治疗作用及对免疫功能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     炎症性肠病(inflammatory bowel disease, IBD)是常见且危害严重的消化系统疾病,近年来我国发病率呈明显上升。免疫调节异常在其发病机制中起了重要的作用。传统药物治疗如5—氨基水杨酸、糖皮质激素、免疫抑制剂以及新型生物制剂如英夫利昔(Infliximab)疗效肯定,但仍有小部分患者疗效不好,尤其是克罗恩病(Crohn's disease,CD)的长期维持缓解疗效较差。近年来,中医基础和临床研究发展迅速,在IBD治疗方面取得了较好的疗效。黄芪为最常用的几种中药之一,被誉为“补气之最”、“疮家圣药”。已有研究发现黄芪提取物可以预防和治疗实验性结肠炎,但关于其主要生物活性成份—黄芪多糖(Astragalus polysaccarides, APS),对实验性结肠炎的治疗效果及免疫机制目前尚无研究。
     研究目的
     探讨APS对2,4,6-三硝基苯磺酸(TNBS)诱导的大鼠结肠炎的疗效及免疫机制。
     研究方法
     1.建立大鼠TNBS实验性结肠炎模型。40只SD雄性大鼠随机分为5组(n=8),分别为空白对照组、TNBS造模组、APS小剂量组、APS大剂量组和激素组。,空白对照组给予生理盐水灌肠,余4组给予TNBS灌肠。建模24小时后开始给予药物干预,APS小剂量组给予APS (0.5g/Kg.d)灌胃,APS大剂量组给予APS1.0g/Kg.d)灌胃,激素组给予泼尼松1.0mg/Kg.d)灌胃,造模组给予相同容积饮用水灌胃,疗程14天。每天观察大鼠体重、腹泻及便血情况,给药结束后处死动物。
     2.疗效评价:观察结肠大体病变及镜下病理标本炎症情况,测定肠道组织MPO活性。
     3.免疫机制研究:提取结肠组织总蛋白,应用ELISA方法检测IL-4、IL-10的水平,并用免疫组化和免疫印迹方法检测肠道组织中转录因子T-bet和GATA-3的表达。
     实验结果
     1.造模组大鼠结肠大体病变及镜下病理炎症评分,MPO活性均显著高于对照组(P=0.01)。APS小剂量治疗可减轻结肠大体及镜下炎症病变,但和对照组及造模组相比无统计学差异;可显著降低MPO活性(P=0.03)。APS大剂量组大体及镜下炎症病变评分与造模组接近,MPO活性显著高于对照组和APS小剂量组(P=0.003,0.008)。激素组大体、镜下炎症病变评分以及MPO活性均较造模组下降,但差异无统计学意义。
     2.造模组大鼠较对照组IL-4、IL-10水平下降,其中IL-10与对照组相比有统计学差异(P=0.007), APS小剂量治疗可升高IL-4、IL-10水平,但与造模组相比无统计学差异;APS大剂量治疗使IL-4进一步下降,但IL-10略有升高,与对照组相比有统计学差异(P=0.046,0.035);激素组IL-4、IL-10均较造模组进一步下降,与对照组相比有统计学差异(P=0.049,0.001)。
     3.对照组大鼠肠道GATA-3表达高于T-bet表达,造模组T-bet和GATA-3较对照组均有升高,以T-bet升高较明显,使GATA-3/T-bet比值显著下降(P=0.025)。APS小剂量治疗可同时促进T-bet和GATA-3表达,与造模组相比均有统计学差异(P=0.04,0.019),但GATA-3表达升高更为显著,使GATA-3/T-bet比值升高。激素组T-bet和GATA-3表达较造模组均下降,T-bet下降较为明显,使GATA-3/Tbet比值较造模组升高。激素组GATA-3/Tbet比值高于APS小剂量组。
     实验小结
     1.不同剂量APS对TNBS诱导的大鼠结肠炎疗效不同,小剂量(0.5g/Kg.d)灌胃治疗2周可缓解TNBS诱导的大鼠结肠炎,疗效与泼尼松接近;而大剂量1.Og/Kg.d)治疗则轻度加重大鼠结肠炎。
     2.APS小剂量治疗可促进抗炎细胞因子IL-4和IL-10的表达,大剂量则抑制IL-4表达,但IL-10略有升高。小剂量APS免疫调节作用与促进转录因子GATA-3及T-bet的表达增加有关,其对GATA-3促进作用更明显。
     3.泼尼松具有免疫抑制作用,可降低IL-4和IL-10的水平,并可抑制转录因子GATA-3和T-bet的表达,但对T-bet抑制作用更明显。
     4.小剂量APS和泼尼松治疗均可提高GATA-3/T-bet比值,有助于恢复Th1/Th2平衡,以激素的免疫调节作用更为显著。
     结论
     APS对大鼠实验性结肠炎具有双向免疫调节作用,大剂量治疗可加重肠道炎症,小剂量APS治疗通过促进抗炎性细胞因子和转录因子的表达,使异常的Th1/Th2漂移趋于平衡,可能是其发挥抗炎、肠道保护作用的免疫机制。
Background:Inflammatory bowel disease (IBD) is a major chronic inflammatory disease of the gastrointestinal tract in human。Its incidence has been increasing for the past several decades in Chinese people. The etiology of IBD is considered to be multifactorial, which includes genetic factors, dysfunction of immunoregulation, disruption of intestinal mucosal barrier and intestinal flora. Immune system is thought to play a critical role in the development and persistence of IBD. The traditional therapeutic agents such as 5-ASA and glucocorticoid as well as new biotherapeutic ones such as Infliximab have good therapeutic effect, but there is a small portion of patients who can not benefit from these therapies. In addition, to remain remission is another tough problem. Recently, basic and clinical research in the field of traditional Chinese medicine have developed dramatically. Studies showed that traditional Chinese medicine was a promising therapy in IBD. Astragalus membranaceus is one of the most frequently used traditional Chinese medicine, which is famous for" bu qi " and "ulcer cure". Studies showed that the extract of astragalus membranaceus possessed both preventive and therapeutic potential in experimental colitis. But the therapeutic and immunoregulatory effects of Astragalus polysaccarides (APS) on TNBS-induced colitis in rats has not been reported.
     Objective:To investigate the therapeutic and immunoregulatory effects of APS on TNBS-induced colitis in rats.
     Methods:
     1. Establishment of experimental colitis. A total of 40 SD rats were randomly divided into five groups (n=8, each group):normal control, TNBS group (treated with water, the same volume with the intervention groups), lower dosage group (treated with APS 0.5g/kg.d), higher dosage group (treated with APS 1.0g/kg.d) and prednisolone group. Experimental colitis was induced in rats by enema administration of TNBS. Rats were treated by lavage everyday for the following 14 days.
     2. Evaluation of therapeutic effect. Rats were sacrificed on d16. Macroscopic lesion and histological damage were determined, and the activity of myeloperoxidase (MPO) was measured in the excised colonic tissues.
     3. Investigation of immunoregulatory mechanism. Cytokine levels (IL-4, IL-10) were determined by enzyme-linked immunosorbent assay. T-box transcription factor (T-bet) and GATA-binding protein-3 (GATA-3) expression were determined by immunohistochemisty and immunoblot analysis.
     Results:
     1. Both macroscopic lesion and histological colonic damage scores were elevated in TNBS group, the activity of MPO was higher than normal control significantly (P=0.01). APS (0.5g/Kg.d) treatment reduced both macroscopic lesion and histological colonic damage, and this was accompanied by reduction of MPO activity significantly (P=0.03). The macroscopic lesion and histological colonic damage scores of APS (1.0g/Kg.d) group were near to TNBS group, but the activity of MPO was significantly higher than normal control and APS (0.5g/Kg.d) group (P=0.003,0.008). There was no significant difference between Prednisone group and the other groups.
     2. The levels of IL-4 and IL-10 decreased in TNBS group comparing with normal control, especially the level of IL-10 decreased significantly (P=0.007). APS (0.5g/Kg.d)treatment increased the levels of IL-4 and IL-10 with no significance. APS (1.0g/Kg.d) treatment further reduced the level of IL-4 but not IL-10. Prednisone treatment also decreased the levels of these two kinds of cytokines. The levels of IL-4 and IL-10 in higher dosage group and Prednisone group were lower than normal control significantly (APS 1.0g vs normal control, P=0.046, 0.035; PREDNISONE group vs normal control, P=0.049,0.001).
     3. GATA-3 expression was higher than T-bet in normal control. Both GATA-3 and T-bet expression increased in TNBS group comparing with normal control, but T-bet increased more, resulting in significant reduction of GATA-3/T-bet ratio (P=0.025). APS (0.5g/Kg.d) treatment encouraged the expression of both T-bet and GATA-3 with significance (P=0.04,0.019), but GATA-3 increased more, resulting in raise of GATA-3/T-bet ratio. PREDNISONE inhibited the expression of both two transcriptions, and T-bet decreased more, resulting in raise of the GATA-3/T-bet ratio too. GATA-3/T-bet ratio was higher in Prednisone group than APS lower dosage group.
     Summary:
     1. Treatment with different dosage of APS showed different effects on TNBS-induced colitis. Lower dosage treatment possesed therapeutic potential in experimental colitis, while higher dosage treatment might aggravate the colitis.
     2. Treatment of lower dosage APS increased the levels of Th2 type cytokines IL-4 and IL-10, while higher dosage treatment decreased the level of IL-4, but increased that of IL-10. The immunoregulation mechanism of lower dosage APS was associated with encouragement of both GATA-3 and T-bet expression, especially for GATA-3.
     3. Prednisone possesed immunosuppression effect. It decreased the levels of IL-4 and IL-10, and inhibited the expression of both GATA-3 and T-bet, especially for T-bet.
     4. Treatment with lower dosage APS and prednisone could raise GATA-3/T-bet ratio, and help to restore Th1/Th2 balance.This immunoregulatory effect of prednisone was better than that of lower dosage APS.
     Conclusion:
     APS possesed bilateral immunoregulatory effects on TNBS-induced colitis. Lower dosage APS could restore Th1/Th2 balance by encouraging the expression of anti-inflammatory cytokines and transcriptions. This may explain the immunoregulation mechanism of its anti-inflammatory and intestinal protective effects.
引文
[1]Ouyang Q, Tandon R, Goh KL, et al. Management consensus of inflammatory bowel disease for the Asia-Pacific region[J]. J Gastroenterol Hepatol 2006 Dec;21(12):1772-1782.
    [2]Kucharzik T, Maaser C, Lugering A, et al. Recent understanding of IBD pathogenesis:implications for future therapies[J]. Inflamm Bowel Dis 2006 Nov;12(11):1068-1083.
    [3]Mannon PJ, Fuss IJ, Mayer L, et al. Anti-interleukin-12 antibody for active Crohn's disease[J]. N Engl J Med 2004 Nov 11;351(20):2069-2079.
    [4]Nakamura K, Honda K, Mizutani T, et al. Novel strategies for the treatment of inflammatory bowel disease:Selective inhibition of cytokines and adhesion molecules[J]. World J Gastroenterol 2006 Aug 7;12(29):4628-4635.
    [5]Waldner MJ, Neurath MF. Novel cytokine-targeted therapies and intestinal inflammation[J]. Curr Opin Pharmacol 2009 Dec;9(6):702-707.
    [6]Yamamoto T, Nakahigashi M, Saniabadi AR. Review article:diet and inflammatory bowel disease-epidemiology and treatment[J]. Aliment Pharmacol Ther 2009 Jul 1;30(2):99-112.
    [7]Akobeng AK, Thomas AG Enteral nutrition for maintenance of remission in Crohn's disease[J]. Cochrane Database Syst Rev 2007(3):CD005984.
    [8]中国克罗恩病的营养治疗指南和规范.
    [9]Hartman C, Eliakim R, Shamir R. Nutritional status and nutritional therapy in inflammatory bowel diseases[J]. World J Gastroenterol 2009 Jun 7;15(21):2570-2578.
    [10]中国中西医结合学会消化系统疾病专业委员会.溃疡性结肠炎中西医结合诊治方案(草案)[J].中国中西医结合杂志2004;24:1052-1055.
    [11]Sheng Yanmei XX, Yang Ming, et al. A study on components of Yuchangning as a new herbal recipes[J]. Herald of Medicine 2008;27(3):258-261.
    [12]Ko JKS LF, Cheung APL, et al. Amelioration of experimental colitis by Astragalus membranaceus through anti-oxidation and inhibition of adhesion molecule synthesis[J]. World J Gastroenterol 2005;11(37):5787-5794.
    [13]Ko J-KS CC-S, et al. The protective action of radix Astragalus membranaceus against hapten-induced colitis through modulation of cytokines[J]. Cytokine 2009;47(2):85-90.
    [14]Wang G, Liu CT, Wang ZL, et al. Effects of Astragalus membranaceus in promoting T-helper cell type 1 polarization and interferon-gamma production by up-regulating T-bet expression in patients with asthma[J]. Chin J Integr Med 2006 Dec;12(4):262-267.
    [15]Lee SJ, Oh SG, Seo SW, et al. Oral administration of Astragalus membranaceus inhibits the development of DNFB-induced dermatitis in NC/Nga mice[J]. Biol Pharm Bull 2007 Aug;30(8):1468-1471.
    [16]Morris GP, Beck PL, Herridge MS, et al. Hapten-induced model of chronic inflammation and ulceration in the rat colon[J]. Gastroenterology 1989 Mar;96(3):795-803.
    [17]Li S, Zhang Y, Zhao J. Preparation and suppressive effect of astragalus polysaccharide in glomerulonephritis rats[J]. Int Immunopharmacol 2007 Jan;7(1):23-28.
    [18]Cooper HS, Murthy SN, Shah RS, et al. Clinicopathologic study of dextran sulfate sodium experimental murine colitis[J]. Lab Invest 1993 Aug;69(2):238-249.
    [19]Wallace JL, Keenan CM. An orally active inhibitor of leukotriene synthesis accelerates healing in a rat model of colitis[J]. Am J Physiol 1990 Apr;258(4 Pt 1):G527-534.
    [20]Sykes AP, Bhogal R, Brampton C, et al. The effect of an inhibitor of matrix metalloproteinases on colonic inflammation in a trinitrobenzenesulphonic acid rat model of inflammatory bowel disease[J]. Aliment Pharmacol Ther 1999 Nov;13(11):1535-1542.
    [21]Krawisz JE, Sharon P, Stenson WE Quantitative assay for acute intestinal inflammation based on myeloperoxidase activity. Assessment of inflammation in rat and hamster models[J]. Gastroenterology 1984 Dec;87(6):1344-1350.
    [22]王皓欧阳钦,胡仁伟.三硝基苯磺酸结肠炎动物模型的建立[J].胃肠病学2001;6(1):7-10.
    [23]Zhu F Qian J, Pan Qet al. The establishment of TNBS-induced experimental colitis[J]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 1998;20(4):271-278.
    [24]Liu L, Guo Z, Lv Z, et al. The beneficial effect of Rheum tanguticum polysaccharide on protecting against diarrhea, colonic inflammation and ulceration in rats with TNBS-induced colitis:the role of macrophage mannose receptor in inflammation and immune response[J]. Int Immunopharmacol 2008 Nov;8(11):1481-1492.
    [25]Xiao Nan-ping OQ, Tan Ke, et al. Influence of glucosidorum tripterygii tororum on expression of interleukin-23, interleukin-17 and interleukin-12 in colonic tissues of mice with colitis[J]. Academic journal of second military medical university 2008;29(9):1069-1073.
    [26]刘吉才牛英才.多糖药物学[M].北京:人民卫生出版社2008.1.
    [27]Chen Guo-hui HW-f. Progress in pharmacological effects of compositions of Astragalus membranaceus[J]. Chinese journal of new drugs 2008; 17(17).
    [28]李如江邱曙东,陈红霞,等.黄芪多糖对1型糖尿病小鼠的免疫调节作用[J].中西医结合学报2008;6(2):166-170.
    [29]黄继汉黄晓辉,陈志杨,等.药理试验中动物间和动物与人体间的等效剂量换算[J].中国临床药理学与治疗学2004;9(9):1069-1072.
    [30]林树乾张燕,杨少华.中药黄芪多糖的免疫佐剂作用[J].中国畜牧兽医2006;33(5):58-60.
    [31]姚伟李玉,等.APS作为重组(CHO细胞)乙型肝炎疫苗佐剂的安全性及免疫效果[J].中国生物制品学杂志2002;15(4):211-213.
    [32]世界书局.中国药学大辞典(下册)[M].北京:人民卫生出版社;1957.1413.
    [33]骆殊,邵佳.黄芪多糖对树突状细胞免疫活性的影响[J].中医药临床杂志2009;21(1):66-69.
    [34]刘玉兰陈宁,尤鹏,等.益生菌治疗大鼠实验性结肠炎效果观察及对T细胞亚群的影响[J].中国实用内科杂质2006;12(26):1944-1946.
    [35]MacDonald TT, Monteleone G, Pender SL. Recent developments in the immunology of inflammatory bowel disease[J]. Scand J Immunol 2000 Jan;51(1):2-9.
    [36]Mosmann TR, Cherwinski H, Bond MW, et al. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins[J]. J Immunol 1986 Apr 1;136(7):2348-2357.
    [37]Neurath MF, Finotto S, Glimcher LH. The role of Thl/Th2 polarization in mucosal immunity[J]. Nat Med 2002 Jun;8(6):567-573.
    [38]Dharmani P, Chadee K. Biologic therapies against inflammatory bowel disease:a dysregulated immune system and the cross talk with gastrointestinal mucosa hold the key[J]. Curr Mol Pharmacol 2008 Nov;1(3):195-212.
    [39]Nielsen OH, Kirman I, Rudiger N, et al. Upregulation of interleukin-12 and-17 in active inflammatory bowel disease[J]. Scand J Gastroenterol 2003 Feb;38(2):180-185.
    [40]Bowen H, Kelly A, Lee T, et al. Control of cytokine gene transcription in Thl and Th2 cells[J]. Clin Exp Allergy 2008 Sep;38(9):1422-1431.
    [41]Peng SL. The T-box transcription factor T-bet in immunity and autoimmunity[J]. Cell Mol Immunol 2006 Apr;3(2):87-95.
    [42]Zhu J, Yamane H, Cote-Sierra J, et al. GATA-3 promotes Th2 responses through three different mechanisms:induction of Th2 cytokine production, selective growth of Th2 cells and inhibition of Thl cell-specific factors[J]. Cell Res 2006 Jan;16(]):3-10.
    [43]Dong L, Chen M, Zhang Q, et al. T-bet/GATA-3 ratio is a surrogate measure of Thl/Th2 cytokine profiles and may be novel targets for CpG ODN treatment in asthma patients[J]. Chin Med J (Engl) 2006 Aug 20; 119(16):1396-1399.
    [44]Chakir H, Wang H, Lefebvre DE,et al. T-bet/GATA-3 ratio as a measure of the Thl/Th2 cytokine profile in mixed cell populations:predominant role of GATA-3 [J]. J Immunol Methods 2003 Jul;278(1-2):157-169.
    [45]Fedorak RN, Gangl A, Elson CO, et al. Recombinant human interleukin 10 in the treatment of patients with mild to moderately active Crohn's disease. The Interleukin 10 Inflammatory Bowel Disease Cooperative Study Group[J]. Gastroenterology 2000 Dec;119(6):1473-1482.
    [46]van Deventer SJ, Elson CO, Fedorak RN. Multiple doses of intravenous interleukin 10 in steroid-refractory Crohn's disease. Crohn's Disease Study Group[J]. Gastroenterology 1997 Aug;113(2):383-389.
    [47]Schreiber S FR, Wild G, et al. Safety and tolerance of rHuIL-10 treatment in patients with mild/moderate active ulcerative colitis[J]. Gastroenterology 1998;114(A1080-A1081).
    [48]Neurath MF, Fuss I, Kelsall BL, et al. Antibodies to interleukin 12 abrogate established experimental colitis in mice[J]. J Exp Med 1995 Nov 1;182(5):1281-1290.
    [49]Szabo SJ, Kim ST, Costa GL, et al. A novel transcription factor, T-bet, directs Thl lineage commitment[J]. Cell 2000 Mar 17;100(6):655-669.
    [50]Szabo SJ, Sullivan BM, Stemmann C, et al. Distinct effects of T-bet in TH1 lineage commitment and IFN-gamma production in CD4 and CD8 T cells[J]. Science 2002 Jan 11;295(5553):338-342.
    [51]Stevens L, Htut TM, White D, et al. Involvement of GATA3 in protein kinase C theta-induced Th2 cytokine expression[J]. Eur J Immunol 2006 Dec;36(12):3305-3314.
    [52]Kawashima M, Miossec P. Effect of treatment of rheumatoid arthritis with infliximab on IFN gamma, IL4, T-bet, and GATA-3 expression:link with improvement of systemic inflammation and disease activity[J]. Ann Rheum Dis 2005 Mar;64(3):415-418.
    [53]Zanin-Zhorov A, Bruck R, Tal G, et al. Heat shock protein 60 inhibits Thl-mediated hepatitis model via innate regulation of Thl/Th2 transcription factors and cytokines[J]. J Immunol 2005 Mar 15;174(6):3227-3236.
    [54]Cheng X, Chen Y, Xie JJ, et al. Suppressive oligodeoxynucleotides inhibit atherosclerosis in ApoE(-/-) mice through modulation of Thl/Th2 balance[J]. J Mol Cell Cardiol 2008 Aug;45(2):168-175.
    [55]Matsuno Y, Ishii Y, Yoh K, et al. Overexpression of GATA-3 protects against the development of hypersensitivity pneumonitis[J]. Am J Respir Crit Care Med 2007 Nov 15;176(10):1015-1025.
    [56]Mowat AM, Millington OR, Chirdo FG. Anatomical and cellular basis of immunity and tolerance in the intestine[J]. J Pediatr Gastroenterol Nutr 2004 Jun;39 Suppl 3:S723-724.
    [57]Korzenik JR, Dieckgraefe BK, Valentine JF, et al. Sargramostim for active Crohn's disease[J]. N Engl J Med 2005 May 26;352(21):2193-2201.
    [58]Ramirez F, Fowell DJ, Puklavec M, et al. Glucocorticoids promote a TH2 cytokine response by CD4+T cells in vitro[J]. J Immunol 1996 Apr 1;156(7):2406-2412.
    [59]Dozmorov IM, Miller RA. Generation of antigen-specific Th2 cells from unprimed mice in vitro:effects of dexamethasone and anti-IL-10 antibody[J]. J Immunol 1998 Mar 15;160(6):2700-2705.
    [60]Krouwels FH, van der Heijden JF, Lutter R,et al. Glucocorticosteroids affect functions of airway-and blood-derived human T-cell clones, favoring the Thl profile through two mechanisms[J]. Am J Respir Cell Mol Biol 1996 Apr;14(4):388-397.
    [61]Benson M, Strannegard IL, Strannegard O, et al. Topical steroid treatment of allergic rhinitis decreases nasal fluid TH2 cytokines, eosinophils, eosinophil cationic protein, and IgE but has no significant effect on IFN-gamma, IL-1beta, TNF-alpha, or neutrophils[J]. J Allergy Clin Immunol 2000 Aug;106(2):307-312.
    [62]Liberman AC, Druker J, Refojo D, et al. Glucocorticoids inhibit GATA-3 phosphorylation and activity in T cells[J]. Faseb J 2009 May;23(5):1558-1571.
    [63]Ning-ning Shan X-jZ, Qian Wang, Chun-yan Wang. High-dose dexamethasone regulates interleukin-18 and interleukin-18 binding protein in idiopathic thrombocytopenic purpura[J]. Haematologica 2009;94(11):1603-1607.
    [64]马有度丛林,李庆升.中医药精华浅说[M].人民卫生出版社1998:243.
    [65]温燕梅.黄芪的化学成份研究进展[J].中成药2006;28(6):879-883.
    [66]Rios J L WPG. A review of the pharmacology and toxicology of astragalus[J]. Phytotherapy Research 1997;11(6):411-418.
    [67]黄乔书吕归宝,李雅臣,等.黄芪多糖的研究[J].药学学报1982;17(3):200-206.
    [68]Nodko S MT, Naoko O, et al. An acidic polysaccharide having activity on the reticuloendothelial system from the hairy root culures of Astragalus membranaceus[J]. Chem Pharm Bull 1991;39(11):2969-2972.
    [69]Masashi T NS, Naoko O, et al. A reticuloendothelial system activating glycan from the hairy root cultures of Astragalus membranaceu[J]. Phytochem 1992;31(1):63-66.
    [70]Schepetkin IA, Quinn MT. Botanical polysaccharides:macrophage immunomodulation and therapeutic potential[J]. Int Immunopharmacol 2006 Mar;6(3):317-333.
    [71]Shao BM, Xu W, Dai H, et al. A study on the immune receptors for polysaccharides from the roots of Astragalus membranaceus, a Chinese medicinal herb[J]. Biochem Biophys Res Commun 2004 Aug 6;320(4):1103-1111.
    [72]Minsook Ryu EHK, Mison Chun,et al. Astragali Radix elicits anti-inflammation via activation of MKP-1, concomitant with attenuation of p38 and Erk [J]. Journal of Ethnopharmacology 2008;115(2):184-193.
    [73]邱培勇.黄芪多糖对小鼠免疫功能的影响[J].新乡医学院学报2006;23(6):585-586.
    [74]安松兰张善玉孙,朴惠顺.1年生黄芪中黄芪多糖对小鼠免疫器官指数的影响[J].延边大学医学学报2007;30(1):195-197.
    [75]卢慧谷新利,孙才华,等.中药复方多糖对雏鸡B淋巴细胞免疫功能的影响[J].中兽医医药杂志2007;26(5):13.
    [76]孔令梅.黄芪的免疫调节作用[J].内蒙古医学杂志2007;39(1):74.
    [77]姚金凤王志新,张晓勇,等.黄芪多糖对小鼠腹腔巨噬细胞免疫功能的调节作用研究[J].河南大学学报(医学版)2005;24(1):34-36.
    [78]李树鹏郝艳霜,陈福星,等.黄芪多糖和益生菌对雏鸡免疫机能的影响[J].粮食与饲料工业2007;2:33-34.
    [79]宋淑珍田亚平,汪德清,等.黄芪多糖对健康体检者淋巴细胞亚群的调节作用[J].中国临床康复2005;9(11):130-131.
    [80]马兴铭赵进昌.6种多糖对小鼠免疫功能调节作用的比较[J].中药药理与临床2003;19(4):14-15.
    [81]项杰王育斌,徐涛,等.黄芪多糖在宿主抵抗李斯特菌中的作用[J].武汉大学学报(医学版)2007;28(6):741-743.
    [82]邓曼窦晓兵,史亦谦,等.黄芪多糖定向诱生脐血来源树突状细胞及其对T细胞增殖作用的研究[J]. 中国免疫学杂志2007;23(6):539-544.
    [83]Shao P, Zhao LH, Zhi C, et al. Regulation on maturation and function of dendritic cells by Astragalus mongholicus polysaccharides[J]. Int Immunopharmacol 2006 Jul;6(7):1161-1166.
    [84]骆殊邵佳.黄芪多糖对树突状细胞免疫活性的影响[J].中医药临床杂志2009;21(1):66-69.
    [85]张毅李金田,刘永琦,等.黄芪多糖对肺纤维化大鼠血清中Th1/Th2细胞因子平衡、NO水平的影响[J].中国老年学杂志2009;29(10):1185-1187.
    [86]孟爽赵玉铭,夏立信,等.黄芪多糖对SLE小鼠表皮树突状T细胞影响的研究[J].中华皮肤科杂志2004;37(6):364.
    [87]王晓琴赵玉明,王雅坤,等.黄芪多糖对红斑狼疮小鼠6种抗磷脂抗体的影响[J].中医中药与免疫2004;20(8):558-560.
    [88]李春霞侯桂华,宋静,等.黄芪在同种移植排斥中对CD4+CD25+T细胞及Foxp3的影响[J].山东大学学报(医学版)2006;44(8):760-764.
    [89]郑春燕肖伟.肺癌患者外周血单个核细胞Th1/Th2反应状态及黄芪的调节作用[J].中国免疫学杂志2002;18(7):502-503.
    [90]魏海明田志刚,许晓群,等.肺癌患者转录因子T-bet和GATA3的基因表达状况及药物干预研究[J].中华肿瘤杂志2002;24(1):34-37.
    [91]张薇赵菲.黄芪对儿童变应性鼻炎血清Th1/Th2的影响[J].中国药物与临床2006;6(9):680-683.
    [92]朱培成榻国维,陈达灿,等.黄芪多糖对斑秃患者PBMC中Th1/Th2型细胞因子、转录因子T-bermRNA表达的调节作用[J].广东医学200728(10):1685-1687.
    [93]Dong WY HG, Zhang B, et al. Effects of twelve Chinese herbs on human regulatory T cell differentiation in vitro[J]. Shijie Huaren Xiaohua Zazhi 2008;16(24):2770-2774.
    [94]李茹柳迟莉,石忠峰,等.白术黄芪汤及其单药提取部位组方对溃疡性结肠炎的治疗作用[J].中国药理学与毒理学杂志2007;21(3):223-228.
    [95]李惟民.参芪汤治疗溃疡性结肠炎的临床观察[J].现代中西医结合杂志2009;18(12):1336-1337.
    [96]Yuan Yuan QY-j, Xu Ling-fen, et al. Effect of Astragalus mongholicus polysaccharides on intercellular adhesion molecule-1 secreted by in vitro intestinal epithelial cell induced by lipopolysaccharide[J]. Chinese Journal of Integrated Traditional and Western Medicine in Intensive and Critical Care 2008; 15(2):41.41-61.41.
    [97]Zhang Lei HG, Suo Zhanwei, et al. Effect of Astragalus polysaccharides on proliferation of rat intestinal mucosa microvascular endothelial cells in vitro[J]. China Animal Husbandry & Veterinary Medicine 2009;36(3):80-83.
    [98]Yuan Yuan MS. Mechanism of impact of Astragalus mongholicus polysaccharides on lipopolysaccharide-induced damage in intestinal epithelial cells[J]. World Chinese Journal of Digestology 2008;16(1):15-19.
    [99]刘端勇赵海梅,周枫,等.黄芪多糖调节小鼠小肠黏膜淋巴细胞因子的表达[J].中国中医基础医学杂志2008;14(9):692-693.
    [100]Cong Y WC, Lazenby A, et, al. Bacterial-reactive T regulatory cells inhibit pathogenic immune responses to the enteric flora[J]. J Immunol 2002; 169:6112-6119.
    [101]Maul J, Loddenkemper C, Mundt P, et al. Peripheral and intestinal regulatory CD4+CD25(high) T cells in inflammatory bowel disease[J]. Gastroenterology 2005 Jun; 128(7):1868-1878.
    [102]Li SP ZX, Wang JY. Synergy of Astragalus polysaccharides and probiotics (Lactobacillus and Bacillus cereus) on immunity and intestinal microbiota in chicks[J]. Poult Sci 2009;88(3):519-525.
    [103]Ou DY GM, Liu Shh, et al. Effects of Astragalus Polysaccharides on the Invasion of Intestinal Epithelial Cells by E.coli in vitro[J]. Progress in Veterinary Medicine 2006;27(8):85-87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700