温度—应力试验机温湿度控制系统设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,我国正处于基础设施建设的高速期,混凝土工程量巨大,减少和避免混凝土的开裂意义重大。检测与评价混凝土的开裂敏感性,是采取有效措施减少或避免混凝土开裂的前提。混凝土结构施工中裂缝的产生与温度应力有直接的关系,温度变化对结构的应力状态具有重要的影响。
     本文主要针对温度—应力试验机温湿度控制系统展开研究,总结国内外研究现状,系统分析了温度和湿度变化对混凝土抗裂性能的影响,采用理论与实际相结合的研究方式,设计出温度—应力试验机温湿度控制系统。
     论文首先介绍了温湿度控制的基本原理和温度—应力实验机的发展状况,叙述了温湿度控制方法的研究与现状、虚拟仪器技术和数据库软件SQL Sever 2000的特点。然后,根据混凝土温湿度检测的特点与检测方法,提出了温湿度控制系统的总体方案,包括硬件方案和软件方案。
     硬件设计主要分为数据采集和温湿度控制两大部分。数据采集部分主要完成多路信号调理和多通道的数据采集,主要采用信号调理板和数据采集控制卡实现;温湿度控制部分主要是按照试验要求通过控制卡驱动执行机构完成温湿度调节,主要采用温控模板和环境箱实现。
     软件设计是系统的核心部分,它基于LabVIEW平台开发,主要由数据采集、数据处理与显示和温湿度控制等3大功能模块组成,此外还包括硬件板卡的驱动程序。数据采集模块包括初始化程序,参数设置程序和数据采集程序,主要完成对温湿度电压信号的采集。数据处理与显示模块主要完成对温湿度电压信号数据的标定,采用加权平均值法将电压值转换成温湿度数据,通过调用数据库实现数据的存储与查询,并采用数值显示和图形显示相结合的方式,准确显示不同时刻的信号值及其变化趋势。温湿度控制模块主要实现对于温湿度的调节。按照控制指令实现对温控模板和环境箱温湿度执行机构的控制,拟采用PID控制算法。
During a high-speed period of basic facility construction in China, large engineering quantity of concrete makes it much important to reduce and avoid concrete crazing. Measuring and evaluating concrete crazing sensitivity is first operative step to keep away from its cracks. The emergence of cracks is direct relation to temperature-stress, and the temperature change has the important influence to the structure-stress condition.
     In order to work out the temperature & humidity control system, aiming at the Temperature-Stress Testing machine temperature & humidity control system, summarize the domestic and foreign present researches, analyze the influence to the concrete anti-crazing caused by the changes of the temperature and the humidity, and adopt the research method which combined the theory and practice.
     Firstly introduce the basic control principle of the temperature & humidity and the development condition of the temperature-stress testing machine, narrate the research method and the present situation, the virtual instrument technology and the characteristics of the database software SQL Sever 2000. Then, according to the examination characteristic and method of the concrete temperature & humidity, put forward the whole plan of the temperature & humidity control system, including hardware plan and software plan.
     The hardware design is divided into two aspects: data acquisition and temperature & humidity control. Data acquisition is mainly made use of the signal-conditioning board and the data acquisition control card to realize multi-channel signal-conditioning and signal acquisition, temperature & humidity control aspect utilizes the temperature control template and the environment simulation box to realize the accommodation of temperature & humidity through executive implement drove by the control card, according to the experimental request.
     The software design is the key part of the system design, which based on LabVIEW development platform, includes data acquisition module, data processing and display module, control module, as well as some hardware drive procedure. Data acquisition module, which is made up of the initialization procedure, the parameter setting procedure and signal acquisition procedure, mainly accomplishes the acquisition of the temperature & humidity signal. Data processing and display module achieves the signal transform through weighted-average method, transfers database to realize data storage and inquiry, exactly displays the signal at the different time and the trend via the united way of the numeric display and the graph. Control module adopts PID arithmetic to realize the temperature & humidity adjustment.
引文
[1].陈辉,韩芳垣.大体积混凝土温度裂缝的成因分析及控制措施.混凝土,2006,196(2):74~75
    [2].张晓明.混凝土温度裂缝的成因及预防措施.北京工业职业技术学院学报,2006,1(5):50~52
    [3].齐宁.浅议混凝土的温度应力与裂缝.河北建筑工程学院学报,2005,23(4):56~57
    [4].李宇.论混凝土温度应力的检测.山西建筑,2005,1(31):54~55
    [5].张国志,屠柳青,夏卫华,刘可心,刘秉京.混凝土早期开裂评价指标研究.混凝土,2005,187(5):13~17
    [6].张涛,覃维祖。约束度与混凝土早期开裂敏感性评价.工业建筑2006,36(3):47~50
    [7]. Paul J. Uno. Plastic Shrinkage Cracking and Evaporation Formulas. ACI Materials Journal, July-August, 1998, 365~375
    [8].邵俊峰,徐得潜.大体积混凝土温度控制和防裂措施.工程与建设,2006,20(2):95~99
    [9].吕建福,汪东杰,巴恒静.大体积混凝土早期温度发展规律及温度控制.混凝土,2006,198(4):23~24
    [10].杨长辉,王海阳.环境因素变化对高强混凝土塑性开裂的影响.混凝土,2005,5(187):27~32
    [11]. Ravina D, Shalon R. Plastic Shrinkage Crocking. ACI Journal, 1968(4): 282~291
    [12].李云峰,吴胜兴.基于湿度扩散理论的混凝土早期收缩分析.水力发电,2005,31(12):31~33
    [13].朱岳明,刘有志,曹为民,吴健.混凝土湿度和干缩变形及应力特性的细观模型分析.水利学报,2006,37(10):1163~1168
    [14]. Man Yop Han, Lytton R L. Theoretical prediction of drying shrinkage of concrete. Journal of Materials in Civil Engineering, 1995, 7(4): 204~207
    [15].胡曙光,何永佳,吕林女.调节混凝土内部相对湿度的释水因子技术及其应用.铁道科学与工程学报,2006,3(2):11~14
    [16].林志海,覃维祖,张士海,张涛.虚拟仪器技术在检测混凝土早期开裂灵敏度试验中的应用.工业建筑,2003,33(7):37~40
    [17].王海阳.高强混凝土早期收缩及塑性开裂影响因素研究.重庆大学硕士学位论文,2005
    [18]. Bloom, R., and Bentur, A., Free and Restrained Shrink age of Normal and High-Strength Concrete, ACI Materials Joumal, 1995, 92(2): 211~217
    [19]. Shin-ichi Igarashietc., Autogenous Shrinkage and Induced Restraining Stresses in High-Strength Concrete. Cement and Concrete Research, 2000, (30): 1701~1707
    [20]. Amon Benturetc., Prevention of Autogenous Shrinkage in High-Strength Concrete by Internal Curing Using Wet Lightweight Aggregate.Ce2 ment and Concrete Research, 2001, (31): 1587~1591
    [21]. Kolver, K. Testing System for Determining the Mechanical Behavior of EarlyAge Concrete under Restrained and Free Uniaxial Shrinkage. Materials andStructure, 1994, (27): 324~330
    [22]. Salah A, Altoubat and David A. Lange, Creep, Shrinkage, and Cracking of Restrained Concrete at Early Age. ACI Materials Journal, 2001, 98(4): 323~331
    [23]. Penev,D., Kawamura, M. A Laboratory Device for Restrained ShrinkageFracture of Soil-Cement Mixture.Materials and Structure 1992, (25): 115~120
    [24]. RILEMTC 119-TCE: Avoidance of Thermal Cracking in Concrete at EarlyAges, 1993
    [25].张士海,覃维祖,张涛,林志海.混凝土早期抗裂性能评价——单轴约束试验方法的进展.混凝土与水泥制品,2002,125(3):13~16
    [26].林志海,覃维祖,张士海,张涛.混凝土早期应力发展与抗裂性能评价.建筑技术,2003,34(1):34~35
    [27].吴志祥.实用温度测量技术.常州工学院学报,2003,16(4):52~57
    [28].俞胜扬.环境湿热试验箱加湿系统的改进。电测与仪表,2004,41(2):40~41
    [29].吴维金,于波,马红星,万玉倩.虚拟仪器技术及应用.水电厂自动化,2005,7(3):72~74
    [30].武林,楼恩平,侯冬晴,徐亮.基于PID算法的无线温湿度控制系统.仪器仪表学报,2006,27(6):619~620
    [31].王大海.新型温湿度自动控制系统的设计与应用.测控技术与设备,2002,28(3):33~36
    [32].徐健,马宾.基于神经网络的智能厂房温湿度模糊控制系统研究.微计算机信息,2006,22(14):76~77
    [33].肖金球,冯翼,仲嘉霖.高速多路实时数据采集处理系统设计.计算机工程,2004,30(24):180~182
    [34].贾宏宇.基于NI数采模块的测井数据采集控制系统.仪表技术,2004,(5):15~16
    [35].谢冰榕,洪一,戴勇.一种基于PCI总线的多路数据采集系统.现代电子,2002,2(71):33~37
    [36].朱进.基于模糊控制的数据采集与控制系统.淮阴工学院学报,2005,14(1):20~22
    [37]. Bryant, C.L, Gandhi N.J. Real-time data acquisition and control system for the measurement of motor and neural data. Journal of Neuroscience Methods, 2005, 3(142): 193~200
    [38]. Leng Shuyan, Kang Aiguo, Wan Qi, Huang Ping. High property electronic ceramics humidity transducer used in mine. Mining Science and Technology, 2002, (99): 693~696
    [39]. Bodea.Mircea.C, Spanoche.Sorin-Andrei New, precision and low-cost temperature transducer, the Mediterranean Electrotechnical Conference-MELECON, 1994, 3(3): 1208~1210
    [40]. Proctor, John. Temperature Transducer IC is Linear over wide range. Electronic Design, 1984, 32(7): 133~138
    [41]. Schaffer.H, Koeder.O. Sensitive All-Silicon Temperature Transducer. Sensors and Actuators, 1983, 4(4): 661~667
    [42]. Agnes Nagy. Simulation.of Thermal Stress in Reinforced Concrete at Early Ages with A Simplified Model. Materials and Structure, 1997, 4(30): 167~173
    [43]. Lopez-Higuera.J.M, Echevarria.J, QUintela.A, Jauregui.C, Cobo.A. Strain and temperature transducer on one Fiber Bragg Grating. The International Society for Optical Engineering, 2001, 4328:192~198
    [44].张多.基于PCI-1710数据采集系统的研究与实现.广东自云学院学刊,2005,(2):67~69
    [45].胡曙光,陈静,周志锋.约束可调式单轴温度—应力试验机控制系统设计.武汉理工大学学报,2007,129(1):55~58
    [46].王传旭.石油倾点温度测试Pt100温度传感器的标定.传感器世界,2004,(9):28~30
    [47].马坚勇.智能型人工气候箱控制系统的研制.自动化与仪表,2003,(3):40~42
    [48].马国忠,柳长源.人工气候箱模拟环境测控系统的设计.信息技术,2004,28(7):56~57
    [49].胡曙光,陈静,任朝志.分流式内加湿型环境箱设计.环境技术,2006,12(6):35~36

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700