钻井液固液动压分离及固液两相流运动规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了由两台等质径积激振电机自同步激励多层锥型滤网,并采用旋流分离、沉降分离、十字流分离和滤网压滤分离机理,从而实现固液两相即钻井岩屑颗粒和钻井液分离的试验装置。其主要特点是:应用了多种固液分离原理;可实现连续操作、封闭式固液动压分离。不仅提高了分离效率、有利于环保,而且还适应了低压(沙漠、海上、泡沫)钻井等新型钻井工艺技术对固控系统的要求。针对这种新型固液分离动压机开展了一系列开拓性的研究工作:
     (1) 基于钻井液是不可压缩的非牛顿流体和其流变特性与理想的牛顿流体存在着很大区别的特点,分析和总结了钻井液流变模型,通过试验研究分析,提出了一种新的钻井液流变模型计算方法;同时对岩屑基本性质、固相岩屑测量与颗粒尺寸分布等作了系统的研究,为合理选择动压机固液分离理论和滤网提供了理论依据。
     (2) 根据机械动力学建立了动压机的自同步数学模型,运用Hamilton原理得出了双电机自同步动压机的自同步条件和同步状态稳定性条件;并结合三向异步激振电机的数学模型建立了激振电机和动压机机电耦合数学模型。
     (3) 结合动压机结构和入流方式特点,提出了研究动压机内钻井液流场的数学方法,建立了动压机流场的边界条件,建立了动压机钻井液旋流流场数学模型,研究了钻井液径向、切向、轴向运动规律,并分析了动压机内的短路流和循环流问题。
     (4) 研究了动压机内的湍流问题,并得出了一种较为理想的描述动压机湍流流场的N-S方程和普朗特混合长模型;建立了动压机内的振荡流数学模型,并在以上基础上讨论了岩屑颗粒在湍流中的运动规律。
     (5) 从颗粒与液相介质之间的相互作用入手,相继讨论了动压机内颗粒的受力问题、轴向沉降、离心力场沉降等问题。运用BBO方程讨论了岩屑颗粒的离心沉降问题和干涉沉降问题,得出了岩屑颗粒离心沉降末速度。
     (6) 研究了钻井液液相过网动力,分析了动压机内所特有的低剪切力十字流动态过滤规律;建立了动压机滤网固相颗粒运动模型,揭示了固相颗粒在振动滤网上的运动规律。
     本文的研究工作属于中国石油天然气集团公司项目“钻井液固液动态压滤分离机”研究工作的一部分。理论分析和试验结果表明,本文对钻井液固液动压分离模拟试验装置相关工作机理的研究,以及在试验装置结构设计中的应用是可行的,对“钻井液固液动态压滤分离机”的相关研究工作具有参考、指导意义。
The dissertation studies an experiment device which can separate particles from drilling fluid quickly. The experiment is excited by two vibration motors whose product of mass and radius is equal. And this device adopts a new technique which is composed of swirl, deposition, cross flow and pressure filtration. This dynamic filter pressing device has such feathers: its structure is simple, applying various separate principles, carrying out separation operation continuously and closely. These not only improve segregate efficiency and help to environmental protection, especially, they meet the demand what under-balanced (desert, sea, foam) drilling needed for solid control system. In order to clarify the working mechanism of dynamic filter pressing machine and understand the application of various solid-liquids separate theory on dynamic filter pressing machine, At the same time, provide theories to development and production the new product, this dissertation does some pioneering research work and has completed the following studies.(1) On the basis of the specialties that drilling fluid is incompressible non-Newtonian fluid and its rheologic property is very different from Newtonian fluid, this dissertation analyses and summarize the rheologic model of drilling fluid and gave out a new method of calculation to the rheologic model through experiment. At the same time, dosing well research on the basic property of rock debris, the measures of rock debris and the distributing of particle size which provide theories for choosing screen and choosing the way for separate.(2) Built up the mathematical model of self-synchronization about This dynamic filter pressing device, Make use of the principle of Hamilton ,the self-synchronizing condition and synchronizing state stability condition about The dynamic filter pressing device excited by two self-synchronizing vibration motors are gave out. The coupling mathematical model between the vibration motors and the dynamic filter pressing device is established based on the mathematical model of the three-way asynchronous vibration motors.(3) Based on the structure and the feed of the dynamic filter pressing device, a mathematical method on researching the drilling fluid field in the device is gave out. The boundary condition about the flow field is build up and the mathematical model about the drilling fluid field in the device is set forth. The law of motion of the drilling fluid at the radial direction, the tangential direction and the axial direction is studied, at the same time, the short flow and circulating flow are analyzed.(4)A problem on turbulent flow is studied in the dynamic filter pressing device, the N-S equation and the mixed-model modal are revealed, which can describe the turbulent flow field perfectly. A dominant mathematical mode in the device is build up, and on the base of above, the kinetic law of the debris is discussed.(5)Begin with the interaction between particles and drilling fluid, one after the other, the problem that particles descent at axial direction, descent in centrifugal force field, and get force in thee dynamic filter pressing device is discussed. The condition for centrifugal descent and interferential descent is discussed by making use of the BBO
    equation, and the final velocity of the particle in the centrifugal force field is educed.(6)The filtered power of the drilling fluids is studied, the law of the dynamic filtering for the lower shear force is analyzed in the dynamic filter pressing device, The Kinetic model of the particle on the filter screen of the device is set up, and a kinetic law of the particle on the vibration filter screen is revealed.The researches on this dissertation are part of the project about the drilling fluids dynamic filter pressing machine sponsored by the Chinese Oil and Natural Gas Company. In conclusion, the theoretical analysis and experimental result show that the relative theoretic research on the dynamic separate model of this equipment is correct and the application for the structure design is suitable .At the same time, the work can contribute to the research of the drilling fluids dynamic filter pressing machine in the future.
引文
[1] 朱再思,康宜华,李雪辉.钻井液净化系统的现状及发展趋势,石油机械.2001增刊,P111~113
    [2] E.E. E3Ouse and i.E. Carrasquero, Corpoven, S.A. Drilling Mud Solids control and Waste Management. SPE23660
    [3] Manohar Lal, L.L. Hoberock, .Solids-Conveyance Dynamics and Shaker Performance. SPE14389
    [4] byVV. E&' dreY, G.L. Nix, and J.P. Wright, Gedograph fjoneer h. Automation of Solids Control Systems. ADC/SPE 14751
    [5] 张勇、刘观遐、邬前力等.井下钻井液固相分离器.中国专利.CN91207305
    [6] 庞天海.油田环境污染控制技术综述.钻采工艺,1994.(2),P89~94
    [7] 罗军,盖力学,刘刚强.油田开发中的环境污染及治理.油气阳地面工程.第21卷5期,P112~113
    [8] 张文正,王强,王连云,侯永高.ZYG320型钻井液固控系统的开发与研制.石油机械.2001.(10),P29~31
    [9] 张建军,张子胜,王维忠,郑满圈.GKXT200型钻井液固控系统的研制.石油矿场机械.2003.(1),P40~42
    [10] 张明洪,马天宝.钻井液平动椭圆振动筛原理.天然气工业.1990.(4):P40~46
    [11] 侯勇俊,筒式网钻井筛工作理论研究,西南石油学院博士论文,2002,4
    [12] 杜坚,钻井液净化筛网的工作行为特征研究,西南石油学院博士学位论文,2000.5
    [13] GW-S1钻井振动筛设计说明书.西南石油学院固控科研组.
    [14] TB-1钻井振动筛设计说明书.西南石油学院固控科研组.
    [15] GW-S1钻井振动筛项目评估报告.西南石油学院固控科研组.
    [16] 龚伟安.钻井液固相控制技术与设备.北京:石油工业出版社,1995
    [17] Courtney Dehn. Novel screening unit proveides alternative to conventional shale shaker[J]. Oil & Gas Journal. 1999, 97(15): P40~48
    [18] 袁惠新.分离工程.中国石化出版社.2002.1
    [19] 罗茜主编.固液分离,冶金工业出版社,1997.3
    [20] 丁启圣,王维一.新型实用过滤技术,冶金工业出版社.2000.1
    [21] 范荣平.岩屑后处理模拟实验装置研究.西南石油学院硕士论文,2002.4
    [22] Haruo YAMAZAKI,Toshiro MURASE,Masashi IWATA,Mompei SHIRATO.动态旋叶压滤机滤室中符合幂函数规律的非牛顿流体的流动特性.流体工程.1992.20(11),P52~57.
    [23] 谭蔚,朱企新,李立强.动态旋叶压滤机内流场的理论研究.化学工程.2001.29(2),P38~41.
    [24] 谭蔚,朱企新,杨爱玲.动态旋叶压滤机内流场的实验研究.流体机械.1998.26(10),P14~17.
    [25] 刘洪斌,钻井液固液动压分离模拟装置机理分析及结构设计,西南石油学院硕士论文,2003,4
    [26] 刘希圣等编,钻井工艺原理,石油工业出版社,1981.9
    [27] 韩洪生等编著,石油工程非牛顿流体力学,哈尔滨工业大学出版社,1993.4
    [28] 韩式方.非牛顿流体本构方程和计算解析理论.北京:科学出版社.2000
    [29] 郑永刚.非牛顿液体流动理论及其在石油工程中的应用.北京:石油工业出版社,1999
    [30] 郭金爱.从相同的表观粘度出发比较泥浆的剪切稀释能力.西部探矿工程,1999.(3),P35~38
    [31] 唐军,钻井液流变参数计算新方法,天然气工业,1996,16(5)P41~44
    [32] 刘崇建,刘孝良,柳世杰.非牛顿流体流态判别方法研究.天然气工业.2001.(4)
    [33] 黄汉仁,杨坤鹏,罗平亚.泥浆工艺原理.北京:石油工业出版社,1981
    [34] 熊长武,动激压滤固相控制试验研究,西南石油学院硕士论文,2001.4
    [35] G.V奇林格雷、P沃布切[美]著,钻井和钻井液,石油工业出版社,1987.11
    [36] 肖平、严新新,关于钻井液固相粒度分布的一些探索,石油与天然气工业,1996,25(4),P227~210
    [37] 用分形几何研究粘土的粒度分布,油田化学,96.13(4)P289~293
    [38] 闻邦椿等.振动机械的理论与动态设计方法.北京:机械工业出版社.2001
    [39] 杨献平,吴志星,刘洪斌等.双激振电机驱动动态压滤机自同步性能分析,已录用.
    [40] 梅凤翔,刘瑞,罗勇.高等分析力学.北京:北京理工大学出版社.1991
    [41] 吴志星,侯勇军,张明洪.不等质径积激振电机与振动机耦合数学模型.全国依诺维特杯机电工程专业研究生学术交流论文.2003.7
    [42] 许大中,贺宜康,电机控制[M].浙江:浙江大学出版社,1995
    [43] 陈家琅等编著,钻井液流动原理,石油工业出版社,1997.4
    [44] 徐继润、罗茜.水力旋流器流场理论,科学出版社1998.3
    [45] 邵国兴.水封式水力旋流器的研究及应用.化工机械.1996.1
    [46] J.F. Douglas, J.M. Gasiorek and J.A. Swaffield, Fluid Mechanics, Pitman Publishing Limited, England, 1979, P183~184
    [47] 王永嘉等译,选矿厂水力旋流器,冶金工业出版社,1982
    [48] E.G. Kelly and D. J. Spottiswood, Introduction to Mineral Processing, John Wiley & Sons. New York. 1982, P215
    [49] 赵立新,水力旋流器径向速度测试方法,化工装备技术,1999,5:P4~6
    [50] 孙启才,水力旋流器单向液体速度场的研究,流体工程.1988.(6):P1~6
    [51] T.D·哈蒂冈等.圆柱水力旋流器的数学模型,国外金属矿选矿,2000.1
    [52] 张鹏飞,许德明,黄枢.加冲洗水圆柱型水力旋流器的数学模型
    [53] J.D.Hinze著.黄永念、颜大椿译,湍流.上册,科学出版社,1987.
    [54] 赵学端,廖其奠主编,粘性流体力学,机械工业出版社,1993.5
    [55] 陈佐一,蒋滋康,孙锡九.振荡流体力学.北京水利电力出版社,1988
    [56] 陈佐一著.流体激振.清华大学出版社,1998.7
    [57] 陈佐一,舒红.求解复杂流动的参数多项式方法.工程热物理学报,199011(1):P44—46
    [58] 佟庆理.两相流动的理论基础.北京:冶金工业出版社,1982
    [59] 倪晋仁,王光谦,张红武.固液两相流基本理论及其最新应用,科学出版社,1991
    [60] 陈克城主编.流体力学实验技术.浙江大学出版社.1982
    [61] 查旭东,樊建人,郑友取,岑可法.采用欧拉和拉格朗同混合模型对浓相颗粒流的研究.动力工程,2000.(5),P885~892
    [62] 周健,池永,廖雄华.颗粒流理论及其工程应用简介.岩土工程师,2001.(4),P1~4
    [63] wangguangqian and feixiangjun, in proceedings of the 4th Int. Symposium on river sedimentation, pp1459-1467, Beijing, China, 1989
    [64] 费祥俊.液体与粒状物料输送水力学.清华大学出版社,1994.5
    [65] 诸良银,陈文梅.高效过滤技术研究与新进展.过滤与分离,1996.6,P3~6
    [66] 朱维兵,钻井筛筛面固相及液相运移规律研究,西南石油学院博士学位论文,2000.5
    [67] 赵国珍 张明洪 李君裕著,钻井振动筛工作理论与测试技术,石油工业出版社,1996.12
    [68] 褚良银,陈文梅.旋流动态薄层气压过滤过程研究.流体机械.1998.26(12),P9~12
    [69] 杨爱英,金鼎五.动态过滤的过滤比阻研究.化学工程.1997.(1),P31~35
    [70] 杨爱英,金鼎五.动态过滤的过滤速率.1995.(6),P695~702
    [71] 许莉,李文革,朱企新,鲁淑群,王淑娥.动态过滤滤饼结构的研究.流体机械.2000.(5),P26-28
    [72] 郭仁惠 张建设,固-液分离滤布性能测定及选用,机械工业出版社,1997.2
    [73] 赵国珍 张明洪 李君裕著,钻井振动筛工作理论与测试技术,石油工业出版社,1996.12
    [74] 赵国珍.泥浆振动筛抛掷指数的探讨.石油矿场机械,1988,17(4):P22~28
    [75] 赵国珍,李君裕等.振动筛筛网抛掷指数的研究.石油矿场机械,1991,20(2):P3~11
    [76] 王宗培,058项目泥浆技术及固控经验,石油钻探技术,1994,22(4)P5~9
    [77] 李家春主编.第六届全国流体力学学术会议论文文集自然、工业与流动.气象出版社.2001
    [78] Hoberock L L. Screen Selection is Key to Shale Shaker Operation .Oil &Gas Journal. 1981, 79 (49): P131~141
    [79] 刘应中,缪国平.高等流体力学.上海:上海交通大学出版社.2000.6
    [80] 蒋军,张景来,胡军,马世宏.动态错流过滤研究的最新发展动态.过滤与分离.2001,13(3):P13~19
    [81] 王承尧,王正华,杨晓辉.计算流体力学及其并行算法.长沙:国防科技大学出版 社.2000.2
    [82] 熊万里,闻邦椿,张天侠,段志善[J].利用机电耦合模型研究自同步振动机械的动力学特性.矿山机械.1999.7.P20~24
    [83] 闻邦椿等.机械系统的振动同步与控制同步[M].北京:科学出版社.2003,1
    [84] 吴志星,徐倩,张传涛,张明洪.双激振式岩屑处理机自同步分析[J].西南石油学院学报.2004,26(5).P63~66
    [85] 闻帮椿,赵春雨,范俭。机械系统同步理论的应用于发展[J].振动工程学报.1997.10(3):P264~272。
    [86] 刘顺隆,郑群.计算流体力学.哈尔滨工程大学出版社.1998.5
    [87] 傅德薰.流体力学数值模拟.国防工业出版社.1998.11
    [88] 杨曜根.流体力学有限元.哈尔滨工程大学出版社.1995.3
    [89] 刘希云,赵润祥.流体力学中的有限元与边界元方法.上海交通大学出版社.1993.2
    [90] 朱自强.应用计算流体力学.北京航空航天大学出版社.北京:北京航空航天大学出版社.1998.8
    [91] 是长春.相对论流体力学.科学出版社.1992.12
    [92] 张建伟.国外过滤技术的最新发展.过滤与分离.1994(4):P33~37
    [93] 姚公弼.液固分离技术的进展.化工进展.1997(1):P16~21
    [94] 李艾民,黎浩明.新型自同步惯性振动给料机的机理浅析[J].矿山机械.1998(11):P31~32
    [95] 梁坤京,邵佩森,白勇军,刘建荣.自同步振动端同步性能分析.矿山机械.2000(1):P34~37
    [96] 梁坤京,白勇军,范岗龙.自同步相位差角的研究[J].矿山机械.2000(7):P46~48
    [97] Cagle W S. Layered shale shaker screens improve mud solids control. WordOil.1978, 186(5): P89~94
    [98] Gersld W. Treating mud with fine-mesh screen. Oil & Gas Journal. 1973, 16: P119~130
    [99] 潘文全等编,流体力学基础,清华大学出版社,1887.9
    [100] J. V. Fisk and S. S. Shaffer, The Filterability of Drilling Fluids, SPE20438
    [101] M. Lai, Amoco Production Co., Economic and Performance Analysis Models for Solids Control, SPE18037
    [102] 李春燕 陆辟疆主编,精细化工设备,化学工业出版社,1996.1
    [103] 井下固控新理论及现场实践,国外钻井技术,90.5(1)P33~38
    [104] 井下固控分离器,钻采工艺,90.13(1)P84~89
    [105] 税精华等.钻井液固控综合应用探讨.石油机械,1988,16(9):P43~46
    [106] 詹俊峰 胡汀炯.钻井液振动筛的筛分模型研究.石油大学学报(自然科学学版),1997,21,(3):P29~32
    [107] 秦树人,张明洪等.机械工程测试原理与技术[M].重庆大学出版社.2002,8
    [108] 梁坤京,白勇军,范岗龙.自同步相位差角的研究[J].矿山机械.2000(7):P46~48
    [109] Shuren Qin, Youming Zhang. The unified mathematical model of transforms in signal processing, Proceedings of SICE 2002, 2002. 8:P1584~1589
    [110] 钟佑明,秦树人,汤宝平.一种振动信号新变换法的研究,振动工程学报,Vol.15(2),2002,6:P233~238
    [111] Shuren Qin, Research of dynamic characteriatic for transmission system Chinese Journal of Mechanical Engineering, Vol,14(1),2001,3:P74~77
    [112] Baoping Tang, Shuren Qin, Shanwen Tan, Ressearch on analysis system for vibration signals based on fast wavelet transform. Proceedings of ICME2000, Nov 2000:P399~401
    [113] 秦树人,汤宝平.面向21世纪的绿色仪器,中国机械工程,Vol.11(3),2003.3:P275~278

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700