新型含氮、氧配体构筑的配位聚合物的合成、结构和性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属—有机配位聚合物作为一种新型的分子功能材料,凭借其独特的结构可剪裁性、多样的拓扑结构和在氢气存储、离子交换、吸附、分子识别、催化以及光、电、磁、手性拆分等领域的巨大潜在应用受到了各界科学家们越来越多的关注。依据分子工程学原理,通过选择特定几何构型的中心金属离子和特殊的有机配体,可以在一定程度上实现新型功能材料的定向设计和合成。同时,还可以通过选择功能性的中心金属离子和具有功能官能团的有机配体赋予目标化合物以多功能的性质。
     本论文选择不同构型的有机配体和金属离子合成出21种金属—有机配位聚合物。研究这些化合物的合成条件及规律,分析网络结构所属的拓扑类型,考察配体的几何构型,辅助配体对于整个结构的影响等规律,探究分子自组装原理。对化合物的热稳定性、荧光性质和压电性质进行了初步研究。这些研究结果主要包括以下五个方面:
     1、合成了新颖的含氮螯合配体—4,5-二氮杂芴-9-肟(L1),与不同构型的共配体和过渡金属在水热条件下反应,成功得到了四个三维的金属有机框架化合物:[Zn_2(BOABA)(L1)(OH)]·2H_2O(1) , [Zn_2(BOABA)(L1)(OH)]·4H_2O(2) ,[Zn_3(TMA)_2(OH)]·[N(C_4H_9)_4](3),[Cu_2(BTEC)(OH)]·(L1)(4)。化合物1中,在螯合配体作用下,椅式构型的四核锌与三齿的BOABA羧酸配体相连接,构成了3,6-连接的金红石网络结构。化合物2中,在螯合配体作用下,船式构型四核锌与三齿的BOABA羧酸配体相连接,构成了新颖的3,6-连接拓扑网络(4.6~2).(4~2.6~9.8~4)。以配体L1作为结构导向剂,在化合物3中通过三核锌簇和TMA的连接构筑了具有(4.6~2) (6~3) (4.6~(11).8~3)拓扑结构的新颖3,6-连接金属有机框架结构。化合物4是由四核铜簇与均苯四甲酸配体连接构成的4,8-连接的scu拓扑网络结构。
     2、利用新颖的4,5-二氮杂芴-9-肟氧-3-吡啶(L2),共配体和过渡金属在水热条件下,得到了四个不同结构的配位聚合物:[Cd(BDC)(L2)](5),[Cd_2(bpdc)_2(L2)_2](6),[Cd(oba)(L2)]·H_2oba(7),[Cd(BTEC)_(0.5)(L2)]·(H_2O)(8)。化合物5和6中,5-二氮杂-9-肟氧-3-甲基吡啶与金属镉原子构成了一个环状的[CdL2]2构筑单元,进一步通过直线型羧酸的连接构成(6,3)二维平面结构。化合物5通过(6,3)二维平面的倾斜互穿构成了三维的超分子网络结构。化合物6中两个平行的二维层通过平行连锁形成了二维双层结构,二维双层结构通过倾斜互穿构成了新颖的三维超分子网络结构。化合物7中,配体4,5-二氮杂-9-肟氧-3-甲基吡啶和oba配体都是以折线形桥连的方式与金属镉配位,形成了由左、右手螺旋链支撑构筑的含有一维纳米孔道的二维层状结构。在化合物8中通过环状的[CdL2]2构筑单元和均苯四甲酸配体的连接构成了新颖的3,4-连接的三维网络结构。
     3、利用新颖的4,5-二氮杂芴-9-肟氧乙酸(L3),共配体和过渡金属在水热反应条件下,得到了五个不同结构的配位聚合物:[Zn_2(BDC)_(1.5)(L3)]·H_2O(9),[Zn_2(BDC)_(0.5)(m-BDC) (L3)(H_2O)]·H_2O(10),[Zn_4(m-BDC)_4(L3)_2(OH)_2]·3H_2O(11),[Zn_2(BTC)(L3)(H_2O)]·H_2O(12),[Zn_3(TMA) (L3)_2(OH)]·2H_2O(13)。化合物9是由4,5-二氮杂芴-9-肟氧乙酸和对苯二甲酸构成的以双核锌为5节点的新颖5连接三维网络结构。化合物10-12是4,5-二氮杂芴-9-肟氧乙酸和芳香羧酸构成的不同的二维层状结构。化合物13通过均苯三甲酸和4,5-二氮杂芴-9-肟氧乙酸连接三核金属簇构成了一个新颖的3,6-连接的三维网络结构。
     4、利用5-氧乙酸基间苯二甲酸、4,4'-联吡啶和过渡金属在水热反应条件下,合成得到六个不同结构的配位化合物: [Zn_2(OABDC)(OH)](14) , [Cd_(1.5)(OABDC) (H_2O))(2.5)]·H_2O(15) , [Cd_2Zn_(OABDC))2(H_2O))4]·3H_2O(16) , [Zn_2(OABDC)(4,4'-bpy) (OH)]·3H_2O(17) , [Cd_3(OABDC)_2(4,4'-bpy)_2(H_2O)7]·2.5H_2O (18) , [Cd_1Zn_2(OABDC)_2 (4,4'-bpy)_2(H_2O)_4]·H_2O(19)。化合物14是由三种不同类型的螺旋链构筑的三维框架结构;化合物15是由一维链柱撑(6, 3)二维平面构成的三维框架结构;化合物16是由不同的过渡金属原子和OABDC配体连接形成的二维T字形层状结构。化合物17-19是在上面的合成条件下引入了4,4’-联吡啶配体。在化合物17中,4,4’-联吡啶配体以柱撑的形式连接3,6-连接的二维层,构成了新颖的3,8-连接的三维网络结构。化合物18是通过两种非对称的螺旋链交织构成的非心对称的三维互锁超分子网络结构。对于化合物19是一个由锌镉混金属和OABDC配体构成的新颖的3,4-连接三维网络结构,其Schl·fli符号为(~62.8) (6.8~2) (6~2.8~3.10)。
     5、利用苯并三氮唑、5-氧乙酸基间苯二甲酸和过渡金属在水热条件下反应,合成了两个不同结构的配位化合物: [Zn_3(BTA)_6](20) ,Zn_7(BTA)_7(OABDC)(μ3-OH)_2(μ_2-OH)_2·(H_2O)(21)。化合物20展示了一个从不对称四面体构筑块出发构筑手性BIK分子筛结构的金属-有机配合物:苯并三氮唑配体的空间位阻作用产生最初的手性信息,手性信息通过四条不同的手性链传递到整个骨架中。化合物21通过三齿配位的苯并三氮唑配体充当片断配体,连接金属锌构成了独特的类金属酞菁结构单元Zn_2(μ3-OH)_2·[Zn_4BTA_4],进一步通过μ2-OH基团,外围的4-连接锌原子和OABDC配体的连接构成新颖的三维框架结构。
Metal-organic coordination polymers (MOCPs) as a newly-identified functional molecule-based materials, have attracted much more attentions because of their flexible tailoring, various topologies and promising applications in hydrogen storage, ion-exchange, adsorption, molecular recognization, catalysts along with optics, electrics, magnetism and enantioselective separation. According to the principle of molecular engineering, it is possible that rational design and synthesis of novel multifunctional materials by selecting certain geometric metal ions and special organic ligands. At the same time, MOCPs can be endowed with multifunctional properties by selecting functional metal ions and organic ligands with functional groups.
     In this dissertation, we have focused our study on the influence of the metal ions, organic ligands and secondary ligands on the building blocks and structures of MOCPs by the hydrothermal reaction. Twenty-one new coordination compounds have been synthesized by using novel organic ligands and metal ions. The study on synthetic conditions and rules for these new compounds, topological analyses, and the exploration of relationships between structures and properties for these new compounds are also carried out. These compounds have been structurally characterized by elemental analyses, IR, XRPD, TG and single crystal X-ray diffractions. In addition, the thermal stabilities, fluorescent activity and photovoltage transients of these compounds have been studied. These results will be introduced from the following five issues:
     1. Four novel 3D compounds, [Zn_2(BOABA)(L1)(OH)]·2H_2O(1), [Zn_2(BOABA)(L1)(OH)]·4H_2O(2), [Zn_3(TMA)_2(OH)]·[N(C_4H_9)_4](3), and [Cu_2(BTEC)(OH)]·(L1)(4), have been synthesized using the traditional hydrothermal methods, on the basis of 4,5-didanzole-9-wo (L1) ligands, aromatic polycarboxylate ligands with different configurations, and transition metal ions. Compound 1 shows a (3, 6)-connected rutile network constructed by tetranuclear clusters and BOABA ligands. Compound 2 displays a novel (3, 6)-connected network with complex (4.6~2)_2(4~2.6~9.8~4) topology, which is constructed by tetranuclear clusters and BOABA ligands. In 3, the connection between trinuclear zinc clusters (six-connected nodes) and MTA ligands (three connections) results in an infinite 3D (3, 6)-connected network with Schl·fli symbol (4.6~2) (6~3) (4.6~(11).8~3). Compound 4 exhibits a 4, 8-connected scu network that is made of tetranuclear clusters as eight-connected nodes and BTEC as four-connected nodes.
     2. Four compounds with different dimensionalities, [Cd(BDC)(L2)](5), [Cd_2(bpdc)_2(L2)_2](6), [Cd(oba)(L2)]·H_2oba(7), and [Cd(BTEC)_(0.5)(L2)]·(H_2O)(8), have been prepared under hydrothermal conditions on the basis of 4,5-didanzole-9-wo-3-methylpyridine (L2) ligands, aromatic polycarboxylate ligands with different configurations, and transition metal ions. In 5 and 6, L2 ligands link with Cd atoms to form the annular units [CdL2]2. These units are further connected through linear aromatic carboxylic acids to construct the (6, 3) sheets. Compound 5 presents a 2D-3D supramolecular network through inclined interpenetration of the (6, 3) sheets. In compound 6, two (6, 3) sheets interpenetrated into a double layer in a parallel way, and then the double layers construct an infinite 2D-3D supramolecular network through the inclined interpenetration. Compound 7 is a helical pillared 2D complex including 1D nanochannels, in which L2 and oba ligands coordinate with Cd atoms in a V-shaped mode. Compound 8 shows a novel (3, 4)-connected network with (83).(85.10) topology constructed by Cd atoms as four-connected nods and BOABA ligands as three-connected nodes.
     3. Five new compounds, [Zn_2(BDC)_(1.5)(L3)]·H_2O(9), [Zn_2(BDC)_(0.5)(m-BDC)(L3)(H_2O)]·H_2O(10), [Zn_4(m-BDC)_4(L3)_2(OH)_2]·3H_2O(11), [Zn_2(BTC)(L3)(H_2O)]·H_2O(12), and [Zn_3(TMA)(L3)_2 (OH)]·2H_2O(13), have been hydrothermally synthesized on the basis of 4,5-didanzole-9-wo-3-acetic acid ligands (L3), aromatic polycarboxylate ligands with different configurations, and transition metal ions. Compound 9 exhibits a five-connected 3D network, which is constructed by L3 and BDC ligands linking with five-connected dinuclear zinc clusters. Compounds 10-12 possess 2D geometries constructed by L3 ligands, different aromatic polycarboxylate ligands, and zinc atoms. Compound 13 demonstrates a novel (3, 6)-connected network with (52.6) (42.55.67.7) topology, which is constructed by trinuclear zinc clusters as four-connected nods and TMA ligands as three-connected nodes.
     4. Six compounds, [Zn_2(OABDC)(OH)](14), [Cd_(1.5)(OABDC)(H_2O)_(2.5)]·H_2O(15), [Cd_2Zn_(OABDC)_2(H_2O)_4]·3H_2O(16), [Zn_2(OABDC)(4,4'-bpy)(OH)]·3H_2O(17), [Cd_3 (OABDC)_2(4,4'-bpy)_2(H_2O)7]·2.5H_2O(18), and [CdZn_2(OABDC)_2(4,4'-bpy)_2(H_2O)4]·H_2O(19), have been hydrothermally synthesized on the basis of 5-oxyacetateisophthalic acid (H3OABDC) ligands, 4,4'-bipyridine ligands and different transition metal ions: Compound 14 displays a new 3D framework constructed by three types of helical chains. Compound 15 also prestents a 3D framework, which is constructed from (6, 3) sheets pillared by 1D chains. Compound 16 exhibits a T-shape 2D layer resulted from OABDC ligands linking with Cd atoms. Compounds 17-19 show complex frameworks due to the introduction of bridged 4,4'-bpy ligands. Compound 17 exhibits a novel (3, 8)-connected 3D network, which is constructed from the (3, 6)-connected 2D layers pillared by 4,4'-bpy ligands. Compound 18 shows a noncentrosymmetric interlocked 3D supramolecular network based on intertwining of two kinds of asymmetric helix. Compound 19 displays a novel 3, 4-connected network with (6~2.8) (6.8~2) (6~2.8~3.10) topology based on OABDC ligands and mixed metals (Zn_ and Cd).
     5. Two novel compounds, [Zn_3(BTA)_6](20) and Zn_7(BTA)7(OABDC) (μ_3-OH)_2(μ_2-OH)_2·(H_2O)(21), have been synthesized under hydrothermal conditions, on the basis of benzotriazole (BTA), H3OABDC ligands and transition metal ions. Compound 20 as a novel chiral coordination polymer with a bikitaite zeolite framework has been constructed from asymmetric tetrahedral building blocks, in which the original chiralities derive from the configurational effect of benzotriazole ligands and transfer to the network through four distinct helical chains. In compound 21, an unprecedented metallophthalocyanine-like subunit, Zn_2(μ_3-OH)_2·[Zn_4BTA_4], which is constructed fromη3-BTA ligands as fragment ligands, and further linked viaμ_2-OH, outer four-connected Zn_ atoms, and 5-oxyacetateisophthalic acid, to form a novel three-dimensional framework.
引文
[1] Robson R. A net-based approach to coordination polymers[J]. J Chem Soc Dalton Trans, 2000, 3735-3744.
    [2] Hosking B F, Robson R. Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments [J]. J Am Chem Soc, 1989, 111: 5962-5964.
    [3] Wells A F. Three Dimensional Nets and Polyhedra[M] New York, 1977.
    [4] Wells A F. Structrual Inorganic Chemistry, 5th ed[M]. Oxford Univ. Press, 1983.
    [5] Fleischer B, Shachter A M. Coordination oligomers and a coordination polymer of zinc tetraarylporphyrins[J]. Inorg Chem. 1991, 30: 3763-3769.
    [6] Neels A, Neels B M, Stoeckli-Evans H, et al. Synthesis and X-ray Powder Structures of Nickel(II) and Copper(II) Coordination Polymers with 2,5-Bis(2-pyridyl)pyrazine[J]. Inorg Chem, 1997, 36: 3402-3409.
    [7] Wang Q M, Guo G C, Mak W T C, A coordination polymer based on twofold interpenetrating three-dimensional four-connected nets of 42638 topology, [CuSCN(bpa)] [bpa = 1,2-bis(4-pyridyl)ethane][J]. Chem Commu, 1999, 1849-1850.
    [8] Withersby M A, Blake A J, Champness N R, et al. Assembly of a Three-Dimensional Polyknotted Coordination Polymer[J]. J Am Chem Soc, 2000, 122: 4044-4046.
    [9] Chen Z F, Xiong R G, Zheng J, et al. The first chiral 2-D molecular triangular grid[J]. J Chem Soc Dalton Trans, 2000, 4010-4012.
    [10] Barnett S A, Blake A J, Champness N R, et al. Synthesis and structural characterisation of cadmium(II) and zinc(II) coordination polymers with an angular dipyridyl bridging ligand: parallel interpenetration of two-dimensional sheets with 4.82 topology[J]. J Chem Soc Dalton Trans, 2001, 567-573.
    [11] Chen W Z, Liu F H, You X Z. [Pt(CN)2·2Me3SnCN·2Me3SnOH·bpe]n (bpe=trans-1,2-bis(4-pyridyl)ethylene), the First Double-Sinusoidal Platinum-Tin Coordination Polymer[J]. Chem. Lett., 2002, 734-735.
    [12] Du M, Chen S T, Bu X H. {[Cd(bpo)(SCN)2]·CH3CN}n: A Novel Three-Dimensional (3D) Noninterpenetrated Channel-Like Open Framework with Porous Properties[J]. Crystal Growth & Design, 2002, 2: 625-629.
    [13] Vallat O, Neels A, Stoeckli-Evans H. AgI, CdII, and HgII complexes with 2,5-bis(pyridyl)pyrazine ligands: syntheses, spectral analyses, single crystal, and powder X-ray analyses[J]. J Chem Cryst, 2003, 33: 39-50.
    [14] Almeida Paz F A, and Klinowski J. Supramolecular architecture of a novel salt of trimesic acid and 1,2-bis(4-pyridyl)ethane[J]. CrystEngComm, 2003, 5: 238-244.
    [15] Al-Raqa S Y, Cook M J, Hughes D L. 1,4-Dibutoxy-2,3-di(4-pyridyl)- 8,11,15,18,22,25-hexakis- (hexyl)phthalocyaninato zinc, a self-assembled coordination polymer in the solid state[J]. Chem Commu, 2003, 62-63.
    [16] Siemeling U, Scheppelmann I, Neumann B, et al. Spontaneous chiral solution of a coordination polymer with distorted helical structure consisting of achiral building blocks[J]. Chem Commu, 2003, 2236-2237.
    [17] Suenaga Y, Kuroda-Sowa T, Munakata M, et al. Synthesis and structure of a two-dimensional copper(II) coordination polymer with 3,4,9,10- perylenetetracarboxylic acid and ethylenediamine[J]. Polyhedron, 1998, 17: 2207-2210.
    [18] Qu Z, Chen Z, Zhang J, et, al. The First Highly Stable Homochiral Olefin-Copper(I) 2D Coordination Polymer Grid Based on Quinine as a Building Block[J]. Organometallics, 2003, 22: 2814-2816.
    [19] Goodman D C, Farmer P J, Darensbourg M Y, et al. A Coordination Polymer of Nickel(II) Based on a Pentadentate N, S, and O Donor Ligand[J]. Inorg Chem, 1996, 35: 4989-1994.
    [20] Lee E, Kim Y, Jung Y, et al. A Coordination Polymer of Cobalt(II)-Glutarate: Two-Dimensional Interlocking Structure by Dicarboxylate Ligands with Two Different Conformations[J]. Inorg Chem, 2002, 41: 501-506.
    [21] Byrd H, Scott Buff R, Butler J M, et al. New synthesis and structure of a polar manganese coordination polymer[J]. J Chem Cryst, 2003, 33: 515-519.
    [22] Kl?ui W, Mocigemba N, Weber-Schuster A, et al. [(C5H5)Co{P(O)(OH)2}3H]: A Novel Organometallic Tris-phosphonic Acid That Dissolves Glass to Form a Six-Coordinate Silicon Complex[J]. Chem Eur J, 2002, 3: 2335-2340.
    [23] Natarajan R, Savitha G, Dominiak P, et al. Corundum, Diamond, and PtS Metal-Organic Frameworks with a Difference: Self-Assembly of a Unique Pair of 3-Connecting D2d-Symmetric 3,3’,5,5’-Tetrakis(4-pyridyl)bimesityl[J]. Angew Chem Int Ed, 2005, 44: 2115-2119.
    [24] Maji T K, Konar S, Mostafa G, et al. Self-assembly of new three-dimensional molecular architectures of Cd(II) and Ag(I)–Na(I) using croconate as a building block[J]. J Chem Soc Dalton Trans, 2003, 171-175.
    [25] Xue X, Wang X S, Xiong R G, et al. A cluster rearrangement of an open cubane (Cu4Br4) to a prismane (Cu6Br6) in a copper(I)-olefin network[J]. Angew Chem Int Ed, 2002, 41: 2944-2946.
    [26] Yilmaz V T, Guney S, Andac O, et al. Different coordination modes of saccharin in the metal complexes with 2-pyridylmethanol: synthesis, spectroscopic, thermal and structural characterization[J]. Polyhedron, 2002, 21: 2393-2402.
    [27] Kobayashi K, Sato A, Sakamoto S, et al. Solvent-induced polymorphism of three-dimensional hydrogen-bonded networks of hexakis(4-carbamoylphenyl) benzene [J]. J Am Chem Soc, 2003, 125: 3035-3045.
    [28] Eddaoudi M, Moler D B, Li H, et al. Modular chemistry: Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks[J]. Acc Chem Res, 2001, 34: 319-330.
    [29] Wei P R, Wu D D, Zhou Z Y, et al. Lanthanide coordination polymers with dicarboxylate-like ligands : crystal structures of polymeric neodymium(III) and erbium(III) complexes with flexible double betaines[J]. Polyhedron, 1997, 16: 749-763.
    [30] Liang Y C, Cao R, Su W P, et al. Syntheses, structures, and magnetic properties of two gadolinium(III)-copper(II) coordination polymers by a hydrothermal reaction[J]. Angew Chem Int Ed, 2000, 39: 3304-3307.
    [31] Tao J, Tong M L, Chen X M. Hydrothermal synthesis and crystal structures of three-dimensional co-ordination frameworks constructed with mixed terephthalate (tp) and 4,4’-bipyridine (4,4’-bipy) ligands: [M(tp)(4,4’-bipy)] (M = CoII, CdII or ZnII)[J]. J Chem Soc Dalton Trans, 2000, 3669-3674.
    [32] Zhao Y J, Hong M C, Sun D F, et al. A novel coordination polymer containing puckered rhombus grids [J]. J Chem Soc Dalton Trans, 2002, 1354-1357.
    [33] Du Z Y, Xu H B, Mao JG. Rational design of 0D, 1D, and 3D open frameworks based on tetranuclear lanthanide(III) sulfonate-phosphonate clusters[J]. Inorg Chem, 2006, 45: 9780-9788.
    [34] Murugavel R, Bahet K, Anantharaman G. Reactions of 2-mercaptobenzoic acid with divalent alkaline earth metal ions: Synthesis, spectral studies, and single-crystal X-ray structures of calcium, strontium, and barium complexes of 2,2'-dithiobis(benzoic acid)[J]. Inorg Chem, 2001, 40: 6870-6878.
    [35] Platers M J, Howie R A, Robert A J. Hydrothermal synthesis and X-ray structural characterisation of calcium benzene-1,3,5-tricarboxylate[J]. Chem Commun, 1997, 893-894.
    [36] Aukauloo A, Ottenwqaelder X, Ruiz R, et al. An Na-8 cluster in the structure of a novel oxamato-bridged Na-I Cu-II three-dimensional coordination polymer[J]. Eur J Inorg Chem, 1999, 209-212.
    [37] Swarnabala G, Rajasekharan M V. [Ca(dipicH2)(OH2)3][Ce(dipic)3]·5H2O: A one-dimensional coordination polymer with alternating CeN3O6 and CaNO7 polyhedra (dipicH2=pyridine-2,6-dicarboxylic acid)[J]. Inorg Chem, 1998, 37: 1483- 1485.
    [38] Ren Y P, Long L S, Mao B W, et al. Nanoporous lanthanide-copper(II) coordination polymers: Syntheses and crystal structures of [{M-2(Cu-3(iminodiacetate)6)}center dot 8H2O]n (M=La, Nd, Eu)[J]. Angew Chem Int Ed, 2003, 42: 532-535.
    [39] Paz F A A, Klinowski J. Hydrothermal synthesis of a novel thermally stable three-dimensional ytterbium–organic framework[J]. Chem Commun, 2003, 1484-1485.
    [40] Spandl J, Brudgam I, Hartl H. Solvothermal synthesis of a 24-Nuclear, cube-shaped squarato-oxovanadium(IV) framework: [N(nBu)(4)](8)[V24O24(C4O4)(12) (OCH3)(32)][J]. Angew Chem Int Ed, 2001, 40: 4018-4020.
    [41] Franken P A, Hill A E, Peters C W, et al. Generation of Optical Harmonics[J]. Phys Rev Lett, 1961, 7: 118-119.
    [42]生瑜,章文贡.金属有机非线性光学材料[J].功能材料, 1995, 26 (1): 1-14.
    [43]沈德忠.非线性光学材料及其研制概况[J].科学中国人, 1996, 1: 22-24.
    [44] Newnhan R E, Structure-Property Relationships, Springer, New York, 1975.
    [45] Lacroix P G. Second-order optical nonlinearities in coordination chemistry: The case of bis(salicylaldiminato)metal Schiff base complexes[J]. Eur J Inorg Chem, 2001, 339-348.
    [46]薛冬峰,周誓红,张思远.无机非线性光学材料的研究进展[J].化学研究, 1998, 9 (2): 1-8.
    [47] Lin W B, Evans O R, Xiong R G. et al. Supramolecular engineering of chiral and acentric 2D networks. Synthesis, structures, and second-order nonlinear optical properties of bis(nicotinato)zinc and bis{3-[2-(4-pyridyl)ethenyl]benzoato} cadmium[J]. J Am Chem Soc, 1998, 120: 13272-13273.
    [48] Evans O R, Lin W B. Crystal engineering of NLO materials based on metal-organic coordination networks[J]. Acc Chem Res, 2002, 35: 511-522.
    [49] Xiong R G, Xue X, Zhao H, You X Z, Abrahams B F, Xue Z L. Novel, acentric metal-organic coordination polymers from hydrothermal reactions involving in situ ligand synthesis[J]. Angew Chem Int Ed, 2002, 41: 3800-3803.
    [50] Miller J S, Calabrese J C, Epstein A J, et al. Ferromagnetic properties of one-dimensional decamethylferrocenium tetracyanoethylenide (1-1)-[Fe(ETA-5-C5Me5)2]. +[TCNE].-[J]. J Chem Soc, Chem Commun, 1986, 1026-1028.
    [51] Pei Y,Verdaguer M.,Kahn O,et al. Ferromagnetic transition in a bimetallic molecular system[J]. J Am Chem Soc, 1986, 108: 7428-7430.
    [52] Braga D., Grepioni F, Orpen A G. Crystal Engineering: From Molecules and Crystals to Materials, Dordrecht, Kluwer Academic Pblishers, 1999.
    [53] Seddon K R, Zaworotko M. Crystal Engineering: the Design and Application of Functional Solids, Dordrecht, Kluwer Academic Pblishers, 1999.
    [54] Becher L, Schaumburg K, etc. Molecular Engineering for Advanced Meterials, 1995.
    [55] Kahn O, etc. Magnetism: A Supramolcular Function, Weinheim: VCH, 1996.
    [56]游效曾,《分子材料-光电功能化合物》上海科学技术出版社, 2001.
    [57] Ribas J, Escuer A, Monfort M, Vicente R, Corte′s R, Lezama L, Rojo T. Polynuclear Ni-II and Mn-II azido bridging complexes. Structural trends and magnetic behavior [J]. Coord Chem Rev, 1999, 193-5: 1027-1068.
    [58] Serna Z E, Lezama L, Urtiaga M K, Arriortua M I, Barandika M G B, Corte′s R, Rojo T. A dicubane-like tetrameric nickel(II) azido complex[J]. Angew Chem Int Ed, 2000, 39: 344.
    [59] Goher M A S, Cano J, Journaux Y, Abu-Youssef M A M, Mautner F A, Escuer A, Vicente R. Synthesis, structural characterization, and Monte Carlo simulation of the magnetic properties of two new alternating Mn-II azide 2-D honeycombs. Study of the ferromagnetic ordered phase below 20 K[J]. Chem Eur J, 2000, 6: 778-784.
    [60] Meyer F, Kircher P, Pritzkow H. Tetranuclear nickel(II) complexes with genuine mu 3-1,1,3 and mu 4-1,1,3,3 azide bridges[J]. Chem Commun, 2003, 774-775.
    [61] Guo G C, Mak T C W. A mu-1,1,1,3,3,3 azide anion inside a trigonal prism of silver centers[J]. Angew Chem Int Ed, 1998, 37: 3286-3270.
    [62] Papaefstathiou G. S, Perlepes S P, Escuer A, Vicente R, Font-Bardia M, Solans X. Unique single-atom binding of pseudohalogeno ligands to four metal ions induced by their trapping into high-nuclearity cages[J]. Angew Chem Int Ed, 2001, 40: 884-886.
    [63] Gao E Q, Bai S Q, Yue Y F, Wang Z M, Yan C H. New one-dimensional azido-bridged manganese(II) coordination polymers exhibiting alternating ferromagnetic-antiferromagnetic interactions: Structural and magnetic studies[J]. Inorg Chem, 2003, 42: 3642-3649.
    [64] Liu C M, Gao S, Zhang D Q, et al. A Unique 3D Alternating Ferro- and Antiferromagnetic Manganese Azide System with Threefold Interpenetrating (10,3) Nets[J]. Angew Chem Int Ed, 2003, 43: 990-994.
    [65] Wang X Y, Wang L, Wang Z M, et al. Solvent-tuned azido-bridged Co2+ layers: square, honeycomb, and kagomé[J]. J Am Chem Soc, 2006, 128: 674-675.
    [66] Liu F C, Zeng Y F, Li J R, et al. Novel 3-D framework nickel(II) complex with azide, nicotinic acid, and nicotinate(1-) as coligands: Hydrothermal synthesis, structure, and magnetic properties[J]. Inorg Chem, 2005, 44: 7298-7300.
    [67] Gao E Q, Bai S Q, Wang Z M, Yan C H. Two-dimensional homochiral manganese(II)-azido frameworks incorporating an achiral ligand: Partial spontaneous solution and weak ferromagnetism[J]. J Am Chem Soc, 2003, 125: 4984-4985.
    [68] Gao E Q, Yue Y F, Bai S Q, He, Yan C H. From achiral ligands to chiral coordination polymers: Spontaneous solution, weak ferromagnetism, and topological ferrimagnetism[J]. J Am Chem Soc, 2004, 126: 1419-1429.
    [69]林国强,陈耀全等著,手性合成—不对称反应及其应用,北京:科学出版社, 2000.
    [70] Lee S J, Lin W. A chiral molecular square with metallo-corners for enantioselective sensing[J]. J. Am. Chem. Soc., 2002: 124, 4554-4555.
    [71] Kumaiga H, Inoue K. A Chiral Molecular Based Metamagnet Prepared from Manganese Ions and a Chiral Triplet Organic Radical as a Bridging Ligand[J]. Angew Chem Int Ed, 1999, 38:1601-1603.
    [72] Seeber G., Pickering A L, Long D, Cronin L. Controlling dimensionality of silver(I) coordination networks with rigid aliphatic amino ligands: from a 2D to a 3D network of unprecedented topology comprising helical channels[J]. Chem Commun, 2003, 2002-2003.
    [73] Inoue K, Imai H, Ghalsasi P S, Kikuchi K, Ohab M., Okawa H, Yakhmi J V. A t hree-dimensional ferrimagnet with a high magnetic transition temperature (T-C) of 53 K based on a chiral molecule[J]. Angew Chem Int Ed, 2001, 40: 4242-4245.
    [74] Siemeling U, Scheppelmann I, Neumann B, Stammler A, Stammler H G, Frelek J. Spontaneous chiral solution of a coordination polymer with distorted helical structure consisting of achiral building blocks[J]. Chem Commun, 2003, 2236-2237.
    [75] Hernéndez-Molina M, Lloret F, Ruiz-Pérez C, et al. Weak ferromagnetism in chiral 3-dimensional oxalato-bridged cobalt(II) compounds. Crystal structure of [Co(bpy)3][Co2(ox)3]ClO4[J]. Inorg Chem, 1998, 37: 4131-4135.
    [76] Romero F M, Rusanov E, Stoeckli-Evans H. Ferromagnetism and chirality in two-dimensional cyanide-bridged bimetallic compounds[J]. Inorg Chem, 2002, 42: 4615-4617.
    [77] Inoue K, Kikuchi K, Ohba M, et al. Structure and magnetic properties of a chiral two-dimensional ferrimagnet with T-c of 38 K[J]. Angew Chem. Int. Ed, 2003, 42: 4810-4813.
    [78] Cui Y, Evans O W, Ngo H L, et al. Rational design of homochiral solids based on two-dimensional metal carboxylates[J]. Angew Chem Int Ed, 2002, 41: 1159.
    [79] Grosshans P, Jouaiti A, Bulach V, et al. Molecular tectonics: from enantiomerically pure sugars to enantiomerically pure triple stranded helical coordination network[J]. Chem. Commun, 2003, 1336-1337.
    [80] Wu C, Lu C, Lu S, et al. Synthesis, structures and properties of a series of novel left- and right-handed metal coordination double helicates with chiral channels[J]. J Chem Soc Dalton Trans, 2003, 3192-3198.
    [81] Han S, Manson L J, Kim J, et al. Weak ferromagnetism in a three-dimensional manganese(II) azido complex, [Mn(4,4'-bipy)(N3)2](n) (bipy = bipyridine)[J]. Inorg Chem, 2000, 39: 4182-4185.
    [82] Wu C, Hu A, Zhang L, et al. A homochiral porous metal-organic framework for highly enantioselective heterogeneous asymmetric catalysis[J]. J Am Chem Soc, 2005, 127: 8940-8941.
    [83] Wu C, Lin W. Highly porous, homochiral metal-organic frameworks: Solvent-exchange- induced single-crystal to single-crystal transformations[J]. Angew Chem Int Ed, 2005, 44: 1958-1961.
    [84] Xiong R, You X, Abrahams B F, et al. Enantioseparation of racemic organic molecules by a zeolite Analogue[J]. Angew Chem Int Ed, 2001, 40: 4422-4425.
    [85] Seo J S, Whang D, Lee H, et al. A homochiralmetal-organic porous material for enantioselective separation and catalysis[J]. Nature, 2000, 404: 982-986.
    [86] Jiang H, Lin W B. Directed assembly of mesoscopic metallocycles with controllable size, chirality, and functionality based on the robust Pt-alkynyl linkage[J]. J Am Chem Soc, 2006, 128: 11286-11297.
    [87] Cui Y, Lee S J, Lin W B. Self-Assembly of Homochiral Porous Solids Based on 1D Cadmium(II)Coordination Polymers[J]. J Am Chem Soc, 2003, 125: 6014-6015.
    [88] Helen L, Ngo H L, Lin W B. Chiral Crown Ether Pillared Lamellar Lanthanide Phosphonates[J]. J Am Chem Soc, 2002, 124: 14298-14299.
    [89] Hu A G, Helen L. Ngo H L, et al. Chiral Porous Hybrid Solids for Practical Heterogeneous Asymmetric Hydrogenation of Aromatic Ketones[J]. J Am Chem Soc, 2003, 125: 11490-11491.
    [90] Jiang H, Lin W B. Self-Assembly of Chiral Molecular Polygons[J]. J Am Chem Soc, 2003, 125: 8084-8085.
    [91] Lee S J, Lin W B. Chiral Metallocycles: Rational Synthesis and Novel Applications[J]. Acc Chem Res, 2008, 41: 521-537.
    [92] Wu C D, Hu A G, Zhang L, et al. A Homochiral Porous Metal-Organic Framework for Highly Enantioselective Heterogeneous Asymmetric Catalysis[J]. J Am Chem Soc, 2005, 127: 8940-8941.
    [93] Kitagawa S, Kondo M. Functional Micropore Chemistry of Crystalline Metal Complex-Assembled Compounds[J]. Bull Chem Soc Jpn. 1998, 71: 1739-1753.
    [94] Li H, Eddaoudi M, O’keeffe M, et al. Design and synthesis of an exceptionally stable and highly porous metal- organic framework[J]. Nature, 1999, 402: 276-279.
    [95] Eddaoudi M, Kim J, Rosi N, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science, 2002, 295: 469-472.
    [96] Li H, Eddaoudi M, O’Keeffe M, et al. Design and Synthesis of an Exceptionally Stable and Highly Porous Metal-Organic Framework[J]. Nature, 1999, 402: 276-279.
    [97] Eddaoudi M, Kim J, Rosi N, et al. Systematic Design of Pore Size and Functionality in Isoreticular Metal-Organic Frameworks and Application in Methane Storage[J]. Science, 2002, 295: 469-472.
    [98] Férey G, Serre C, Draznieks C M, et al. A hybrid solid with giant pores prepared by acombination of targeted chemistry, simulation, and powder diffraction[J]. Angew Chem Int Ed , 2004, 43: 6296-6301.
    [99] Abrahams B F, Haywood M G, Robson R, et al. New tricks for an old dog: The carbonate ion as a building block for networks including examples of composition [Cu6(Co3)12{C(NH2)3}8]4- with the sodalite topology[J]. Angew Chem Int Ed, 2003, 42: 1112-1115.
    [100] Fang Q, Zhu G, Xue M, et al. A metal-organic framework with the zeolite MTN topology containing large cages of volume 2.5 nm3[J]. Angew Chem Int Ed, 2005, 44: 3845-3848.
    [101] Tian Y Q, Cai C X, Ji Y, You X Z, Peng S M, Lee G H. [Co5(im)10·2MB]∞: A metal-organic open-framework with zeolite-like topology[J]. Angew Chem Int Ed, 2002, 41: 1384-1386.
    [102] Huang X C, Lin Y Y, Zhang J P, Chen X M. Ligand-directed strategy for zeolite-type metal-organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologies[J]. Angew Chem Int Ed, 2006, 45: 1557-1559.
    [103] Park K S, Ni Z, Cote A P, Choi J Y, Huang R D, Uribe-Romo F J, Chae H K, O'Keeffe M, Yaghi O M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. Proc Natl Acad Sci, 2006, 103: 10186-10191.
    [104] Wang B, C?téA P, Furukawa H, O'Keeffe M, Yaghi O M. Colossal Cages in Zeolitic Imidazolate Frameworks as Selective Carbon Dioxide Reserviors[J]. Nature, 2008, 453: 257-211.
    [105] Banerjee R, Phan A, Wang B, Knobler C, Furukawa H., O'Keeffe M, Yaghi O M. High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture[J]. Science, 2008, 319: 939-943.
    [106] Ockwig N W, Delgado-Friedrichs O, O’Keeffe M, et al. Reticular Chemistry: Occurrence and Taxonomy of Nets and Grammar for the Design of Frameworks[J]. Acc Chem Res, 2005, 38: 176-182.
    [107] Wang B, C?téA P, Furukawa H, et al. Colossal Cages in Zeolitic Imidazolate Frameworks as Selective Carbon Dioxide Reserviors[J]. Nature, 2008, 453.
    [1] Rosi N L, Eckert J, Eddaoudi M, et al. Hydrogen storage in microporous metal-organic frameworks[J]. Science, 2003, 300: 1127-1129.
    [2] Dybtsev D N, Chun H, Yoon S H, et al. Microporous Manganese Formate: A Simple Metal-Organic Porous Material with High Framework Stability and Highly Selective Gas Sorption Properties[J]. J Am Chem Soc, 2004, 126: 32-33.
    [3] Pan L, Sander M B, Huang X Y, et al. Microporous Metal Organic Materials: Promising Candidates as Sorbents for Hydrogen Storage[J]. J Am Chem Soc, 2004, 126:1308-1309.
    [4] Kesanli Ba, Cui Y, Smith M R, et al. Highly Interpenetrated Metal-Organic Frameworks for Hydrogen Storage[J]. Angew Chem, In. Ed, 2005, 44: 72–75.
    [5] Seo J S, Whang D, Lee H, et al. A homochiral metal-organic porous material for enantioselective separation and catalysis[J]. Nature, 2000, 404: 982-986.
    [6] Wu C, Hu A, Zhang L, et al. A Homochiral Porous Metal-Organic Framework for Highly Enantioselective Heterogeneous Asymmetric Catalysis[J]. J Am Chem Soc, 2005, 127: 8940-8941
    [7] Evans O R, Lin W B. Crystal Engineering of NLO Materials Based on Metal-Organic Coordination Networks[J]. Acc Chem Res, 2002, 35: 511-522.
    [8] Pang J, Marcotte E J P, Seward C, et al. A Blue Luminescent Star-Shaped ZnII Complex that Can Detect Benzene [J]. Angew Chem In.Ed, 2001, 40: 4042-4045.
    [9] Mitzi D B, Wang S, Field C A, et al. Conducting layered organic-inorganic halides containing (110)-oriented perovskite sheets[J]. Science, 1995, 267: 1473-1479.
    [10] Moulton B, Lu J J, Hajndl R, et al. Crystal Engineering of a Nanoscale KagoméLattice [J]. Angew Chem Int Ed, 2002, 41:2821-2824.
    [11] Galáne-Mascarós J R, Dunbar K R. A Self-Assembled 2D Molecule-Based Magnet: The Honeycomb Layered Material {Co3Cl4(H2O)2[Co(Hbbiz)3]2} [J]. Angew Chem Int Ed, 2003, 42: 2289-2293.
    [12] Liu C M, Gao S, Zhang D Q, et al. A Unique 3D Alternating Ferro- and Antiferromagnetic Manganese Azide System with Threefold Interpenetrating (10,3) Nets [J]. Angew Chem Int Ed, 2003, 43: 990-994.
    [13] Barthelet K, Marrot J, Riou D, et al. A Breathing Hybrid Organic-Inorganic Solid with Very Large Pores and High Magnetic Characteristics[J]. Angew Chem Int Ed, 2002, 41: 281-284.
    [14] Halder G J, Kepert C J, Moubaraki B, et al. Guest-dependent spin crossover in a nanoporous molecular framework material[J]. Science, 2002, 298, 1762-1765.
    [15] Hoskins B F, Robson R. Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments[J]. J Am Chem Soc, 1989, 111: 5962-5964.
    [16] Biradha K, Hongo Y, Fujita M. Open Square-Grid Coordination Polymers of the Dimensions 20×20 ?: Remarkably Stable and Crystalline Solids Even after Guest Removal[J]. Angew Chem Int Ed, 2000, 39: 3843-3845.
    [17] Chae H K, Siberio-Perez D Y, Kim J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature, 2004, 427: 523-527.
    [18] Férey G, Mellot-Draznieks C, Serre C, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area[J]. Science, 2005, 309: 2040-2042.
    [19] Abrahams B F, Hoskins B F, Michail D M, et al. Assembly of porphyrin building-blocks into network structures with large channels[J]. Nature, 1994, 369: 727-729.
    [20] Kim J, Chen B L, Reineke T M, et al. Assembly of Metal-Organic Frameworks from Large Organic and Inorganic Secondary Building Units: New Examples and Simplifying Principles for Complex Structures [J]. J Am Chem Soc, 2001, 123: 8239-8247.
    [21] Eddaoudi M, Kim J, O'Keeffe M, et al. Cu2[o-Br-C6H3(CO2)2]2(H2O)2·(DMF)8(H2O)2: A Framework Deliberately Designed To Have the NbO Structure Type[J]. J Am Chem Soc, 2002, 124: 376-377.
    [22] Bu X H, Tong M L, Chang H C, et al. A Neutral 3D Copper Coordination Polymer Showing 1D Open Channels and the First Interpenetrating NbO-Type Network[J]. Angew Chem Int Ed, 2004, 43: 192-195
    [23] Chen B L, Eddaoudi M, Hyde S T, et al. Interwoven metal-organic framework on a periodic minimal surface with extra-large pores[J]. Science, 2001, 291: 1021-1023.
    [24] Riedel R, Greiner G, Miehe G, et al. The First Crystalline Solids in the Ternary Si-C-N System [J]. Angew Chem Int Ed, 1997, 36: 603-606.
    [25] Evans O R, Xiong R G, Wang Z Y, et al. Crystal Engineering of Acentric Diamondoid Metal-Organic Coordination Networks[J]. Angew Chem Int Ed, 2004, 38: 536-538.
    [26] Sun J Y, Weng L H, Zhou Y M, et al. QMOF-1 and QMOF-2: Three-Dimensional Metal-Organic Open Frameworks with a Quartzlike Topology [J]. Angew Chem Int Ed, 2002, 41: 4471-4473.
    [27] Chui S S-Y, Lo S M-F, Charmant J P H, et al. A chemically functionalizable nanoporous material [Cu-3(TMA)(2)(H2O)(3)](n)[J]. Science, 1999, 283, 1148-1150.
    [28] Abrahams B F, Haywood M G, Robson R, et al. New Tricks for an Old Dog: The Carbonate Ion as a Building Block for Networks Including Examples of Composition [Cu6(CO3)12{C(NH2)3}8]4- with the Sodalite Topology [J]. Angew Chem Int Ed, 2003, 42: 1112-1115
    [29] Chun H, Kim D, Dybtsev D N, et al. Metal-Organic Replica of Fluorite Built with an Eight-Connecting Tetranuclear Cadmium Cluster and a Tetrahedral Four-Connecting Ligand [J]. Angew Chem Int Ed, 2004, 43: 971-974;
    [30] Li H, Eddaoudi M, O’keeffe M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature 1999, 402, 276-279.
    [31] Vodak D T, Brawn M E, Kim J, et al. Metal–organic frameworks constructed from pentagonal antiprismatic and cuboctahedral secondary building units[J]. Chem. Commun. 2001, 2534-2535.
    [32] Fujita M, Kwon Y J. Preparation, Clathration Ability, and Catalysis of a Two-Dimensional Square Network Material Composed of Cadmium and 4,4’-bpy[J]. J Am Chem Soc, 1994, 116: 1151-1152.
    [33] Biradha K, Hongo Y, Fjita M. Open Square-Grid Coordination Polymers of the Dimensions 20×20?: Remarkably Stable and Crystalline Solids Even after Guest Removal[J]. Angew Chem Int Ed, 2000, 39: 3843-3846.
    [34] Ye B H, Tong M L, Chen X M. Metal-organic molecular architectures with 2,2’-bipyridyl-like and carboxylate ligands[J]. Coord Chem Rev, 2005, 249: 545-565.
    [35] Carlucci L, Ciani G, Proserpio D M. et al. A three-dimensional‘racemate’. Interpenetration of two enantiomeric networks of the SrSi2 topological type in the polymeric complex [Ag2(2,3-Me2pyz)3][SbF6]2 (2,3-Me2pyz = 2,3=dimethylpyrazine) [J]. Chem Commun, 1996, 1393-1394.
    [36] Abrahams B F, Batten S R, Hamit H, et al.‘three-dimensional’racemate: eight interpenetrating, enantiomorphic (10,3)-a nets, four right- and four left-handed [J]. Chem Commun, 1996, 1313-1314.
    [37] Shi X, Zhu G, Fang Q, et al. Novel supramolecular frameworks self-assembled from one-dimensional polymeric coordination chains[J]. Eur J Inorg Chem. 2004:185-191
    [38]Wang X-L, Qin C, Wang E-B, et al. Meral nuclearity modulated four-, six-, and eight-connected engangled frameworks based on mono-, bi-, and trimetallic cores as nodes[J]. Chem Eur J, 2006, 10: 2680-2691.
    [39] Henderson L J, Fronczek F R, Cherry W R. Selective perturbation of ligand field excited states in polypyridine ruthenium(II) complexes[J]. J Am Chem Soc, 1984, 106(20): 5876-5879.
    [40] Wang X-L, Qin C, Wang E-B, et al. An unprecedented eight-connected self-penetrating network based on pentanuclear zinc cluster building blocks[J]. Chem Commun, 2005, 4789–4791
    [41] Xie L, Liu S, Gao B, et al. A three-dimensional porous metal–organic framework with the rutile topology constructed from triangular and distorted octahedral building blocks[J]. Chem. Commun., 2005, 2402–2404
    [42] Cao X-Y, Zhang J, Li Z-J, et al. Scorpion-shaped carboxylate ligand tailored molecular square, bilayer, selfthreading and (3,6)-connected nets[J]. CrystEngComm, 2007, 9: 806–814
    [43] Xiang S-C, Wu X-T, Zhang J-J, et al. A 3D Canted Antiferromagnetic Porous Metal-Organic Framework with Anatase Topology through Assembly of an Analogue of Polyoxometalate[J]. J Am Chem Soc, 2005; 127:16352-16353.
    [44] Borel C, H?kansson M, ?hrstr?m L. Coordination bonds and strong hydrogen bonds giving a framework material based on a 4- and 8-connected net in [Ca[Co(en)(oxalato)2]2]n[J]. CrystEngComm, 2006, 8, 666-669
    [45] Sra A K, Rombaut G, Lahitete F, et al. Hepta/octa cyanomolybdates with Fe2+: influence of the valence state of Mo on the magnetic behavior[J]. New J. Chem., 2000, 24, 871-876
    [46] Valeur B. Molecular Fluorescence: Principles and Applications[M]. Wiley-VCH, Weinheim, 2002.
    [47] Yersin H, Vogler A. Photochemistry and Photophysics of Coordination Compounds[M]. Springer, Berlin, 1987.
    [1] Kitagawa S, Kitaura R, Noro S. Functional porous coordination polymers[J]. Angew Chem Int Ed, 2004, 43: 2334-2375.
    [2] Rao C N R, Natarajan S, Vaidhyanathan R. Metal Carboxylates with Open Architectures[J]. Angew Chem Int Ed, 2004, 43: 1466-1496.
    [3] Hong X-L, Bai J, Song Y. et al. Luminescent open-framework antiferromagnet– hydrothermal syntheses, structures, and luminescent and magnetic properties of two novel coordination polymers: [Zn(pdoa)(bipy)]n and {[Mn(pdoa)(bipy)](bipy)}n [pdoa = 2,2’-(1,3-phenylenedioxy)bis(acetate); bipy = 4,4’-bipyridine][J]. Eur J Inorg Chem, 2006, 3659-3666.
    [4] Cui Y, Lee S J, Lin W. Interlocked chiral nanotubes assembled from quintuple helices[J]. J Am Chem Soc, 2003, 125: 6014-6015.
    [5] Zang S, Su Y, Li Y. et al. One dense and two open chiral Metal-Organic Frameworks: Crystal structures and physical properties[J]. Inorg Chem, 2006, 45: 2972-2978.
    [6] Zhang J-P, Lin Y-Y, Huang X-C. et al. Molecular chairs, zippers, zigzag and helical chains: chemical enumeration of supramolecular isomerism based on a predesigned metal–organic building-block[J]. Chem Common, 2005, 1258-1260.
    [7] Niu Y, Song Y, Zhang N. et al. Reactivity of polyiodides towards 1,3-bis(4-pyridyl)propane (bpp): A new CuI cluster polycatenane framework and a novel 2D AgI cluster motif[J]. Eur J Inorg Chem, 2006, 2259-2268.
    [8] Férey G, Mellot-Draznieks C, Serre C, et al. Reticular Chemistry: Occurrence and Taxonomy of Nets and Grammar for the Design of Frameworks[J]. Acc Chem Res, 2005, 38: 176-182.
    [9] Hoskins B F, Robson R. Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments[J]. J Am Chem Soc, 1989, 111: 5962-5964.
    [10] Seo J S, Whang D, Lee H, et al. A homochiral metal-organic porous material for enantioselective separation and catalysis[J]. Nature, 2000, 404: 982-986.
    [11] Chen B, Eddaoudi M, Hyde S T, et al. Interwoven metal-organic framework on a periodic minimal surface with extra-large pores[J]. Science, 2001,291: 1021-1023.
    [12] Bourne S A, Lu J, Mondal A, et al. Self-Assembly of Nanometer-Scale Secondary Building Units into an Undulating Two-Dimensional Network with Two Types of Hydrophobic Cavity[J]. Angew Chem Int Ed, 2001, 40: 2111-2113.
    [13] Moulton B, Lu J J, Hajndl R, et al. Crystal Engineering of a Nanoscale KagoméLattice [J]. Angew Chem Int Ed, 2002, 41: 2821-2824.
    [14] Sun J Y, Weng L H, Zhou Y M, et al. QMOF-1 and QMOF-2: Three-Dimensional Metal-Organic Open Frameworks with a Quartzlike Topology[J]. Angew Chem Int Ed, 2002, 41, 4471-4473.
    [15] Eddaoudi M, Kim J, Rsi N, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science, 2002, 295: 469-472.
    [16] Chae H K, Siberio-Perez D Y, Kim J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature, 2004, 427: 523-527.
    [17] Férey G, Serre C, Mellot-Draznieks C, et al. A Hybrid Solid with Giant Pores Prepared by a Combination of Targeted Chemistry, Simulation, and Powder Diffraction[J]. Angew Chem Int Ed, 2004, 43, 6296-6301.
    [18] Fang Q, Zhu G, Xue M, et al. Angew Chem Int Ed, 2005, 44: 3845-3848.
    [19] Qu Z R, Chen Z F, Zhang J. et al. The first highly stable homochiral olefin-copper(I) 2D coordination polymer grid based on quinine as a building block[J]. Organomatallics, 2003, 22 (14): 2814-2816.
    [20] Zheng G L, Ma J F, Su Z M. et al. A mixed–balence tin-oxyfen cluster contianing six perpheral ferrocence units[J]. Angew Chem Int Ed, 2004, 43: 2409-2411.
    [21] Zheng G L, Ma J F, Yang J. et al. A New system in organooxotin cluster chemistry incorporating inorganic and organic spacers between two ladders each containing five tin atoms[J]. Chem Eur J, 2004, 10: 3761-3768.
    [22] Song S Y, Ma J F, Yang J. et al. Synthesis of an organotin oligomer containing a heptanuclear tin phosphonate cluster by debenzylation reactions: X-ray crystal structure of {Na6(CH3OH)2(H2O)}{[(BzSn)3(PhPO3)5(μ3-O)(CH3O)]2Bz2Sn}·CH3OH[J]. Organomatallics, 2007, 26 (8): 2125-2128.
    [23] Xu G H, Ma J F, Yu H X. et al. A series of new organotin-cyanometalate compounds based on triorganotin, diorganotin, and organooxotin clusters[J]. Organomatallics, 2007, 25 (26): 5996-6006.
    [24] Goodman D C, Farmer P J, Darensbourg M Y. et al. A coordination polymer of nickel(II) based on a pentadentate N, S, and O donor ligand[J]. Inorg Chem, 1996, 35 (17): 4989-4994.
    [25] Shi X, Zhu G, Fang Q, et al. Novel supramolecular frameworks self-assembled from one-dimensional polymeric coordination chains[J]. Eur J Inorg Chem, 2004:185-191
    [26] Fujita M, Kwon Y J. Preparation, Clathration Ability, and Catalysis of a Two-Dimensional Square Network Material Composed of Cadmium and 4,4’-bpy[J]. J Am Chem Soc, 1994, 116: 1151-1152.
    [27] Biradha K, Hongo Y, Fjita M. Open Square-Grid Coordination Polymers of the Dimensions 20×20?: Remarkably Stable and Crystalline Solids Even after Guest Removal[J]. Angew Chem Int Ed, 2000, 39: 3843-3846.
    [28]宋宝安,刘新华,杨松等.肟类衍生物的合成与农药生物活性的研究进展[J].有机化学, 2005, 25: 507-525.
    [29] Fan J, Zhu H F, Okamura T, et al. Novel One-Dimensional Tubelike and Two-Dimensional Polycatenated Metal-Organic Frameworks [J]. Inorg Chem, 2003, 42: 158-162.
    [30] Ma J F, Liu J F, Xing Y, et al. Networks with hexagonal circuits in co-ordination polymers of metal ions (ZnII, CdII) with 1,1-(1,4-butanediyl)bis(imidazole) [J]. Dalton Trans, 2000, 2403-2407.
    [31] Wang R H, Zhou Y F, Sun Y Q, et al. Syntheses and Crystal Structures of Copper(II) Coordination Polymers Comprising Discrete Helical Chains[J]. Crystal Growth Des, 2005, 5: 251-256.
    [32] Chen X M, Liu G F. Double-Stranded Helices and Molecular Zippers Assembled from Single-Stranded Coordination Polymers Directed by Supramolecular Interactions[J]. Chem Eur J. 2002, 8: 4811-4817.
    [33] Zhang J-P, Lin Y-Y, Huang X-C, et al. Molecular chairs, zippers, zigzag and helical chains: chemical enumeration of supramolecular isomerism based on a predesigned metal–organic building-block[J]. Chem Commun, 2005, 1258-1260.
    [34] Ngo H L, Lin W. Chiral Crown Ether Pillared Lamellar Lanthanide Phosphonates[J]. J Am Chem Soc, 2002, 124: 14298-14299.
    [35] Prior T J, Bradshaw D, Teat S J, et al. Designed layer assembly: a three-dimensional framework with 74% extra-framework volume by connection of infinite two-dimensional sheets[J]. Chem Commun, 2003, 500-501.
    [36] Hong S, Zou Y, Moon D, et al. An unprecedented twofold interpenetrating (3,4)-connected 3-D metal–organic framework[J]. Chem Commun, 2007, 1707-1709.
    [37] Wang X-S, Ma S, Sun D, et al. A Mesoporous Metal-Organic Framework with Permanent Porosity[J]. J Am Chem Soc, 2006, 128, 16474-16475.
    [38] K. Balasubramanian, Relativistic Effects in Chemistry Part A:Theory and Techniques; Part B: Applications, Wiley, New York, 1997.
    [1] Braga D, Grepionif F and Desiraju G R. Crystal Engineering and Organometallic Architecture[J]. Chem Rev, 1998, 98: 1375-1406.
    [2] Kepert C J, Hesek D, Beer P D, et al. Desolvation of a Novel Microporous Hydrogen-Bonded Framework: Characterization by In Situ Single-Crystal and Powder X-ray Difftaction[J]. Angew Chem Int Ed Engl, 1998, 37: 3158-3160.
    [3]徐吉庆,储德清,以均苯四甲酸和苹果酸为桥联配体的系列过渡金属配合物的合成与结构,第四届全国配位化学会议文集,桂林,2001, 191.
    [4] Devic T, Serre C, Audebrand N, et al. MIL-103, A 3-D Lanthanide-Based Metal Organic Framework with Large One-Dimensional Tunnels and A High Surface Area[J]. J Am Chem Soc, 2005, 127: 12788-12789.
    [5] Abrahams B F, Moylan M, Orchard S. D, et al. Zinc Saccharate: A Robust, 3D Coordination Network with Two Types of Isolated, Parallel Channels, One Hydrophilic and the Other Hydrophobic[J]. Angew Chem Int Ed, 2003, 42: 1848-1851.
    [6] An H Y, Wang E B, Xiao D R, et al. Chiral 3D Architectures with Helical Channels Constructed from Polyoxometalate Clusters and Copper–Amino Acid Complexes[J]. Angew Chem Int Ed, 2006, 45: 904-908.
    [7] Liang Y, Cao R, Su W, et al. Syntheses, Structures, and Magnetic Properties of Two Gadolinium (III)-Copper (II) Coordination Polymers by a Hydrothermal Reaction[J]. Angew Chem Int Ed, 2000, 39: 3304-3307.
    [8] Zhao B, Cheng P, Dai Y, et al. A Nanotubular 3D Coordination Polymer Based on a 3d–4f Heterometallic Assembly[J]. Angew Chem Int Ed, 2003, 42: 934-936.
    [9] Zhao B, Cheng P, Chen X, et al. Design and Synthesis of 3d-4f Metal-Based Zeolite-type Materials with a 3D Nanotubular Structure Encapsulated“Water”Pipe[J]. J Am Chem Soc, 2004, 126: 3012-3013.
    [10] Zhao B, Chen X, Cheng P, et al. Coordination Polymers Containing 1D Channels as Selective Luminescent Probes[J]. J Am Chem Soc, 2004, 126: 15394-15395.
    [11] Liang Y, Cao R, Su W, et al. Syntheses, Structures, and Magnetic Properties of Two Gadolinium (III)-Copper (II) Coordination Polymers by a Hydrothermal Reaction[J]. Angew Chem Int Ed, 2000, 39: 3304-3307.
    [12] Liu Y, Kravtsov V, Walsh R D, et al. Prolonged luminescence lifetimes of Ru(II) complexes via the multichromophore approach: the excited-state storage element can be on a ligand not involved in the MLCT emitting state[J]. Chem Commun., 2004, 2806-2069
    [13] Wang C-F, Gao E-Q, He Z, Yan C-H. A novel mixed-valence complex containing CoII2CoIII2 molecular squares with 4,5-imidazoledicarboxylate bridges[J]. Chem.Commun. 2004, 720-721
    [14] Smith II T S, Root C A, Kampf J W, et al. Reevaluation of the Additivity Relationship for Vanadyl-Imidazole Complexes: Correlation of the EPR Hyperfine Constant with Ring Orientation[J]. J.Am.Chem.Soc, 2000, 122: 767-775.
    [15] Zhang X M, Chen X M. A New Porous 3-D Framework Constructed From Fivefold Parallel Interpenetration of 2-D (6,3) Nets: A Mixed-Valence Copper(I,II) Coordination Polymer [Cu2ICuII(4,4 -bpy)2(pydc)2 ]·4H2O[J]. Eur J Inorg Chem, 2003, 413-417.
    [16] Chen W, Yue Q, Chen C, et al. Assembly of a manganese(II) pyridine-3,4-dicarboxylate polymeric network based on infinite Mn–O–C chains[J]. Dalton Trans, 2003, 28-30.
    [17] Tong M L, Kitagawa S, Chang H, et al. Temperature-controlled hydrothermal synthesis of a 2Dferromagnetic coordination bilayered polymer and a novel 3D network with inorganic Co3(OH)2ferrimagnetic chains[J]. Chem Commun, 2004, 418-419.
    [18] Qin C, Wang X L, Wang E B, et al. A Series of Three-Dimensional Lanthanide Coordination Polymers with Rutile and Unprecedented Rutile-Related Topologies[J]. Inorg Chem, 2005, 44: 7122-7129.
    [19] Wang X L, Qin C, Wang E B, et al. Syntheses, Structures, and Photoluminescence of a Novel Class of d10 Metal Complexes Constructed from Pyridine-3,4-dicarboxylic Acid with Different Coordination Architectures [J]. Inorg Chem, 2004, 43: 1850-1856.
    [20] Tian G, Zhu G S, Yang X Y, et al. A chiral layered Co(II) coordination polymer with helical chains from achiral materials[J]. Chem Commun, 2005, 1396-1398.
    [21] Newman M S, Lutz W B.α-(2,4,5,7-Tetranitro- 9-fluorenylideneaminooxy)-propionic acid, a new reagent for solution by complex formation. J.Am.Chem. Soc.1956, 78: 2469-2473.
    [22] Newan M S, Junjappa H.Synthesis of a dl polyer and an active(+) polymer containing the 2,4,5,7-tetranitrofluorenylideneaminooxysuccinic moiety chromatographic studies.J.Org.Chem. 1971, 36: 2606-2609.
    [23] O'Keefe M, Eddaoudi M, Li H. et al. Frameworks for Extended Solids: Geometrical Design Principles. Journal of Solid State Chemistry. 2000 152: 3-20
    [24] Lin X, Blake A J, Wilson C, et al. A Porous Framework Polymer Based on a Zinc(II) 4,4’-Bipyridine-2,6,2’,6’-tetracarboxylate: Synthesis, Structure, and“Zeolite-Like”Behaviors. J. Am. Chem. Soc. 2006, 128: 10745-10753
    [25] Sun H-L, Ma B-Q, Gao S, Batten S R, A Novel Three-Dimensional Network Containing Mn(II) Ions and Tricyanomethanide with Rare 46.64 Topology Crystal Growth & Design, 2005, 5:1331-1333
    [26] Abrahams B F, Batten S R, Hoskins B F, Robson R. AgC(CN)3-Based Coordination Polymers. Inorg Chem, 2003, 42: 2654-2664.
    [27] J. Kim, B. Chen, T. M. Reineke, H. Li, M. Eddaoudi, D. B. Moler, M. O’Keeffe, O. M. Yaghi, J. Am. Chem. Soc. 2001, 123: 8239-8247.
    [28] He J H, Zhang Y T, Pan Q H. et al.Three metal-organic frameworks prepared from mixed solvents of DMF and HAc. Micropor. Mesopor. Mater. 2006, 90: 145-152.
    [29] Xie L, Liu S, Gao B, et al. A three-dimensional porous metal–organic framework with the rutile topology constructed from triangular and distorted octahedral building blocks. Chem. Commun., 2005, 2402–2404
    [30] S. R. Batten, B. F. Hoskins and R. Robson, Synthesis and Rutilelike Structure of [Cd(tcm)(hmt)(H2O)](tcm) (tcm- = Tricyanomethanide, C(CN)3-; hmt = Hexamethylenetetramine)[J]. Inorg. Chem., 1998, 37: 3432-3434.
    [31] Batten S R, Hoskins B F, Moubaraki B. Crystal structures and magnetic properties of the interpenetrating rutile-related compounds M(tcm)2 [M = octahedral, divalent metal; tcm = tricyanomethanide, C(CN)3–] and the sheet structures of [M(tcm)2(EtOH)2] (M = Co or Ni)[J]. J. Chem. Soc. Dalton Trans. 1999, 2977-2986.
    [32] Batten S R, Hoskins B F, Robson R. 2,4,6-Tri(4-pyridyl)-1,3,5-triazine as a 3-Connecting Building Block for Infinite Nets[J]. Angew. Chem. Int. Ed. Engl. 1995, 34, 820–822.
    [33] Chae H K, Kim J, Friedrichs O D, et al. Design of Frameworks with Mixed Triangular and Octahedral Building Blocks Exemplified by the Structure of [Zn4O(TCA)2] Having the Pyrite Topology[J]. Angew. Chem. Int. Ed. 2003, 42, 3907–3909.
    [1] Ockwig N W, Delgado-Friedrichs O, O’Keeffe M, et al. Reticular Chemistry: Occurrence and Taxonomy of Nets and Grammar for the Design of Frameworks[J]. Acc Chem Res, 2005, 38: 176-182.
    [2] Moulton B, Zaworotko M J. From Molecules to Crystal Engineering: Supramolecular Isomerism and Polymorphism in Network Solids[J]. Chem. Rev. 2001, 101, 1629-1658.
    [3] Batten S R, Robson R. Interpenetrating Nets: Ordered, Periodic Entanglement[J]. Angew. Chem. Int. Ed., 1998, 37: 1460-1494.
    [4] Férey G, Mellot-Draznieks C, Serre C, et al. Crystallized Frameworks with Giant Pores: Are There Limits to the Possible?[J]. Acc. Chem. Res., 2005, 38: 217-225.
    [5] Zhao X, Xiao B, Fletcher A J, et al. Hysteretic adsorption and desorption of hydrogen by nanoporous metal-organic frameworks[J]. Science, 2004, 306: 1012-1015.
    [6] Matsuda R, Kitaura R, Kitagawa S, et al. Highly controlled acetylene accommodation in a metal-organic microporous material[J]. Nature, 2005, 436: 238-241.
    [7] Erxleben A. Structures and properties of Zn(II) coordination polymers[J]. Coord. Chem. Rev., 2003, 246: 203-228.
    [8] Janiak C. Engineering coordination polymers towards applications[J]. Dalton Trans., 2003, 2781-2804.
    [9] Vaidhyanathan R, Bradshaw D, Rebilly J N, et al. A Family of Nanoporous Materials Based on an Amino Acid Backbone[J]. Angew. Chem. Int. Ed., 2006, 45, 6495-6499.
    [10] Yaghi O M, O’Keeffe M, Ockwig N W, et al. Reticular Synthesis and the Design of New Materials[J].Nature, 2003, 423: 705-714.
    [11] Eddaoudi M, Kim J, O'Keeffe M et al. Cu2[o-Br-C6H3(CO2)2]2(H2O)2·(DMF)8(H2O)2: A Framework Deliberately Designed To Have the NbO Structure Type[J]. J Am Chem Soc, 2002, 124: 376-377.
    [12] Yaghi O M, Li G M. Mutually Interpenetrating Sheets and Channels in the Extended Structure of [Cu(4,4’-bpy)Cl][J]. Angew Chem Int Ed Engl, 1995, 34: 207-209.
    [13] Li H, Eddaoudi M, Yaghi O M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 276-279.
    [14] Yaghi O M, O’Keeffe M, Ockwig N W, et al. Reticular Synthesis and the Design of New Materials[J].Nature, 2003, 423: 705-714.
    [15] Kepert C J, Rosseinsky M J, A porous chiral framework of coordinated 1,3,5-benzenetricarboxylate: quadruple interpenetration of the (10,3)-a network [J]. Chem Commun, 1998, 31-32.
    [16] Chui S. S. Y, S. Lo M F, Charmant J. P. H, et al. A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n[J]. Science, 1999, 283: 1148-1150.
    [17] Prior T J, Bradshaw D, Teat S J, et al. Designed layer assembly: a three-dimensional framework with 74% extra-framework volume by connection of infinite two-dimensional sheets [J]. Chem Commun, 2003, 500-501.
    [18] Lin Z, Jiang F, Chen L, et al. New 3-D Chiral Framework of Indium with 1,3,5-Benzenetricarboxylate[J]. Inorg Chem, 2005, 44: 73-76.
    [19] Devic T, Serre C, Audebrand N, et al. MIL-103, A 3-D Lanthanide-Based Metal Organic Framework with Large One-Dimensional Tunnels and A High Surface Area[J]. J Am Chem Soc, 2005, 127: 12788-12789.
    [20] Abrahams B F, Moylan M, Orchard S. D, et al. Zinc Saccharate: A Robust, 3D Coordination Network with Two Types of Isolated, Parallel Channels, One Hydrophilic and the Other Hydrophobic[J]. Angew Chem Int Ed, 2003, 42: 1848-1851.
    [21] Juan C, D. Giovanni M, Jose L S, et al. Andrea, Ability of Terephthalate (ta) to Mediate Exchange Couping in ta-Bridging Copper(II), Nickel(II), Cobalt(II) and Manganese(II) Dinuclear Complex[J]. J Chem Soc Dalton Trans, 1997, 1915-1924.
    [22] Laura D, Atta A M, Joel S M. Obsevation of Ferromagnetic and Antiferromagnetic Coupling in 1-D and 2-D Extended Structures of Copper(II) Terephthalates[J]. Inorg Chem, 1999, 38: 5072-5077.
    [23] Kumagai H, Kepert C J, Kurmoo M. Construction of Hydrogen-Bonded and Coordination-Bonded Networks of Cobalt(II) with Pyromellitate: Synthesis, Structures, andMagnetic Properties[J]. Inorg Chem, 2002, 41: 3410-3422.
    [24] Cao X-Y, Zhang J, Cheng J-K, Kang Y, et al. Co-chelation of a scorpion-shaped carboxylate ligand and phenanthroline lead to a 2-D interpenetratively tubular architecture. CrystEngComm, 2004, 6: 315–317
    [25] Cao X-Y, Zhang J, Li Z-J, et al. Scorpion-shaped carboxylate ligand tailored molecular square, bilayer, selfthreading and (3,6)-connected nets. CrystEngComm, 2007, 9: 806–814.
    [26] Kondo M, Miyazawa M, Irie Y, et al. A new Zn(II) coordination polymer with 4-pyridylthioacetate: assemblies of homo-chiral helices with sulfide sites[J]. Chem Commun, 2002, 2156-2157.
    [27] Sun D F, Cao R, Sun Y Q, et al. Self-Assembly of a One-Dimensional Silver Complex Containing Two Kinds of Helical Chains[J]. Eur J Inorg Chem, 2003, 38-41.
    [28] Han L, Hong M C, Wang R H, et al. A novel nonlinear optically active tubular coordination network based on two distinct homo-chiral helices[J]. Chem Commun, 2003, 2580-2581.
    [29] Liang J, Wang Y, Yu J H, et al. Synthesis and structure of a new layered zinc phosphite (C5H6N2)Zn(HPO3) containing helical chains[J]. Chem Commun, 2003, 882-883.
    [30] Wang X L, Qin C, Wang E B, et al. Syntheses, structures, and photoluminescence of a novel class of d10 metal complexes constructed from pyridine-3,4-dicarboxylic acid with different coordination architectures[J]. Inorg Chem, 2004, 43: 1850-1856.
    [31] Qin C, Wang X L, Wang E B, et al. Three-dimensional mesomeric networks assembled from helix-linked sheets: syntheses, structures, and magnetisms[J]. Dalton Trans, 2005, 2609-2614.
    [32] Dai J-C, Wu X-T, Fu Z-Y. et al. Synthesis, structure, and fluorescence of the novel cadmium(II)- trimesate coordination polymers with different coordination architectures[J]. Inorg Chem, 2002, 41: 1391-1396.
    [33] Ma S Q, Zhou H-C, A Metal-Organic Framework with Entatic Metal Centers Exhibiting High Gas Adsorption Affinity. J. Am. Chem. Soc. 2006, 128: 11734-11735.
    [34] Sun Y Q, Zhang J, Ju Z F, et al. Two-Dimensional Noninterpenetrating Transition Metal Coordination Polymers with Large Honeycomb-like Hexagonal Cavities Constructed from a Carboxybenzyl Viologen Ligand [J]. Crystal Growth & Design, 2005, 1939-1943.
    [35] Fan J, Zhu H F, Okamura T, et al. Novel One-Dimensional Tubelike and Two-Dimensional Polycatenated Metal-Organic Frameworks [J]. Inorg. Chem. 2003, 42, 158-162.
    [36] Ma J F, Liu J F, Xing Y, et al. Networks with hexagonal circuits in co-ordination polymers of metal ions (ZnII, CdII) with 1,1-(1,4-butanediyl)bis(imidazole) [J]. Dalton Trans., 2000, 2403-2407.
    [37] Reineke T M, Eddaoudi M, O'Keeffe M, Yaghi O M. A MicroporousLanthanide-Organic Framework[J]. Angew. Chem., Int. Ed., 1999, 38: 2590-2594
    [38] Wells A F, Further Studies of Three-dimensional Nets; ACA Monograph No. 8; American Crystallographic Association: Buffalo, NY, 1979.
    [39] Friedrichs O D, O'Keeffe M, Yaghi O M. Three-periodic nets and tilings: regular and quasiregular nets[J]. Acta Crystallogr., Sect. A. 2003, A59: 22-27
    [40] Wang X-L, Qin C, Wang E-B, Su Z-M. Metal Nuclearity Modulated Four-, Six-, and Eight-Connected Entangled Frameworks Based on Mono-, Bi-, and Trimetallic Cores as Nodes[J]. Chem.–Eur. J., 2006, 12: 2680
    [1] Cui Y, Lee S J, Lin W. Interlocked chiral nanotubes assembled from quintuple helices[J]. J Am Chem Soc, 2003, 125: 6014-6015.
    [2] Zang S, Su Y, Li Y, et al. One dense and two open chiral Metal-Organic Frameworks:Crystal structures and physical properties[J]. Inorg Chem, 2006, 45: 2972-2978.
    [3] Zhang J-P, Lin Y-Y, Huang X-C, et al. Molecular chairs, zippers, zigzag and helical chains: chemical enumeration of supramolecular isomerism based on a predesigned metal–organic building-block[J]. Chem Common, 2005, 1258-1260.
    [4] Niu Y, Song Y, Zhang N, et al. Reactivity of polyiodides towards 1,3-bis(4-pyridyl)propane (bpp): A new CuI cluster polycatenane framework and a novel 2D AgI cluster motif[J]. Eur J Inorg Chem, 2006, 2259-2268.
    [5]Qu Z R, Chen Z F, Zhang J, et al. The first highly stable homochiral olefin-copper(I) 2D coordination polymer grid based on quinine as a building block[J]. Organomatallics, 2003, 22 (14): 2814-2816.
    [6]Zheng G L, Ma J F, Su Z M, et al. A mixed–balence tin-oxyfen cluster contianing six perpheral ferrocence units[J]. Angew Chem Int Ed, 2004, 43: 2409-2411.
    [7]Zheng G L, Ma J F, Yang J, et al. A New system in organooxotin cluster chemistry incorporating inorganic and organic spacers between two ladders each containing five tin atoms[J]. Chem Eur J, 2004, 10: 3761-3768.
    [8]Song S Y, Ma J F, Yang J, et al. Synthesis of an organotin oligomer containing a heptanuclear tin phosphonate cluster by debenzylation reactions: X-ray crystal structure of {Na6(CH3OH)2(H2O)}{[(BzSn)3(PhPO3)5(μ3-O)(CH3O)]2Bz2Sn}·CH3OH[J]. Organomatallics, 2007, 26 (8): 2125-2128.
    [9]Xu G H, Ma J F, Yu H X. et al. A series of new organotin-cyanometalate compounds based on triorganotin, diorganotin, and organooxotin clusters[J]. Organomatallics, 2007, 25 (26): 5996-6006.
    [10] Park K S, Ni Z, C?téA P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. U.S.A. 2006, 103: 10186 -10191.
    [11] Banerjee R, Phan A, Wang B, et al. High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture. Science, 2008, 319: 939-943.
    [12] Huang X-C, Lin Y-Y, Zhang J-P, Chen X-M. Ligand-Directed Strategy for Zeolite-Type Metal-Organic Frameworks: Zinc(II) Imidazolates with Unusual Zeolitic Topologies[J]. Angew. Chem., Int. Ed. 2006, 45: 1557.
    [13] Tian Y-Q, Zhao Y-M, Chen Z-X, et al. Design and Generation of Extended Zeolitic Metal-Organic Frameworks (ZMOFs): Synthesis and Crystal Structures of Zinc(II) Imidazolate Polymers with Zeolitic Topologies[J]. Chem.–Eur. J. 2007, 13: 4146-4154.
    [14] Sotofte I, Nielsen K. Benzotriazole complexes 2. the crystal-structures of benzotriazolium tetrachlorocobaltate(II), "bis(benzotriazole)-dichlorozinc(II) and polymeric" tetrakis(benzotriazolato)dizinc(II)[J]. Acta. Chem. Scand., Ser. A, 1981, 35: 739-745.
    [15] Hu R-F, Zhang J, Kang Y, et al. A fluorescent Zn-benzotriazole 2D polymer with (6,3)topology[J]. Inorg. Chem. Commun. 2005, 8: 828-830.
    [16] Lu J, Zhao K, Fang Q.-R, et al. Synthesis and Characterization of Four Novel Supramolecular Compounds Based on Metal Zinc and Cadmium. Cryst. Growth Des. 2005, 5: 1091-1098.
    [17] Ye Q, Li Y-H, Song Y-M. et al. A Second-Order Nonlinear Optical Material Prepared through In Situ Hydrothermal Ligand Synthesis. Inorg. Chem. 2005, 44: 3618.
    [18] The databases of zeolite structures can be found on the website: http://www.iza-structure.org/databases.
    [19] Ezuhara T, Endo K, Aoyama Y. Helical Coordination Polymers from Achiral Components in Crystals. Homochiral Crystallization, Homochiral Helix Winding in the Solid State, and Chirality Control by Seeding[J]. J. Am. Chem. Soc. 1999, 121: 3279-3283.
    [20] Seo J S, Whang D, Lee H, et al. A homochiral metal-organic porous material for enantioselective separation and catalysis[J]. Nature, 2000, 404: 982-986.
    [21] Seeber G, Tiedemann B E F, Raymond K N. Supramolecular chirality in coordination chemistry[J]. Supramolecular chirality. 2006, 265: 147-183.
    [22] Mamula O, von Zelewsky A, Bark T, Bernardinelli G. Stereoselective Synthesis of Coordination Compounds: Self-Assembly of a Polymeric Double Helix with Controlled Chirality. Angew. Chem., Int. Ed. 1999, 38: 2945-2948.
    [23] Tabellion F M, Seidel S R, Arif A M, et al. Template and guest effects on the self-assembly of a neutral and homochiral helix[J]. Angew. Chem., Int. Ed. 2001, 40: 1529-1532.
    [24] Gao E-Q, Yue Y-F, Bai S-Q, et al. From Achiral Ligands to Chiral Coordination Polymers: Spontaneous Solution, Weak Ferromagnetism, and Topological Ferrimagnetism[J]. J. Am. Chem. Soc. 2004, 126: 1419-1429
    [25] Han L, Valle H, Bu X. Homochiral Coordination Polymer with Infinite Double-Stranded Helices [J]. Inorg. Chem. 2007, 46: 1511-1513
    [26] Sun Y-Q, Zhang J, Chen Y-M, Yang G-Y. Porous Lanthanide-Organic Open Frameworks with Helical Tubes Constructed from Interweaving Triple-Helical and Double-Helical Chains[J]. Angew. Chem., Int. Ed. 2005, 44: 5814-5817;
    [27] Yue Y-F, Wang B-W, Gao E-Q, et al. A novel three-dimensional heterometallic compound: templated assembly of the unprecedented planar“Na [Cu4]”metalloporphyrin-like subunits[J]. Chem. Commun. 2007, 2034-2036.
    [28] Robertson, J. M. An X-ray study of the structure of the phthalocyanines. Part I. The metal-free, nickel, copper, and platinum compounds[J]. J. Chem. Soc. 1935, 615-621.
    [29] Fox J M, Katz T J, Van Elshocht S, et al. Synthesis, Self-Assembly, and Nonlinear Optical Properties of Conjugated Helical Metal Phthalocyanine Derivatives[J]. J. Am. Chem. Soc. 1999, 121, 3453-3459.
    [30] Cao X-Y, Zhang J, Li Z-J, et al. Scorpion-shaped carboxylate ligand tailored molecular square, bilayer, self-threading and (3,6)-connected nets[J]. CrystEngComm 2007, 806-814.
    [31] Laye R H, Wei Q, Mason P V, et al. A Highly Reduced Vanadium(III/IV) Polyoxovanadate Comprising an Octavanadyl Square-Prism Surrounding a Dimetallic Vanadium(III) Fragment[J]. J. Am. Chem. Soc. 2006, 128: 9020-9021.
    [32] Li D, Li R, Qi Z, et al. Synthesis and crystal structure of the first Cu(I)-benzotrizolate complex [Cu-4(bta)(3)(PPh3)(4)] [Cu(PPh3)(3)](BF4)(2): a unique tetrametallic fragment like a reverse-umbrella[J]. Inorg. Chem. Commun. 2001, 4: 483-485.
    [33] Qin Y-Y, Zhang J, Li Z-J, et al. Organically templated metal–organic framework with 2-fold interpenetrated {33.59.63}-lcy net[J] Chem. Commun. 2008, 2532-2534.
    [34] Fang Q R, Zhu G S, Jin Z, et al. A Multifunctional Metal–Organic Open Framework with a bcu Topology Constructed from Undecanuclear Clusters[J]. Angew. Chem. Int. Ed. 2006 45: 6126-6130.
    [35] Tao J, Tong M-L, Shi J-X, et al. Blue photoluminescent zinc coordination polymers with supertetranuclear cores[J]. Chem. Commun. 2000, 2043-2044.
    [36] Qin C, Wang X, Carlucci L, et al. From arm-shaped layers to a new type of polythreaded array: a two fold interpenetrated three-dimensional network with a rutile topology [J]. Chem. Commun. 2004, 1876-1877.
    [37] Zhang Q L, Wang D J, Wei X, et al. A study of the interface and the related electronic properties in n-Al0.35Ga0.65N/GaN heterostructure[J]. Thin Solid Films, 2005, 491, 242-248.
    [38] Duzhko V, Timoshenko V Y, Koch F, et al. Photovoltage in nanocrystalline porous TiO2 [J]. Phys. Rev. B, 2001, 64: 075204.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700