Zn(Ⅱ)/Cu(Ⅱ)和稀土配合物的合成、表征及发光性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机电致发光是近年来国际上的一个研究热点。在众多的有机发光材料中,腙类化合物是一类具有良好光学性能的化合物,在有机电致发光材料中具有潜在的应用价值;稀土金属配合物因其荧光量子效率高、发光谱带窄、色度纯,是一类具有特殊发光性能和物理性质的电致发光材料,而使它们的研究越来越受到人们的重视。
     本文采用苯甲酰肼分别与β-萘乙酮、邻硝基苯甲醛、对溴苯乙酮、二苯甲酮进行缩合反应,合成了四个酰腙配体:β-萘乙酮缩苯甲酰腙(a)、邻硝基苯甲醛缩苯甲酰腙(b)、对溴苯乙酮缩苯甲酰腙(c)、二苯甲酮缩苯甲酰腙(d);a分别与Zn(OAc)_2·2H2_O、Cu(OAc)_2·H2_O;b、c分别与Cu(OAc)_2·H2_O在甲醇中反应,合成了四个新的酰腙金属二元配合物。通过元素分析、红外光谱、紫外光谱、核磁共振氢谱、核磁共振碳谱、单晶X射线衍射分析等手段表征,配合物的组成符合如下分子式:[M(L)2] [L = a, M = Zn(II) (a1), Cu(II) (a2); L = b, M = Cu(II) (b1); L = c, M = Cu(II) (c1)]。研究了金属离子种类、配体结构对配合物荧光强度的影响。采用循环伏安法对配合物a1进行了能带参数的测定。
     此外,本文还采用β-萘甲酰苯甲酰甲烷(β-HNBM)为第一配体、5,6-二酮-1,10-邻菲啰啉(QPT)为第二配体,并将它们分别与铕及稀土掺杂金属在乙醇中反应,合成了十四种未见文献报道的掺杂稀土金属配合物。元素分析及稀土络合滴定的测试结果表明,三元配合物的组成符合如下分子式:Eu(β-NBM)3QPT;异核配合物的组成为:Eu0.5RE0.5(β-NBM)3QPT (RE = Er~(3+), Nd~(3+), Ce~(3+), Dy~(3+), Y~(3+), Lu~(3+)) ;不同掺杂比例配合物的组成为: Eu1-xYx(β-NBM)3QPT和Eu1-xLux(β-NBM)3QPT (x = 0.10, 0.30, 0.50, 0.70, 0.90)。本文采用不同比例的掺杂稀土来研究最佳效果的荧光,最后根据配合物的光致发光性能(荧光光谱),探讨了它们作为电致发光材料的应用前景。
Organic electroluminescence (OEL) materials have become a fascinating research field in recent years because of their potential applications in panel displayer. With satisfactory light function, the compounds of hydrazone have potential applications in OEL materials. Rare earth (RE) complexes are a kind of electroluminescence materials with special light and physical properties among many OEL materials. They have been payed more and more attention from many investigators due to their high fluorescence efficiency, narrow bandwidth and good purity of light. Four novel complexes of type [M(L)2] [L = 2-acetonaphthonebenzoylhydrazone (a), M = Zn(II) (a1), Cu(II) (a2); L = 2-nitrobenzaldehydebenzoylhydrazone (b), M = Cu(II) (b1); L = 4’-bromoacetophenonebenzoylhydrazone (c), M = Cu(II) (c1).] have been synthesized conveniently by the reactions of zinc(II) acetate dihydrate/copper(II) acetate monohydrate with appropriate hydrazone ligands which were synthesized by condensation reactions of benzhydrazide with aldehyde or ketone in methanol. The complexes obtained have been characterized by elemental analysis, IR, UV, 1H NMR, 13C{H} NMR and Single crystal X-ray analysis. The influences of different metal ions and different ligands on luminescent properties of complexes have been studied. The energy-band parameters of complex a1 have been explored by cyclic voltammetry. Furthermore, fourteen new RE complexes have been prepared by usingβ-naphthoylbenzoylmethane (β-HNBM), 5,6-quinone-l,10-phenanthroline (QPT) and different rare ions. Elemental analysis and RE coordination titration indicate that the composition of ternary complex is Eu(β-NBM)3QPT; the composition of the series of Eu~(3+) doped with different RE ions has this type molecular formula: Eu0.5RE0.5(β-NBM)3QPT (RE = Er~(3+), Nd~(3+), Ce~(3+), Dy~(3+), Y~(3+), Lu~(3+)); there are two groups of the series of Eu~(3+) complexes doped with different proportional RE ions, namely, Eu1-xYx(β-NBM)3QPT and Eu1-xLux(β-NBM)3QPT (x = 0.10, 0.30, 0.50, 0.70, 0.90). The best fluorescence intensity has been studied in this thesis according to different proportional doped RE ions. According to photoluminescence (fluorescence spectra), the electroluminescence properties of the complexes have been discussed.
引文
[1] Pope M, Kallmann H P, Mangnante P. Electroluminescence in Organic Crystals[J]. J. Chem. Phys., 1963, 38(8): 2042~2043.
    [2] Tang C W, VanSlyke S A. Organic electroluminescent diodes[J]. J. Appl. Phys. Lett., 1987, 51(12): 913~915.
    [3] Burroughes J H, Bradeley D D C, Brown A R, et al. Light-emitting diodes based on conjugated polymers[J]. Nature, 1990, 347(10): 539~541.
    [4]黄春辉,李富友,黄维.有机电致发光材料与器件导论[M].上海:复旦大学出版社, 2005. 6.
    [5] Chkoda L, Heske C, Sokolowski M. Improved band alignment for hole injection by an interfacial layer in organic light emitting devices[J]. Appl. Phys. Lett., 2000, 77(8): 1093~1095.
    [6] Staudigel J, Stobel M, Steuber F, et al. A quantitative numerical model of multilayer vapor-deposited organic light emitting diodes[J]. J. Appl. Phys., 1999, 86(7): 3895~3910.
    [7] Tutis E, Bussac M N, Masenelli B, et al. Numerical model for organic light-emitting diodes[J]. J. Appl. Phys., 2001, 89(1): 430~439.
    [8] Tang C W, VanSlyke S A, Chen C H. Electroluminescence of doped organic thin films[J]. J. Appl. Phys., 1989, 65(9): 3610~3616.
    [9] Uchida M, Adachi C, Koyama T, et al. Charge carrier trapping effect by luminescent dopant molecules in single-layer organic light emitting diodes[J]. J. Appl. Phys., 1999, 86(3): 1680~1687.
    [10]邱勇,胡晓明.有机电致发光材料[J].清华大学材料科学论坛, 1999, 13(4): 56~59.
    [11] Hung L S, Tang C W, Masson M G. Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode[J]. Appl. Phys. Lett., 1997, 70(2): 152~154.
    [12] Kido J, Matsumoto T. Organic electroluminescent devices having a metal-doped electron-injecting layer[J]. Appl. Phys. Lett., 1998, 73(20): 2866~2868.
    [13] Stolka M, Yanus J F, Pai D M. Hole transport in solid solutions of a diamine in polycarbonate[J]. J. Phys. Chem., 1984, 88(20): 4707~4714.
    [14]黄春辉,李富友,黄岩谊.光电功能超薄膜[M].北京:北京大学出版社, 2001. 7~10.
    [15] Huang L S, Chen C H. Recent progress of molecular organic electroluminescent materials and devices[J]. Mater. Sci. Eng. R: Reports, 2002, 39(5): 143~222.
    [16] Hamada Y, Sano T, Fujita M, et al. Organic Electroluminescent Devices with 8-Hydroxyquinoquinoline Derivative-Metal Complexes as an Emitter[J]. Jpn. J. Appl. Phys., 1993, 32: L514~L515.
    [17] Wu C C, Wu C I, Sturm J C, et al. Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices[J]. Appl.Phys. Lett., 1997, 70(11): 1348~1350.
    [18] Mitschke U, B?uerle P. The electroluminescence of organic materials[J]. J. Mater. Chem., 2000, 10(7): 1471~1507.
    [19] Lim S F, Lin K, Wang W, et al. Correlation between dark spot growth and pinhole size in organic light-emitting diodes[J]. Appl. Phys. Lett., 2001, 78(15): 2116~2118.
    [20]杨正银,王流芳,吴集贵,等. 3d过渡金属的2-羰基丙酸(4-吡啶甲酰基)腙配合物的合成、表征及导电性质研究[J].化学学报, 1993, 51(2), 184~187.
    [21]李来仲,郭佃顺,耿玉敏. N-(取代苯基)2-(对氯苯氧乙酰基)氨基脲的合成与表征[J].合成化学, 2000, 8(6), 534~536.
    [22]龙德清,汪众钢,李德江,等. 5,7-二甲基-1,2,4-三唑并[l,5-a]嘧啶-2-甲酰腙类化合物的合成与生物活性[J].有机化学, 2005, 25(11), 1498~1502.
    [23] Hodnett E M, Dunn W J. Cobalet derivatives of Schiff bases of aliphatic amines as antitumor agents[J]. J. Med. Chem., 1972, 15(3): 339~341.
    [24] Mohan K. Analytical applications of hydrazones[J]. Talanta, 1975, 22(2): 151~166.
    [25]刘绍璞,王陆军. N-水杨醛缩天冬氨酸与锌的荧光反应及其应用[J].化学试剂, 1993, 15(2): 111~113.
    [26]仇敏,刘国生,姚小泉,等.手性铜(Ⅱ)-席夫碱配合物催化苯乙烯不对称环丙烷化反应[J].催化学报, 2001, 22(1): 77~80.
    [27]肖文,卢忠林,邓良容,等.一种新型含二茂铁基三角架配体的合成与表征[J].中山大学学报(自然科学版), 1999, 38(5): 127~128.
    [28] Paschalidis D G, Tossidis I A, Gdaniec M. Synthesis, characterization and spectra of lanthanide (III) hydrazone complexes: The X-ray molecular structures of the erbium(III) complex and the ligand[J]. Polyhedron, 2000, 19(27): 2629~2637.
    [29] Ainscough E W, Brodie A M, Dobbs A J, et al. Antitumour copper (II) salicylaldehyde benzoylhydrazone(H2sb)complexes: physico-chemical properties and the single-crystal X-raystructures of [{Cu(H2sb)(CCl3CO2)2}2] and [{Cu(Hsb)(ClO4)(C2H5OH)}2] and the related salicylaldehyde acetylhydrazone (H2sa) complex[J]. Inorg. Chim. Acta., 1998, 267(1): 27~38.
    [30] Hundekar A M, Sen D N. Silyl-nitrogen compounds: Part XIII-Reactions of metal halides with silylated tosylhydrazines[J]. Indian J. Chem., 1984, 23: 477~480.
    [31] Carcelli M, Lanelli S, Pelaatti P, et al. Structural characterization of a new ligand mode of 2,6-diacetylpyridine bis(semi-carbazone), H2daps[J]. Inorg. Chim. Acta., 1999, 292(1): 121~126.
    [32] Singh B, Narang K K, Srivastava R. Studies on complexes of Co(II), Ni(II), Cu(II), and Cd(II) with acetophenone and 4-hydroxyacetophenone benzoylhydrazones[J]. Synth. React. Inorg. Met.-Org. Chem., 2001, 31(8): 1375~1386.
    [33] Ji B M, Du Q Y, Ding K L. Synthesis and characterization of acetylferrocene pyridine-2,6-diformyhydrazone and its dinuclear yttrium and lanthanide (III) picrate complexes[J]. Polyhedron, 1996, 15(3): 403~408.
    [34] Ma Y. X, Ma Z Q, Zhao G., et al. Coordination complexes of formylferrocene benzoylhydrazone with lanthanides[J]. Polyhedron, 1989, 8(17): 2105~2108.
    [35] Yuan Y F, Zhang L Y, Hu A G, et al. Synthesis, characterization and electrochemical behavior of 1’-formyl[(2,2-diferrocenyl)-propane]isonicotinoyl hydrazone and its lanthanide complexes[J]. Polyhedron, 1999, 18(8), 1247~1251.
    [36] Shi S M, Hu. Z. Q. Diaquabis[(E)-2-(4-oxopentan-2-ylideneamino)-benzoato-κO] dipyridinemanganese(II)[J]. Acta. Crystallogr. Sect. E: Struct. Rep. Online, 2007, 63, m426~m428.
    [37] Nawar N, Hosny N. M. Synthesis, spectral and antimicrobial activity studies of o-aminoacetophenone o-hydroxybenzoylhydrazone complexes[J]. Trans. Met. Chem., 2000, 25(1): 1~8.
    [38] Mahan M, Gupta N K, Kumar M, et al. Synthesis, magnetic and electrochemical properties of binuclear copper(II) complex of pyridoxalhydrazones[J]. Inorg. Chim. Acta., 1992, 197(1): 39~46.
    [39]尹华,林韵,黄清明.糠醛水杨酰腙镍配合物的合成、表征与晶体结构[J].福州大学学报, 2004, 32(3): 358~361.
    [40]何水样,陈军利,杨锐,等.水杨醛水杨酰腙及其稀土配合物的合成、波谱研究及生物活性[J].有机化学, 2003, 23(12): 1387~1392.
    [41]杨正银,杨汝栋.邻羧基苯甲醛苯甲酰腙稀土配合物的合成和抗氧化活性[J].中国稀土学报, 2002, 20(4): 366~369.
    [42]马兴铭,雒艳萍,麻宝成,等. 2-羧甲氧基苯甲醛苯甲酰腙及其配合物抑菌活性的构效关系[J].中国临床药理学与治疗学, 2004, 9(2): 201~203.
    [43]梁芳珍. 5-溴水杨醛硫代双酰腙及其Cu(Ⅱ)配合物的合成、表征及抑菌活性[J].应用化学, 2003, 20(7): 693~695.
    [44]王明明,谢阿贵,王慧,等.水杨酰腙Ni(II)配合物的合成、晶体结构、抑菌活性及电化学性质[J].无机化学学报, 2009, 25(5): 942~945.
    [45] Tian Y P, Duan C Y, Zhao C Y, et al. Synthesis, Crystal Structure, and Sencond-Order Optical Nonlinearity of Bis(2-chlorobenzaldehyde thiosemicarbazone)cadmium Halides(CdL2X2; X = Br, I)[J]. Inorg. Chem., 1997, 36(6): 1247~1252.
    [46]江崇球,唐波,付红燕,等.水杨醛型腙类试剂测定铝的研究[J].化学试剂, 1997, 19(6): 353~355.
    [47]唐波,张杰,崔官伟,等.新型主体试剂交联聚合β-环糊精-邻香草醛苯甲酰腙的合成及荧光法识别锌[J].分析化学, 2002, 30(10): 1196~1200.
    [48]侯俊先,陈立谊,唐秀波,等.酰腙钛配合物的合成及其催化乙烯聚合研究[J].高分子学报, 2004, 10(5):754~757.
    [49] Lal R A, Adhidari S, Pal A, et al. Synthesis and Characterization of the Homobimetallic [Bis(2-hydroxy-1-naphthaldehyde)oxaloyldihydrazonato] bisdioxo-molybdenum(VI) Terahydrate Complex and its Reactivity towards Proton and Electron Donor Reagents[J]. J. Chem. Res. (S), 1997, 78(5): 122~123.
    [50]杨锐,何水样,武望婷,等.镝(III)与酰腙及1,10-菲啰啉多元配合物的晶体结构及荧光性质[J].化学学报, 2004, 62(20): 2040~2044.
    [51]马东兰,王谨华,石井一,等.新试剂3,5-二溴水杨醛苯甲酰腙与镓配合物的光度法研究[J].光谱学与光谱分析, 1995, 15(1): 123~127.
    [52] Wu F, Tian W J, Zhang Z M. Organic electroluminescent device based on balanced carriers injection and transportation[J]. Thin Solid Films, 2000, 363(1): 214~217.
    [53] Qiu Y, Gao Y D, Wei P, et al. Organic light-emitting diodes with improved hole-electron balance by using copper phthalocyanine/aromatic diamine multiple quantum wells[J]. Appl. Phys. Lett., 2002, 80(15): 2628~2630.
    [54] Park Y , Choong V, Gao Y, et al.. Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy[J]. Appl. Phys. Lett., 1996, 68(19): 2699~2671.
    [55] Beljonne D, Colbert M C B, Raithby P R, et al. Electronic properties of dinuclearruthenium-acetylide complexes: electrochemical and theoretical characterixation[J]. Synth. Met., 1996, 81(2-3): 179~183.
    [56] Schlaf R, Parkinson B A, Lee P A, et al. Determination of frontier orbital alignment and band bending at an organic semiconductor heterointerface by conbined x-ray and ultraviolet photoemission measurements[J]. Appl. Phys. Lett., 1998, 73(8): 1026~1028.
    [57]丁邦东,张积梅,朱文清.快速简便测定有机电致发光材料HOMO能级的电化学方法[J].化学研究与应用, 2002, 14(6): 712~714.
    [58]陈文彬.有机电致发光器件设计与制作[D].西安:电子科技大学, 2002.
    [59]丁邦东,张积梅,朱文清.一种简便测定有机电致发光材料能级的电化学方法[J].发光学报, 2003, 24(6): 606~611.
    [60]吴维昌,冯洪清,吴开治.标准电极电位数据手册[M].北京:科学出版社, 1991. 13~16.
    [61] Khreis O M, Curry R J, Somertom M, et al. Infrared organic light emitting diodes using neodymium tris-(8-Hydro oxyquoline)[J]. J. Appl. Phys., 2000, 88(2): 777~780.
    [62]郑子樵,李红英.稀土功能材料[M].北京:化学工业出版社, 2003. 160~229.
    [63]杨红,王则民,余锡宾,等.乙酰丙酮铽掺杂配合物的荧光光谱研究[J].中国稀土学报, 2002, 20(S2): 6~9.
    [64]杨景和,葛红梅,揭念琴,等. Tb(Sm, Dy, Tm)-BPMPHD-CTMAB共发光体系的机理探讨[J].化学学报, 1996, 54(4): 351~536.
    [65]连锡山,盛慧,刘占梅,等.苯甲酸稀土(Eu, La)配合物的红外和荧光光谱研究[J].光谱学与光谱分析, 1999, 19(4): 562~565.
    [66]赵凤英,薛珍,赵永亮.苯丙烯酸邻菲啰啉铕钇配合物的合成及荧光特性[J].化学试剂, 2002, 24(6): 324~325, 338.
    [67]赵永亮,杨晓华,莫日根.对苯二甲酸邻菲啰啉铽钇配合物的红外光谱及荧光光谱研究[J].光谱学与光谱分析, 2002, 22(2): 223~225.
    [68]丁洪.稀土化学在光学材料领域研究新进展[J].化工时刊, 2000, 14(3): 18~21.
    [69]熊娟,余锡宾,丁云峰,等. Y3+, La3+对CaSO4: Eu3+发光性质的影响[J].上海师范大学学报(自然科学版), 2003, 32(2): 51~54.
    [70]陈怀侠,胡林学,叶勇.掺杂铽的稀土酒石酸配合物的合成及其荧光性能研究[J].湖北化工, 2001, 18(2): 17~19.
    [71]连锡山,马素清.苯甲酸-铕-铽配合物的荧光光谱研究[J].稀土, 1999, 20(5): 7~11.
    [72]孙波,赵莹,徐端夫,等.邻苯二甲酸-邻菲啰啉-铕-铽络合体系的荧光性能研究[J].光谱学与光谱分析, 1997, 17(2): 25~29.
    [73]赵莹,孙波,徐端夫,等.邻苯二甲酸-铕-铽络合体系的荧光性能和红外光谱研究[J].光谱学与光谱分析[J]. 1997, 17(2): 77~82.
    [74]赵永亮,赵风英.混合固态铕铽配合物的荧光研究.光谱学与光谱分析[J]. 2000, 20(5): 718~720.
    [75] Kawa M, Fréchet Jean M J. Self-Assembled Lanthanide-Cored Dendrimer Complexes: Enhancement of the Luminescence Properties of Lanthanide ions through Site-Isolation and Antenna Effects[J]. Chem. Mater., 1998, 10(1): 286~296.
    [76]温孝春,赵永亮,刘永刚,等.掺杂稀土对铕、铽苯二甲酸-冠醚配合物发光的影响[J].发光学报, 2007, 28(6): 959~965.
    [77]王连蒙,赵永亮,周永生,等. (EuxRE1-x)(FTFA)3Phen配合物的合成、表征及荧光性能[J].发光学报, 2008, 29(6): 1086~1090.
    [78]尹海水,葛文萍,王睿,等.系列稀土配合物Re1-xTbx(TTFA)3Phen的合成及光学性能研究[J].激光杂志, 2009, 30(1): 24~25.
    [79]郑佑轩,梁玉军,张洪杰,等.稀土配合物的光致和电致发光性能的研究[J].中国稀土学报, 2001, 19(6): 529~531.
    [80]卞祖强,黄春辉.影响稀土配合物电致发光性能的几个重要因素[J].中国稀土学报, 2004, 22(1): 7~16.
    [81] Sato W, Wada M. Relations between Intramolecular energy transfer efficiencies and triplet state energies in rare earthβ-diketone chelates[J]. Bull. Chem. Soc. Jpn., 1970, 43(7): 1955~1962.
    [82]卢文贯,刘宏文,冯小龙.三元混合配合物Cu(C10H8N2O3)·(C5H5N)·(H2O)的合成和晶体结构[J].无机化学学报, 2004, 20(3): 313~316.
    [83]陈小华,刘世雄.配合物Cu(C15H12N2O3)(C5H5N)的合成和晶体结构[J].无机化学学报, 2004, 20(6): 668~670.
    [84] Ali H, Khamis N A, Basirun W J, et al. Bis{2’-[1-(2-hydroxyphenyl)ethylidene]-benzohydrazido}bis(pyridine-κN)zinc(II)[J]. Acta. Crystallogr. Sect. E: Struct. Rep. Online, 2004, 60, m873~m875.
    [85] Liu H Y, Lu Z S, Niu D Z. Ternary copper(II) complexes of aroylhydrazones and mono/bidentate heterocycles with different structures: synthesis, crystal structure and properties[J]. J. Coord. Chem., 2008, 61(24): 4040~4046.
    [86]朱东霞,王悦,邵奎占,等.双水杨醛缩环己二胺类西佛碱及其配合物的合成、性质研究[J].分子科学学报, 2004, 20(3): 12~17.
    [87]李东风,鲁子恺,李敏.含吡啶环的双醛腙类试剂的合成及其光谱研究[J].光谱学与光谱分析, 2008, 28(7): 1514~1517.
    [88] Singh V P, Katiyar A, Singh S. Synthesis, characterization of some transition metal(II) complexes of acetone p-amino acetophenone salicyloyl hydrazone and their anti microbial activity[J]. BioMetals, 2008, 21(4): 491~501.
    [89] Das S, Pal S. Self-assembly of copper(II) complexes with a dibasic tridentate ligand and monodentate N-heterocycles: structural, magnetic and EPR studies[J]. J. Mol. Struct., 2005, 741(1-3): 183~192.
    [90] Yuan Y F, Zhang L Y, Hu A G, et al. Synthesis, characterization and electrochemical behaviour of 1’-formyl[(2,2-diferrocenyl)propane]isonicotinoyl hydrazone and its lanthanide complexes[J]. Polyhedron, 1999, 18(8-9): 1247~1251.
    [91] Kido J, Nagai K, Okamoto Y, et al. Electroluminescence from polysilane film doped with europium complex[J]. Chem. Lett., 1991, 20(7): 1267~1270.
    [92] Okada K, Wang Y F, Nakaya T. A novel red organic electroluminescent device using Eu complex as an emitting layer[J]. Syn. Met., 1998, 97(2): 113~116.
    [93] Liu Y, Li J D, Li C, et al. Highly efficient sharp red electroluminescence from europium complex-doped poly(9,9-dioctylfluorene)devices[J]. Chem. Phys. Lett., 2007, 433(4-6): 331~334.
    [94]马瑞霞.铕芳香羧酸配合物的合成、晶体结构及发光性能研究[D].石家庄:河北师范大学, 2006.
    [95] Zhang H J, Yan B, Wang S B, et al. The photophysical properties of binary and ternary complexes of rare earths with conjugated carboxylic acids and 1,10-phenanthroline[J]. J. Photochem. Photobiol. A: Chem., 1997, 109(3): 223~228.
    [96] Uekawa M, Miyamoto Y , Ikeda H, et al. Synthesis and luminescent properties of europium complexes[J]. Synth. Met., 1997, 91(1-3): 259~262.
    [97] Li X, Zhang Z Y, Zhang T T, et al. Synthesis, structure and luminescence of three europium complexes with 2,4-dimethylbenzoic acid[J]. J. Coord. Chem., 2007, 60(3): 301~311.
    [98] Zheng Y X, Fu L S, Zhou Y H, et al. Electroluminescence based on aβ-diketonate ternary samarium complex[J]. J. Mater. Chem., 2002, 12: 919~923.
    [99] Hong Z R, Li W L, Zhao D X, et al. Spectrally-narrow blue light-emitting organic electroluminescent devices utilizing thulium complexes[J]. Synth. Met., 1999, 104(3): 165~168.
    [100] Hong Z R, Liang C J, Li R G, et al. Infrared and visible emission from organic electroluminescent devices based on praseodymium complex[J]. Appl. Phys. Lett., 2001, 79: 1942~1944.
    [101] Kido J, Okamoto Y S. Organo lanthanide metal complexes for electroluminescent materials[J]. Chem. Rev., 2002, 102(6): 2357~2368.
    [102] Artizzu F, Deplano P, Marchio L, et al. Structure and emission properties of Er3Q9 (Q = 8-Quinolinolate)[J]. Inorg. Chem., 2005, 44(4): 840~842.
    [103] Kang T S, Harrion B S, Bouguettaya M, et al. Near-infrared light-emitting diodes (LEDs) based on poly(phenylene)/Yb-tris(β-Diketonate) complexes[J]. Adv. Funct. Mater., 2003, 13(3): 205~210.
    [104]李德江,葛正红. 2-苯基-5-芳基-1,3,4-噁二唑的合成与表征[J].合成化学, 2004, 12(6): 532~535.
    [105] Nicaise O, Denmark S. Asymmetric addition of organometallic reagents to chiral alpha-alkoxy hydrazones[J]. Bull. Soc. Chim. Fr., 1997, 134(3-4): 395~398.
    [106] Somogyi L. Stereochemical aspects of the formation of diastereoisomeric 3-acetyl-2-(polyacetoxyalkyl)-5-phenyl-2,3-dihydro-1,3,4-oxadiazoles[J]. Carbohydr. Res., 1988, 182(1): 19~29.
    [107] Reddelien G. Berichte der Deutschen Chemischen Gesellschaft [Abteilung] B: Abhandlungen. 1921, 54B, 3121~3131.
    [108] Westerhausen M, Kneifel A N, Kalisch A. (Z)-Bis(alkylzinc)imido-1,2-di(2-pyridyl)ethene: Intramolecular Stabilization of a Bis(alkylzinc)imide[J]. Angew. Chem. Int. Ed. 2005, 44(1): 96~98.
    [109]孙为银.配位化学[M].北京:化学工业出版社, 2004. 48~56.
    [110] Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds[M]. New York: Wiley-Interscience, 1986. 284.
    [111] Lee P F, Yang C T, Fan D M, et al. Synthesis, characterization and physicochemical properties of copper(II) complexes containing salicylaldehyde semicarbazone[J]. Polyhedron, 2003, 22(20): 2781~2786.
    [112] Sreekanth A, Kala U L, Nayar C R, et al. Cobalt(III) complexes of 2-hydroxyacetophenone N(4)-phenyl semicarbazone containing heterocyclic coligands: synthesis, structure and spectral studies[J]. Polyhedron, 2004, 23(1): 41~47.
    [113] Braibanti A, Dallavalle F, Pellinghelli M A, et al. The nitrogen-nitrogen stretching band inhydrazine derivatives and complexes[J]. Inorg. Chem., 1968, 7(7): 1430~1433.
    [114] Maiti D, Paul H, Chanda N, et al. Synthesis, structure, spectral and electron-transfer properties of octahedral-[CoIII(L)2]+/[ZnII(L)2] and square planar-[CuII(L){OC(=O)CH3}] complexes incorporating anionic form of tridentate bis(8-quinolinyl)amine [N1C9H6–N2–C9H6N3, L?] ligand[J]. Polyhedron, 2004, 23(5): 831~840.
    [115]江欣,吴谊群,贺春英.新型多氮杂环金属配合物的合成及其光谱研究[J].光谱学与光谱分析, 2008, 28(11): 2511~2514.
    [116] Rageh N M. Tautomeric structures, electronic spectra, acid-base properties of some 7-aryl-2,5-diamino-3(4-hydroxyphenyazo)pyrazolo[1,5-a]pyrimidine-6-carbonitriles, and effect of their copper(II) complex solutions on some bacteria and fungi[J]. Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc., 2004, 60(8-9): 1917~1924.
    [117] Bruker AXS Inc.. SAINT, Area detector control and data integration and reduction software, USA: Madison, WI, 1997.
    [118] Sheldrick G M. SADABS, Program for Empirical Absorption Correction of Area Detector Data, Germany: University of Gottingen, 1997.
    [119] Sheldrick G M. SHELX-97, Programs for Crystal Structure Analysis (Release 97-2), Germany: University of Gottingen, 1997.
    [120] Zsolnai L, Huttner G. ORTEP, Germany: University of Heidelberg, 1994.
    [121] Hitoshi S, Yukie M, Yutaka F, et al. Fluorescent probe for Zn2+ with light-harvesting pyrenyl groups: sensitization via intramolecular energy transfer[J]. Monatsh. Chem., 2009, 140(7): 801~805.
    [122] Pal S, Ruthenium(II) complexes containing RuN4O2 spheres assembled via pyridine-imine-amide coordination. Syntheses, structures, properties and protonation behaviour of coordinated amide[J]. J. Chem. Soc., Dalton Trans., 2002, (9): 2102~2108.
    [123]陈小华,刘世雄.配合物Cu(C15H12N2O3)(C5H5N)的合成和晶体结构[J].无机化学学报, 2004, 20(6): 668~671.
    [124]许金钩,王尊本.荧光分析法(第三版)[M].北京:科学出版社, 2006. 40.
    [125]王健.卟啉掺杂电致发光器件的发光性能及其发光机理研究[D].长沙:湖南大学, 2005.
    [126] Li G, Hou H W, Li L K, et al. Novel Pb(II), Zn(II), and Cd(II) coordination polymers constructed from ferrocenyl-substituted carboxylate and bipyridine-based ligands[J]. Inorg. Chem., 2003, 42(16): 4995~5004.
    [127] Seki K, Ito E, Ishii H. Energy level alignment at organic/metal interfaces studied by UVphotoemission[J]. Synth. Met., 1997, 91(1-3): 137~142.
    [128] Zhang Z L, Jiang X Y, Zhu W Q, et al. A white organic light emitting diode with improved stability[J]. J. Phys. D: Appl. Phys., 2001, 34(20): 3083~3087.
    [129] Shenoi R B, Shah R C, Wheeler T S. Chalkones: production of isooxazoles from some chalkone derivatives[J]. J. Chem. Soc., 1940, 247~251.
    [130]张智斌,闫文鹏,樊美公.一种1,10-菲罗啉-5,6-二酮及其单肟的高效合成方法[J].应用化学, 2005, 22(1): 103~104.
    [131] Dickeson J E, Summers L A. Derivatives of 1,10-phenanthroline-5,6-quinone[J]. Aust. J. Chem., 1970, 23(5): 1023~1027.
    [132]陈晓峰,刘书华,马靖. [Eu(DBM)4]MPy的合成、发射光谱及摩擦发光性质[J].无机化学学报, 1999, 15(2): 252~254.
    [133]吴惠霞,忻驰洋,孙君燕,等.稀土掺杂镝(Ⅲ)乙酰丙酮邻菲啰啉三元配合物的合成和荧光性质[J].发光学报, 2006, 27(2), 270~274.
    [134]张梅,赵永亮,赵艳芳,等.铕及其掺杂稀土噻吩乙酸、邻菲啰啉配合物的合成、表征及荧光性能[J].发光学报, 2008, 29(5): 827~832.
    [135]王鹏,魏长平,任晓明.掺杂金属离子对(Eu, Tb)稀土配合物发光性质的影响[J].发光学报, 2009, 30(1): 97~100.
    [136]稀土元素家族系列档案(15)-镥[J].稀土信息, 2006, (3): 28.
    [137]稀土元素家族系列档案(8)-钇[J].稀土信息, 2006, (8): 33.
    [138]稀土元素家族系列档案(6)-铕[J].稀土信息, 2006, (6): 17.
    [139]刘铭钊,杨展澜,张莉,等.配合物EuxM(1-x)(TTA)3(H2O)2(M = La, Gd)光致发光特性[J].物理化学学报, 2001, 17(9): 797~801.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700