黄河干流水生态系统健康指标体系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河流健康是科学发展观思想和可持续发展战略在中国流域管理的具体体现,对促进经济高效、环境可持续和社会公平,实现人类与河流的和谐相处具有重要意义。河流健康的标志、评价指标及其量化标准是河流健康理念应用于生产实际迫切需要解决的问题。河流生态系统健康是河流健康的重要内容,本论文以维持黄河干流水生生态系统健康为出发点,采用生态学、生态水文学、生态水力学、环境水力学、环境科学、管理科学以及经济学的方法,提出黄河干流水生生态系统健康指标体系,在此基础上,对指标体系中的指示性因子识别及其量化标准进行研究,为黄河健康修复提供科学依据。论文的主要研究内容和取得的成果如下:
     (1)定义了黄河干流水生生态系统健康标志为,黄河干流水生生态系统处于良好状态,且干流河道内具有连续的河川径流。提出用保护关键种和生态流量作为表征黄河干流水生生态系统健康的指示性因子。
     (2)以河道生态功能一致性为原则,以生物因子(浮游动物、浮游植物、底栖动物、鱼类)和非生物因子(水的物理化学状况、气候、地貌)为分类指标,采用系统聚类分析的方法对黄河干流水生生态系统进行了分区。
     (3)提出了识别黄河干流不同河段水生生态系统关键种的思路为:首先,根据黄河干流各个河段水生生态系统的食物链结构,计算水生生态系统中各类物种的关键性指数,比较各类物种的关键性指数的大小,识别出关键物种;然后,根据关键物种的种群结构,计算关键物种中种群保护的次序,需要优先保护的种群就是某个河段水生生态系统需要保护的关键种。
     (4)采用logistic增长模型,考虑种群的起始生物量就是关键种的保护规模,选择黄河干流饵料生物为关键种生长的主要影响因子,计算得到了关键种的保护规模。
     (5)河流生态流量的计算基本上应包含水流以及生态两项基本要素。在水流条件研究中,以河川水力学模型HEC-RAS较为广泛,在生态分析中,则以物理栖息地模拟模型(PHABSIM)为主。本论文吸取了上述两个模型长处,并予以整合,提出了基于HEC-RAS和PHABSIM的生态流量计算方法,以求在河流生态流量研究上能较为合理与精确。首先,利用HEC-RAS模型计算各断面水位;然后,利用PHABSIM模型中水力学模型所提供的水深计算法推求每一断面各个测点的流速;再利用PHABSIM模型中的栖息地模型并结合关键种的适应度指数曲线,量化出各个断面的生态流量,计算结果从理论上来讲较水文学方法和水力学方法更具合理性。
River health reflects the scientific development view and sustainable development strategy in Chinese watershed management. And it has important significance in promoting economical efficiency, environmental sustainability, social justice, and realizing harmonious co-existence between human and river. The river health mark, evaluation index, and its quantitative standards have become an urgent problem in river health idea application. River ecosystem health is very important content in river health. To provide the scientific basis for healthy repair of the Yellow River, this paper using methods of ecology, eco-hydrology, eco-hydraulics, environmental hydraulics, environmental science, management science and economics and taking the aquatic ecosystem maintenance in the mainstream of the Yellow River as starting point, put forward aquatic ecosystem health index system of the mainstream of the Yellow River, then studied indicators identification and its quantitative standards. The main contents and findings of this dissertation are as follows:
     (1)The health sign of aquatic ecosystem of the mainstream of the Yellow Rivers was defined that the aquatic ecosystem of the mainstream the Yellow Rivers is all right, and there exists continuous stream flow in its channel. The protection scale of the key population and the ecologic flow as the indicators to characterize the aquatic ecosystem health were put forward.
     (2) The aquatic ecosystem of the mainstream of the Yellow Rivers was divided into several parts using the systematic cluster analysis taking the channel ecological function consistency as principle and taking the biological factors (zooplankton, Phytoplankton, benthos, fishes) and the non-biological factors (the physical and chemical status of water, climate, landform) as classification index.
     (3) The thought was given to recognize the key species and key population for aquatic ecosystems in different reach of the mainstream of the Yellow River. First, according to the food chain structure of aquatic ecosystem in different reach of the mainstream of the Yellow River, the key index of various species in aquatic ecosystems was calculated and compared, and the key species were identified. Secondly, based on the population structure of key species, population protection orders of the key species were calculated. The population receiving priority to protection was the key population of river aquatic ecosystems.
     (4) The protecting scale of the key population was calculated using logistic growth model, taking the initial biomass as the protection scale of key population and selecting the bait-creatures in the mainstream of the Yellow River as main influential factors to the growth of the key population.
     (5) The basic elements to calculate river eco-flow should include water flow and ecology. In water flow conditions study, the application of the river hydraulics model HEC-RAS is more extensive and in ecological analysis, the physical habitat simulation model (PHABSIM) is oriented. The advantages of these two models were integrated and the method to calculate eco-flow based on the HEC-RAS model and the PHABSIM model was put forward. Firstly, the method used HEC-RAS model to calculate water level of every cross section; then, it used water depth calculation method offered by hydraulics model in PHABSIM to deduce the flow velocity of every part in each cross section; at last, it used habitat model in PHABSIM combining fitness curve of key population to estimate eco-flow of each cross section. In theory, the results are more reasonable than hydrology and hydraulics methods.
引文
[1]李国英.维持黄河健康生命[M].郑州:黄河水利出版社,2006.
    [2]Murray Darling Basin Commission. The living Murray-Environmental works and measures program[R].2005.
    [3]Department of Water Affairs and Forestry Department of Environmental Affairs and Tourism. State-of-Rivers report:Berg river System 2004[R].2004.
    [4]Sandra Postel, Brain Richter 著,武会先,王万战,宋学东译. 河流生命-为人类和自然管理水[M]. 郑州:黄河水利出版社,2005.
    [5]International Commission for the Protection of the Rhine. The Protection of the Rhine Salmon 2000[R].1994.
    [6]European Union. Water Framework Inductive[R].2000.
    [7]中国社会科学院语言研究所词典编辑室.现代汉语词典[M].北京:商务印书馆.1995.
    [8]Callicott J B. Aldo Leopold's metaphor[A]. In:Costanza R, Norton B G, Haskell B D(eds.), Ecosystem Health:New Goals for Environmental Management[C]. Washington D C:Island Press,1992: 42-56.
    [9]Rapport D J. Defining ecosystem health[A]. In:Rapport D J, Costanza R, Epstein P R, et al. (eds.). Ecosystem Health[C]. Malden, Massachusetts:Blackwell Science Inc,1998.
    [10]Constanza R. Toward an operational definition of ecosystem health[A]. In:Constanza R, Benjam in D H. Ecosystem Health:New goals for environmental management[C]. Washington D C:Island Press, 1992.
    [11]Cech J J. Multiple Stresses in Ecosystems [M]. Boston:Lewis Publishers.1998.
    [12]Kristin S. Ecosystem health:A new paradigm for ecological assessment[J]. Trends in Ecology and Evolution,1994(9):456-457.
    [13]Callow P. Ecosystem health-a critical analysis of concepts[A]. In:Rapport D J, Calow P, Gauder C. Evaluating and Monitoring the Health of Large-Scale Ecosystems[C]. New York:Springer-Verlag,1995.
    [14]Rapport D J, Costanza R, McMichael A J. Assessing ecosystem health[J]. Trends in Ecology and Evolution,1998(13):397-402.
    [15]崔保山,杨志峰.湿地生态系统健康研究进展[J].生态学杂志,2000,20(3):31-36.
    [16]李瑾,安树青,程晓莉等.生态系统健康评价的研究进展[J].植物生态学报,2001,25(6):641-647.
    [17]Karr J R, Fausch K D, Angermeier P L, et al. Assessing biological integrity in running waters:A method and its rationale[A]. In:Special Publication 5 of the Illinois Natural History Survey [C].1986.
    [18]Rapport D J, Bohm G, Buckingham D, et al. Ecosystem health:The concept, the ISEH, and the important tasks ahead[J]. Ecosystem health,1999(5):82-90.
    [19]Rapport D J. On the transformation from healthy to degraded aquatic ecosystems[J]. A quatic Ecosyst Health Manag,1999(2):97-103.
    [20]曾德慧.生态系统健康与人类可持续发展.应用生态学报[J],1999,10(6):21-25.
    [21]Norris R H, Thoms M C. What is River Health? [J]. Freshwater Biology,1999(41):197-209.
    [22]Karr J R. Defining and measuring river health[J]. Freshwater Biology,1999(41):221-234.
    [23]Simpson J, Norris R, Barmuta L, et al. AusRivAS-National River Health Program:User Manual Website version,1999.
    [24]Schofield N J, Davies P E. Measuring the health of our rivers[J]. Water,1996(5-6):39-43.
    [25]Karr J R. Biological integrity:A long-neglected aspect of water resource management. Ecol Appl, 1991(1):66-84.
    [26]Boulton A J. An overview of river health assessment:philosophies, practice, problems, and prognosis[J]. Freshwater Biology,1999(45):469-479.
    [27]Fairweather P G. State of environment indicators of'river health':exploring the metaphor[J]. Freshwater Biology,1999(41):211-220.
    [28]Meyer J L. Stream health:incorporating the human dimension to advance stream ecology [J]. Journal of the North American Benthological Society,1997(16):439-447.
    [29]王鹏.河流健康评价及修复研究[D].合肥:合肥工业大学,2007.
    [30]高永胜.河流健康生命评价与修复技术研究[D].中国水利水电学院,2006.
    [31]边博,程小娟.城市河流生态系统健康及其评价[J].环境评价,2006(2B):66-69.
    [32]庞治国,王世岩,胡明罡.河流生态系统健康评价及展望[J].中国水利水电科学研究院学报,2006(2):151-155.
    [33]张可刚,赵翔,邵学强.河流生态系统健康评价研究[J].水资源保护,2005(6):11-14.
    [34]吴昊.试论河流生态系统健康及其评价方法[J].江苏环境科技,2005(增刊):70-72.
    [35]董哲仁.河流健康内涵[J].中国水利,2005(4):15-18.
    [36]Kerr S R, Dickyey L M. Measuring the health of aquatic ecosystems[A]. In:Cairns V W, Hodson PV, Nriagu J O, et al. Contaminant Effects on Fisheries [C]. New York:Wiley and Sons,1984.
    [37]Minns C K, Moore J E, Schindler D W, et al. Assessing the potential extent of damage to inland lakes in eastern Canada to acidic deposition IV:Predicted impacts on species richness in seven groups of aquatic biota[J]. Canada Journal of Fisheries and Aquatic Science,1990(47):821-830.
    [38]Schaeffer D J, Cox D K. Establishing ecosystem threshold criteria[A]. In:Costanza R, Norton B, Hashell B, et al. Ecosystem Health-New Goals for Environmental Management[C]. Washington D C:Island Press,1992.
    [39]Smol J P. Paleolimnology:An important tool for effective management[J]. Aquatic Ecosystem Health, 1992, (1):49-59.
    [40]Costanza R, Mageau M. What is healthy ecosystem?[J]. Aquatic ecology,1999, (1):105-115.
    [41]罗跃初,周忠轩,孙轶等.流域生态系统健康评价方法[J].生态学报,2003(8):1606-1615.
    [42]Cairns J J, Munawar M. Ecosystem health through eco-logical restoration:Barriers and Opportunities[J]. Aquatic Ecosystem Health,1994(1):5-14.
    [43]Borman F H. Ecology:A personal history[J]. Energy and Environment,1996(21):1-29.
    [44]Allan J D, Johnson L B. Catchment-scale analysis of aquatic ecosystem [J]. Fresh Biology,1997(37): 107-111.
    [45]蔡庆华,吴刚,刘健康.流域生态学:水生态系统多样性研究和保护的一个新途径[J].科技导报,1997(5):24-26.
    [46]邓红兵,王庆礼,蔡庆华.流域生态学[J].应用生态学报,1998(4):443-449.
    [47]Kemper N P. RVI: Riparian vegetation index[R]. ERC,1999.
    [48]夏继红,严忠民,蒋传丰.河岸带生态系统综合评价指标体系研究[J].水科学进展,2005(3):345-348.
    [49]Marsden M W, Smith M R, Sargent R J. Tropic state of rivers in the Forth catchment, Scotland[J]. Aquat Conserv,1997(7):211-221.
    [50]Sladecek V. Diatom as indictors of organic pollution[J]. Acta Hydrochim Hydrobiol,1986(14): 555-566.
    [51]Kwandrans J, Eloranta P, et al. Use of benthic diatom communities to evaluate water quality in rivers of southern Pland[J]. Journal of Applied Phycology,1998(10):193-201.
    [52]Kelly M G, Whitton B A. Biological monitoring of eutrophication in rivers [J]. Hydrobiologia, 1998(384):55-67.
    [53]Wright J F, Armitage P D, Furse M T. Prediction of invertebrate communities using stream measurements[J]. Regul. rivers:Res. Mgmt.,1989(4):147-155.
    [54]Smith M J, Kay W R, Edward D H D, et al. AusRivAS:Using macro-invertebrates to assess ecological condition of rivers in Western Australia[J]. Freshwater Bilo,1999(41):269-282.
    [55]Chutter F M. Research on the rapid biological assessment of water quality impacts in streams and rivers[R]. Water Research Commission of Pretoria,1998.
    [56]Pavluk T I. Development of an index of tropic completeness for benthic macroinverte-brate communities in flowing waters [J]. Hydrobiologia,2000(427):135-141.
    [57]Karr J R. Assessments of biotic integrity using fish comm. unities[J]. Fisheries(Beth-esda),1981(6):21-27.
    [58]Kleynhans C J. The development of a fish index to assess the biological integrity of South African rivers[J]. Water South Africa,1999(25):265-278.
    [59]Hughes R M, Paulsen S G, Stoddard J L. EMAP surface water:a multiassemblage probability survey of ecological integrity in the USA[J]. Hydrobiologia,2000(422-423):429-443.
    [60]Parsons M, Thorns M, Norris R. Australian River Assessment System:Review of Physical River Assessment Methods-A Biological Perspective, Monitoring River Heath Initiative Technical Report NO.21[R]. Canberra:Commonwealth of Australia and University of Canberra,2002.
    [61]丰华丽,王超,李剑超.生态学观点在流域可持续管理中的应用[J].水利水电快报,2001(14):21-23.
    [62]Wright J F, Sutcliffe D W, Furse M T. Assessing the biological quality of fresh waters:RIVPACS and other techniques[M]. Ambleside:The Freshwater Biological Association,2001.
    [63]Raven P J, Holmesn T H, Naura M, et al. Using river habitat survey for environmental assessment and catchment planning in the UK[J]. Hydrobiologia,2000(422-423):359-367.
    [64]Kleynhans C J. A qualitative procedure for the assessment of the habitat integrity status of the Luvuvhu River[J]. Journal of Aquatic Ecosystem Health,1996(5):41-54.
    [65]吴阿娜.河流健康状况评价及其在河流管理中的应用[J].华东师范大学,2005.
    [66]王宏,魏民,李环. 河流生态系统健康评价初探[J].东北水利水电,2006(3):52-53.
    [67]张远,郑丙辉,刘鸿亮.深圳典型河流生态系统健康指标及评价[J].水资源保护,2006(5):13-17.
    [68]赵彦伟,杨志峰.城市河流生态系统健康评价初探[J].水科学进展,2005(3):349-355.
    [69]吴道喜,黄思平.健康长江指标体系研究[J].水利水电快报,2007(12):1-3.
    [70]林木隆,李向阳,杨明海.珠江流域河流健康评价指标体系初探[J].人民珠江,2006(4):1-4.
    [71]冯普林. 渭河健康生命的主要标志及评价指标体系研究[J].人民黄河,2005(8):3-6.
    [72]赵彦伟,杨志峰,姚长青.黄河健康评价与修复基本框架[J].水土保持学报:2005(5):131-134.
    [73]耿雷华,刘恒,钟华平等.健康河流的评价指标和评价标准[J].水利学报,2006(3):253-258.
    [74]张可刚,赵翔,邵学强.河流生态系统健康评价研究[J].水资源保护,2005(6):11-14.
    [75]王琳,宫兆国,张炯等. 综合指标法评价城市河流生态系统的健康状况[J]. 中国给水排水,2007(10):97-100.
    [76]吴春华,牛卫华.论河流生态系统健康[J].人民黄河,2006(2):10-12.
    [77]波波夫著,杨逸龙译.河床的生命[M].上海:上海科学技术出版社,1957.
    [78]詹道江,叶守泽.工程水文学[M].北京:中国水利水电出版社,2000.
    [79]栗建国,陈文祥.河流生态系统的典型特征和服务功能[J].人民长江,2004,35(9):41-43.
    [80]鲁春霞,谢高地,成升魁.河流生态系统的休闲娱乐功能及其价值评估[J].资源科学,2001(5):77-81.
    [81]黄河水系渔业资源调查协作组.黄河水系渔业资源[M].大连:辽宁科学技术出版社,1986.
    [82]中国科学院动物研究所.黄河渔业生物学基础初步调查报告[M].北京:科学出版社,1959.
    [83]伍献文.中国鲤科鱼类志[M].上海:上海科学技术出版社,1964.
    [84]朱松泉.中国条鳅志[M].南京:江苏科学出版社,1989.
    [85]汪松.中国濒危动物红皮书(鱼类)[M].北京:科学出版社,1998.
    [86]成庆泰,郑葆珊.中国鱼类系统检索[M].北京:科学出版社,1987.
    [87]孟庆闻,苏锦祥,缪学祖.鱼类分类学[M].北京:中国农业出版社,1995.
    [88]水利部黄河水利委员会.黄河流域及西北内陆河水功能区划[R].黄河水利委员会,2001.
    [89]黄河流域气候编写组.黄河流域气候[R].黄河水利委员会水文局,1987.
    [90]沈珍瑶,杨志峰.黄河流域水资源可再生性评价指标体系与评价方法[J].自然资源学报,2002,17(2):188-197.
    [91]David Hand, Heikki Mannila, Padhraic Smyth.数据挖掘原理[M].北京:机械工业出版社,2003.
    [92]Daniel A, Keim Steve Eick. Workshop On Visual Data Mining[M]. SanFrancisco, California: USA KDD,2001.
    [93]Agrawal R, Gehrke J, Gunopulos D, Raghavan P. Automatic subspace clustering of high dimensional data mining applications[M]. In Proc,1998.
    [94]武森,高学东,M.巴斯蒂安.高维稀疏聚类知识发现[M].北京:冶金工业出版社,2003.
    [95]田盛丰,黄厚宽.人工智能与知识工程[M].中国铁道出版社,1999.
    [96]陆伟民.人工智能技术及应用.同济大学出版社[M],1998.
    [97]何新贵.模糊知识处理的理论与技术.国防工业出版社[M],1998.
    [98]林杰斌,刘明德,陈湘.数据挖掘与OLAP理论与实务[M].清华大学出版社,2003.
    [99]Paine R T. Food web complexity and species diversity[J]. American Naturalist,1966,100(1):65-75.
    [100]Paine R T. A note on trophic complexity and community Stability[J]. American Naturalist,1969, 103(1):91-93.
    [101]Menge B A. The keystone species concept:variation in interaction strength in a rocky intertidal habitat [J]. Ecol. Monogr.,1994,64(3):249-286.
    [102]Mills L S M. The keystone-species concept in ecology and conservation[J]. BioScience,1993,43(2):219-224.
    [103]Hixon M A, Brostoff W N. Damselfish as keystone species in reverse:intermediate disturbance and diversity of reef algae[J]. Science,1983,220:511-513.
    [104]Duggins D D. Kelp beds and sea otters:an experimental approach. Ecology[J],1980,61(3):447-453.
    [105]Barkai A, Mcquaid C. Predator-prey role reversal in a marine benthic ecosystem[J]. Science,1988, 242:62-64.
    [106]Fauth J E, Resetarits W J. Interactions between the Salamander Siren intermedia and the keystone predator Notophthalmus viridescens[J]. Ecology,1991,72(3):827-838.
    [107]Terborgh J. The big things that run the world? a sequal to Wilson E. O. [J]. Conservation Biology, 1988,2(2):402-403.
    [108]Brown J H, Heske E J. Control of a desert grassland transition by a keystone rodent guild[J]. Science, 1990,250:1705-1707.
    [109]Johnson S. Plant animal relationships[A]. In:Johnson S(eds.). The Ecology of Fynbos:Diversity, Scarcity and Fire[C]. Cape Town:Oxford University Press,1992,175-205.
    [110]Dafni A. Pollination of Orchis caspia-a nectarless plant which deceives the pollinators of nectariferous species from other plant families[J]. Journal of Ecology,1983,71(2):467-474.
    [111]Ross J. Myxomatosis:the natural evolution of the disease[A]. In:Edwards M A, McDonnell U(eds.). Animal Disease in Relation to Animal Conservation[C]. London:Academic Press,1982:77-95.
    [112]Rogers D J, Randolph S E. Tsetse flies in Africa:bane or boon? [J]. Conservation Biology,1988, 2(1):57-65.
    [113]Naiman R J. Alteration of north American streams by Beaver[J]. Bio. Science,1988,38(4):753-761.
    [114]Mueller D, Dombois D. Community organization and ecosystem theory[J]. Canadian Journal of Botany,1988,66(6):2620-2625.
    [115]Tanner J E, Hughes T P. Species coexistence, keystone species, and succession: a sensitivity analysis[J]. Ecology,1994,75(8):2204-2219.
    [116]尹林克.中亚荒漠生态系统中的关键种-柽柳[J].干旱区研究,1995(3):5-8.
    [117]朱小龙,裘丽,李振基.“关键种”理论与福建南亚热带极度退化生态系统重建构想[J].福建林业科技,2002,29(2):4-8.
    [118]许再富.生态系统关键种类型及管理对策[J].云南植物研究,1995,17(3):331-335.
    [119]Bond W J. Keystone species [A]. In:Schulze E D, Mooney H A(eds.). Biodiversity and ecosystem function[C]. Ecological Studies. Berlin:Springer.1993(99):237-253.
    [120]Burkey T V. Extinction in nature reserves:the effect of fragmentation and the importance of migration between reserve fragments[J]. Oikos,1989(5):75-81.
    [121]Khanina L. Determining key species[J]. Conserv. Ecol.,1998,2(2):r2. URL:http: //www. consecol. org/Journal/vol2/iss2/resp2.
    [122]Davic R D. Ecological dominants vs. key species:a call for reason[J]. Conserv. Ecol..2000, 4(1):r2. URL:http://www. consecol. org/vol4/iss1/resp2.
    [123]Bond W J. The tortoise and the hare:ecology of angiosperm dominance and gymnosperm persistence[J]. Biol. J. Linn. Soc.,1989(36):227-249.
    [124]Yeaton R I. Fires and the dynamics of the tree layer of the Burkea africana savanna[J]. J. Ecol., 1989(76):1017-1029.
    [125]Tanner J E, Hughes T P. Species coexistence, key stone species, and succession:a sensitivity analysis[J]. Ecology,1994,75(8):2204-2219.
    [126]Power M E, Tilman D, Estes JA, et al. Challenges in the quest for keys[J]. Bioscience,1996(46): 609-620.
    [127]Jordan F, Takacs-Santa A, Molnar I. Are liability theoretical quest for key stones[J]. Oikos,1999(86): 453-462.
    [128]Hurlbert S H. Functional importance vs keyness:reformulating some questions in theoretical biocenology[J]. Aust. J. Ecol.,1997(22):369-382.
    [129]傅志军, 葛永刚, 张萍.太白山特有珍稀植物优先保护顺序的定量分析[J].信阳师范学院学报(自然科学版),2001(4):422-424.
    [130]李振基,陈小麟,郑海雷.生态学[M].北京:科学出版社,2004.
    [131]水利部黄河水利委员会.黄河近期重点基础研究方向[R].2008.
    [132]同济大学数学教研室.高等数学(下册)[M].北京:高等教育出版社,1978.
    [133]Government of South Australia. Environmental flows for the Riverf Murry.2005.
    [134]Megan Dyson, Ger Bergkamp, John Scanlon编,张国芳,孙凤,孙扬波等译.环境流量-河流的生命[M].郑州:黄河水利出版社,2006.
    [135]Tennat D L. Instream flow regimens for fish, wildlife, recreation, and related environmental resources[A]. In Orsborn J F, Allman C H(eds), Proceedings of Symposium and Specility Conference on Instream Flow Needs Ⅱ [C]. American Fisheries Society, Bethesda, Maryland.1976,359-373.
    [136]Tharme R A. A global perspective on environmental flow assessment:emerging trends in the development and application of environmental flow methodologies[J]. River Research and Applications, 2003(19):397-441.
    [137]Caissie D, El-Jabi N, Bourgeois G. Instream flow evaluation by ydrologically-based and habitat preference (hydrobiological) techniques [J]. Rev. Sci. Eau.,1998,11(3):347-363.
    [138]Mathews R C, Bao Yixing. The Texas method of preliminary instream flow assessment[J]. Rivers, 1991,2(4):295-310.
    [139]Mosely M P. The effect of changing discharge on channal morphology and instream uses and in a braide river, Ohau River, New Zealand [J]. Water Resources Researches.1982(18):800-812.
    [140]Ubertini L, Manciola P, Casadei S. Evaluation of the minimum instream flow of the Tiber river basin [J]. Environmental Quality in Watersheds.1996,41(2):125-136.
    [141]Gore J A, King J M, Hamman K C D. Application of the Instream Flow Incremental Methodology to Southern African Rivers:Protecting Endemic Fish of the Olifants River [J]. Water Sa Wasadv,1991,17(3): 225-236.
    [142]Stalnaker C B, Lamb B L, Henriksen J, et al. The instream flow incremental methodology:a primer for lFIM[M]. Fort Collins, Colorado, USA:National Ecology Research Center, International Publication, 1994.
    [143]Orth DJ, Maughan O E. Evaluation of the incremental methodology for recommending instream flows for fishes [J]. Trans. Am. Fish. Soc.1982,111(4):413-445.
    [144]Giesecke J, Jorde K. Ansatze zur optimierung von mindestabflubregelungen in Ausleitungsstrecken[J]. Wasserwirtschaft.1997(87):232-237.
    [145]King J M, Tharme R E. Assessment of the Instream Flow Incremental Flow Methodology and initial development of alternative Instream Flow methodologies for South Africa [J]. Water Research Commission Report 1994,295(1):590-595.
    [146]Rowntree K, Wadeson R. A geomorphological framework for the assessment of instream flow requirements [J]. Aquatic Ecosystem Health & Management,1998,1(2):125-141.
    [147]King J, Louw D. Instream flow assessments for regulated rivers in South Africa using the Building Block Methodology [J]. Aquatic Ecosystem Health & Management,1998,1(2):109-124.
    [148]杨志峰,张远.河道生态环境需水研究方法比较[J],水动力学研究与进展(A辑),2003,18(3):294-301.
    [149]US Army Corps of Engineers. HEC-RAS River Analysis System Application Guide V3.1.2002.
    [150]US Army Corps of Engineers. HEC-RAS User's Manual V3.1.2002.
    [151]U. S. Geological Survey. PHABSIM for Windows User's Manual and Exercises,2001.
    [152]黄永基,马填珍.区域水资源供需分析方法[M].南京:河海大学出版社,1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700