石漠化对土壤碳库和碳排放的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤在全球碳平衡中具有举足轻重的作用,而土地利用变化对土壤碳的影响也是极其敏感的。本论文针对我国西南岩溶地区土地石漠化严重导致的土地退化、土壤质量下降如何影响土壤的碳库和碳排放的科学问题,在石漠化治理典型地区——贵州省关岭自治县花江峡谷区,通过选取未石漠化土地(非石漠化土地和潜在石漠化土地)和石漠化土地(轻度、中度、重度、极重度)监测样地,测定了土壤中的有机碳和无机碳含量,采用动态气室法(Li-8100,USA)于2012年-2013年测定了不同季节的土壤呼吸速率,采用标准溶蚀试片法进行了岩溶作用对土壤碳库和碳排放影响的野外监测试验;通过关岭县治理前后石漠化程度监测数据分析,定量评价了石漠化治理工程对区域土壤碳库和土壤碳排放量的影响。本论文的主要结论如下:
     (1)土壤的有机碳含量:未石漠化土地中非石漠化土地的土壤有机碳含量大于潜在石漠化土地的;石漠化土地中,重度和极重度石漠化土地的土壤有机碳含量高于中度石漠化土地的;未石漠化土地的土壤有机碳含量大于石漠化土地的。
     土壤的无机碳含量:未石漠化土地中,非石漠化土地样地草地的无机碳密度最大,约为灌木地的2倍,裸地的5倍,这说明土壤无机碳密度与地表植被类型有关,潜在石漠化土地中,各种地表植被类型的无机碳密度值均明显低于非石漠化土地的;不同等级石漠化土地的土壤无机碳密度小于未石漠化土地的。
     未石漠化土地中,非石漠化土地和潜在石漠化土地的土壤平均碳密度分别为14320.15t/km~2和6331.16t/km~2;石漠化土地中轻度、中度、重度和极重度石漠化土地的土壤的平均碳密度分别为2251.25t/km~2,1012.14t/km~2,333.67t/km~2和278.47t/km~2;岩溶区土地的碳密度遵循非石漠化土地>潜在>轻度>中度>重度>极重度石漠化土地的变化规律,这主要与土壤总量有关。
     (2)未石漠化土地土壤呼吸速率(碳排放速率)具有明显的季节变化特征,其中非石漠化土地的土壤呼吸速率遵循植物生长的季节发生大小变化,夏季的最高,其次是秋季,春季的略高于冬季,基本持平,潜在石漠化土地中春季最大、秋季高于夏季、冬季最小,其4季的平均土壤呼吸速率明显低于非石漠化土地的,潜在石漠化土地的土壤呼吸速率变化规律具有不确定性,有待进一步获取数据进行验证;不同程度的石漠化土地的土壤呼吸速率均表现为秋季>夏季。当未石漠化土地退化为石漠化土地后,土壤呼吸则不再遵循植物生长的季节顺序发生大小变化,土壤呼吸随季节的这种变化规律被打破。
     未石漠化土地中,非石漠化土地和潜在石漠化土地的土壤平均年碳排放量分别为850.21t/km~2和445.88t/km~2;石漠化土地中轻度、中度、重度和极重度石漠化土地土壤的平均年碳排放量分别为515.83t/km~2,287.38t/km~2,72.59t/km~2和44.39t/km~2。土地的平均碳排放量与土壤的碳排放速率和土壤覆盖度有关。
     (3)岩溶作用增加了土壤的碳汇能力,在未石漠化土地中非石漠化土地和潜在石漠化土地的年岩溶碳汇量分别为0.35t/km~2和0.50t/km~2;不同程度石漠化土地的年碳汇量分别为0.89t/km~2、1.28t/km~2、1.31t/km~2、和1.45t/km~2,岩溶作用碳汇效果取决于土地的石漠化程度,其对未石漠化土地的影响甚微,而随着土地石漠化程度的加剧,影响加大;这与在其他岩溶地区的研究结果不同,原因是该地区环境条件复杂,干旱少雨可能是主要的原因。
     (4)关岭县实施的石漠化综合治理工程改善了当地的生态环境,表现在土地格局的变化。其中:非石漠化土地面积增加69.06km~2、潜在石漠化土地面积增加2.07km~2,轻度石漠化土地面积增加了12.21km~2、中度石漠化土地面积减少78.14km~2、重度石漠化土地面积减少55.72km~2、极重度石漠化土地面积增加52.21km~2。通过治理,2005年到2010年全县土壤碳排放量增加了4.77万t,土壤碳库增加了88.18万t;碳储存量共增加了83.41万t,相当于关岭县岩溶区每平方公里增加了637.67t C。研究结果为定量评价岩溶石漠化治理对土壤碳汇功能的影响提了供科学依据。
The soil play a key role in the global carbon balance, while the soil carbon is sensitive tothe land use change. The paper addresses the scientific question that how the land degradationand the decreasing of the quality of soil will influence the soil carbon emissions, which wascaused by the rocky desertification in the Karst region of southwest China. We selectedmonitoring plots include Not rocky desertification land(Non-rocky desertification land andpotential rocky desertification land) and desertification land(slight, middle,serious,significantslight) in the typical rocky desertification management area Huajiang karst gorge in Guanlingcounty of Guizhou province. We measured the soil organic carbon and soil inorganic carbon inthe not rocky desertification land and rocky desertification land and used the Li-8100automated soil CO2flux system to monitor the seasonal variations of soil respiration from2012-2013in the fields, We used test specimens made from lithology rocky to monitor thecorrosive rate,to study the influence of Karst process on the soil carbon pool and soil carbonemissions. Through the monitor data analysis of the area and degrees of rocky desertificationland of Guanling County before and after the rocky desertification management. The influenceon the soil carbon pool and soil carbon emissions by rocky desertification management wasevaluated quantitatively. The main results are as follows:
     (1)Soil organic carbon content: the soil organic carbon content of Non-rockydesertification land is higher than that of potential rocky desertification land, among rockydesertification land, the soil organic carbon content of serious and significant serious rockydesertification land are higher than that of the slight rocky desertification land; the soil organiccarbon content of Not rocky desertification land is higher than that of rocky desertificationland.
     In non-Rocky desertification land, the soil inorganic carbon density of grass land was thelargest, which was two times of shrub land and five times of bare land. It indicate that the soilinorganic carbon density had a great relevance with the surface vegetation types. In the potential-Rocky desertification land, the soil inorganic carbon density was lower than that ofnon-Rocky desertification land. In the Rocky-desertification land, the soil inorganic carbondensity was the lowest.
     The average soil carbon density of Non-rocky desertification land and potential rockydesertification land are respectively14320.15t/km~2and6331.16t/km~2, and in rockydesertification land the average soil carbon density of different degree land arerespectively2251.25t/km~2,1012.14t/km~2,333.67t/km~2,278.47t/km~2; the carbon density ofdifferent lands follow the changing rule that non-rocky desertification land>potential>slight>middle>serious>significant serious rocky desertification land, which is mainly determinedby the soil coverage and soil depth.
     (2) The soil respiration rate in Rocky region had a very high concordance with thedegree of Rocky desertification, and also had obvious seasonal variation. The soil respirationrate of non-rocky desertification land had obvious seasonal variation, the change rule wasbroken while the land become Rocky desertification land as the rule of soil respiration rate nolonger follow the plant growth season order to change, the soil respiration rate in summerseason is the highest,the second is autumn season, and that in spring is a little higher than thatin winter,which are basically flat, the average soil respiration rate of the four seasons is lowerthan that in Non rocky desertification land obviously, the rule of non-Rocky desertification ofsoil respiration is follow the four seasons, and this abnormal change law is uncertain, further toget data for validation is needed; However, the change rule was broken while the not rockydesertification land degrade into rocky desertification land, the soil respiration rate in autumn isthe highest, and followed by summer, spring, winter of different rocky desertification lands.
     The annual average soil respiration rate of Non-rocky desertification land and potentialrocky desertification land are respectively850.21t/km~2and445.88t/km~2, and in rockydesertification land the annual average soil carbon density of different degree land arerespectively515.83t/km~2,287.38t/km~2,72.59t/km~2and44.39t/km~2; The annual soilcarbon emissions has correlation with the soil respiration rate and the soil coverage.
     (3)The Karst process increase the capacity of soil carbon sinks, the annual carbon sinks ofNon-rocky desertification land and potential rocky desertification land in Not-rockydesertification land type are respectively0.35t/km~2and0.50t/km~2;the annual carbon sinks ofdifferent degree rocky desertification land type are respectively0.89t/km~2,1.28t/km~2,1.31t/km~2, and1.45t/km~2;the influence of Karst process on soil carbon pool and soil carbonemissions depend on the degree of rocky desertification land, which has little influence on Notrocky desertification land, but as the degree increased,the influence also increased; the result isdifferent from other research in Karst region, the reason is that this area is dry and less ofrainfall, the lower soil water depressed the Karst process.
     (4)The rocky desertification comprehensive management impeneted in Guanling Countyimproved the eco-environment, which reflected in the change of degree and area of the land.Among them, the area of non-rocky desertification land increased69.06km~2and potentialrocky desertification land increased2.07km~2, slight rocky desertification land increased12.21km~2, middle rocky desertification land decreased78.14km~2, serious rocky desertificationland decreased55.72km~2,significant serious rocky desertification land increased55.72km~2.Through rocky desertification contral managment from2005to2010, the total soil carbonemissions increased47.7thousand t, the soil carbon pool increased881.8thousand t, thecarbon storage increased834.1thousand t, which was equal to637.67t C every squarekilometers in the Karst region of this County. The research has provided quantitative evaluationof the influence of the rocky desertification management on soil carbon storage function.
引文
Anderson J M. Carbon dioxide evolution from two temperate, deciduous woodland soils[J]. Journal ofApplied Ecology,1973:361-378.
    Batjes N H. Total carbon and nitrogen in soils of the world[J].European Journal of Soil Science,1996,47(2):151-163.
    B gli A. Karsthydrographie und physische Spel ologie,1978,Berlin und New York: Springer
    Yuan D. Contribution of IGCP379“Karst Processes and carbon cycle” to global change. Episodes.1998,21(3):198.
    Yuan D. The carbon cycle in karst[J]. ZEITSCHRIFT FUR GEOMORPHOLOGIE SUPPLEMENTBAND,1997:91-102.
    Davidson E C, Belk E, Boone R D. Soil water content and temperature as independent or confounded factorscontrolling soil respiration in a temperate mixed hardwood forest[J]. Global Change Biology,1998,4(2):217-227.
    Doner H E, Lynn W C. Carbonate, halide sulfate, and sulfide minerals[J]. Minerals in soil environmentsmineralsinsoile,1989:279-330.
    Edwards N T. Effects of temperature and moisture on carbon dioxide evolution in a mixed deciduous forestfloor[J]. Soil Science Society of America Journal,1975,39(2):361-365.
    Eswaran H, Reich F, Kimble J M. Global soil carbon stock. Global Climate Change and PedogenicCarbonates. Florida: Lewis Publishers,2000:15-26.
    Fierer N, Allen A S, Schimel J P, et al. Controls on microbial CO2production: a comparison of surface andsubsurface soil horizons[J]. Global Change Biology,2003,9(9):1322-1332.
    Fritz P, Readon E J, Barker J, et al. The carbon isotope geochemistry of a small groundwater system innortheastern Ontario[J]. Water Resources Research,1987,14(6):1059-1067.
    Gillette D A, Stensland G J, Williams A L, et al. Emissions of alkaline elements calcium, magnesium,potassium, and sulfur from open sources in the contiguous United States[J]. Global BiogeochemicalCycles,1992,6:437-457.
    Hamada Y, Tanaka, T. Dynamics of carbon dioxide in soil profiles based on long-term field observation.Hydrological Processes,2001,15(10):1829-1854.
    Harden J W, Taylor E M, Hill C, et al. Rates of soil development from four soil chronosequences in thesouthern Great Basin[J]. Quaternary Research,1991,35(3):383-399.
    Houghton R A, Skole D L, Lefkowiz D S. Change in the landscapeof Latin America between1850and1985Ⅱ:Net release of CO2to the atmosphere[J]. Forest Ecology and Management,1991,38(3):173-199.
    Houghton R A,Woodwell G M. Global climate change[J]. Scientific American,1989,260(4):36-40.
    Jassal R S, Black T A, Drewitt G B, et al. A model of the production and transport of CO2in soil: predictingsoil concentration sand CO2efflux from a forest floor[J]. Agricultural and Forest Meteorology,2004,124(3):219-236.
    Kelting D L, Burger J A, Edwards G S. Estimating root respiration, microbial respiration in the rhizosphere,and root-free soil respiration in forest soils[J]. Soil Biology and Biochemistry,1998,30(7):961-968
    Khanna P K,Ludwig B, J Bauhus J, et al. Assessment and significance of labile organic C pools in forestsoils[J]. Assessment methods for soil carbon. Boca Raton. Lewis Publ., Boca Raton,FL,2001.167-182.
    Kiefer R H. Soil carbon dioxide concentrations and climate in a humid subtropical environment[J]. TheProfessional Geographer,1990,42(2):182-194.
    Kohut C, Dudas M J, Muehlenbachs K. Authigenic dolomite in a saline soil in Alberta, Canada[J]. SoilScience Society of America Journal,1995,59(5):1499-1504.
    Lal R, Kimble J M. Inorganic carbon and the global C cycle: research and development priorities[J]. GlobalClimate Change and Pedogenic Carbonates. Lewis Publishers, Boca Raton,2000:291-302.
    Li Z P,Han F X, Su Y,Zhang TL, et al. Assessment of soil organic and carbonate carbon storage in China[J].Geoderma,2007,138(1):119-126.
    Liu X, Wan S, Su B, et al. Response of soil CO2efflux to water manipulation in a tallgrass prairieecosystem[J]. Plant and Soil,2002,240(2):213-223.
    Liu Y F. A study on the carbon cycle in the agro-ecological system of China[J]. Journal of Natural Resources,1995,10(1):1-8.
    Liu Z, Zhao J. Contribution of carbonate rock weathering to the atmospheric CO2sink[J]. EnvironmentalGeology,2003,39(9):1053-1058.
    Mermut A R, Amoudnson R, Cerling T E. The use of stable isotopes in studying carbonate dynamics insoils[J]. Global Climate Change and Pedogenic Carbonates,2000:65-85.
    Mi N,Wang S,Liu J, et al. Soil inorganic carbon storage pattern in China[J]. Global Change Biology,2008,14(10):2380-2387.
    Pan G, GUO T. Pedogenic Carbonate of Aridic Soil in China and its ignificance in Carbon Sequestration inTerrestrial Systems[J]. Global Climate Change and Pedogenic Carbonates. CRC/Lewis Publishers,Boca Raton, FL,2000:135-148.
    Pan G X, Tao Y, Sun YH. Some features of carbon cycles in karst system and the implication forepikarstification-an example of Yaji Karst experimental site in Guilin, China[J]. Journal of ChineseGeography.1997,7:48-57.
    Parton WJ, Scurlock JM O, Ojima DS, et al. Observations and modeling of biomass and soil organic matterdynamics for the grasslands biome worldwide[J]. Global Biogeochemistry Cycles,1993,7(4):785-809.
    Post WM, Kwon K C. Soil carbon sequestration and land-use change: processes and potential[J]. GlobalChange Biology,2000,6(3):317-327.
    Qi Y,Xu M,Wu J. Temperature sensitivity of soil respiration and its effects on ecosystem carbon budget:Nonlinearity begets surprises[J]. Ecological Modeling,2002,153(1):131-142.
    Quay P D, Tibrook B, Wong C S. Oceanic uptake of fossil fuel CO2: Carbon-13evidence[J]. Science,1992,256(5053):74-79.
    Raich J W,Potter C S. Global patterns of carbon dioxide emissions from soils[J]. Global BiogeochemicalCycles,1995,9(1):23-26.
    Reardon E J, Allison G B, Fritz P. Seasonal chemical and isotopic variations of soil CO2at Trout Creek,Ontario[J]. Journal of Hydrology,1979,43(1):355-371.
    Hong S, Zhiming C, Zhiming W. Study of carbon pool management index in soils under differentagroecosystems[J]. Journal of Natural Resources,1999,14(3):206-211.
    Siegenthaler U, Sarmiento J L. Atmospheric carbon dioxide and the ocean[J]. Nature.1993,365(6442):119-125.
    Linhua S, Fuyuan L. Distribution of CO2in soil air affected by vegetation in the Shilin National park[J].Acta Geologica Sinica-(English Edition),2001,75(3):288-293.
    Torn M S, Trumbore S E,Chadwick O A, et al. Mineral control of soil organic carbon storage and turnover[J].Nature,1997,389(6647):170-173.
    Trudgill S T, High C J, Hanna F K. Improvements to the micro-erosion meter[J]. British GeomorphologicalResearch Group Technical Bulletin,1981,29:3-17.
    Turner B L, Skole D L, Sanderson S, et al. Land-use and land-cover change. Science/Research Plan[J].Global Change Report,1995.
    Watson R T, Rodhe H, Oeschger H, et al. Greenhouse gases and aerosols[J]. Climate change: the IPCCScientfic assessment,1990:1:17.
    Wu H, Guo Z, Gao Q, et al. Distribution of soil inorganic carbon storage and its changes due to agriculturalland use activity in China[J]. Agriculture, Ecosystems&Environment,2009,129(4):413-421.
    Daoxian Y. On the karst ecosystem[J]. Acta Geologica Sinica-English Edition,2001,75(3):336-338.
    Yoshimura K, Inokura Y. The geochemical cycle of carbon dioxide in a carbonate rock area, Akiyoshi-daiPlateau, Yamaguchi, south-western, Japan. In: Proceedings of30th International Geological Congress,1997,24:114-126.
    曹建华,袁道先,潘根兴,等.不同植被下土壤碳转移对岩溶动力系统中碳循环的影响.地球与环境,2004,32(1),90-96.
    曹建华,袁道先,潘根兴.岩溶生态系统中的土壤.地球化学进展,2003,18(1),37-44.
    曹明奎,李克让.陆地生态系统与气候相互作用的研究进展.地球科学进展,2000,15(4),446-452.
    程建中,李心清,唐源,等.贵州喀斯特地区不同土地利用方式土壤CO2体积分数变化及影响因素.生态环境学报,2010,19(11),2551-2557.
    程建中,李心清,周志红,等.西南喀斯特地区几种主要土地覆被下土壤CO2-C通量研究.地球化学,2010,39(3):258-265.
    戴万宏.农田土壤空气CO2动态和土壤-大气界面CO2释放的研究.杨凌:西北农林科技大学,2002:54-58.
    丁访军,高艳平,吴鹏,等.喀斯特地区3种林型土壤呼吸及其影响因子.水土保持学报,2010,24(3):217-221,237.
    谷晓平,黄玫,季劲钧,等.近20年气候变化对西南地区植被净初级生产力的影响.自然资源学报,2007,22(2):251-259.
    郭红艳,周金星.石漠化地区水土地下漏失治理.中国水土保持科学,2012,10(5):71-76
    蒋忠诚.岩溶动力系统中的元素迁移.地理学报,1999,54(5):438-444.
    郎红东,杨剑虹.土壤CO2浓度变化及其影响因素研究.西南农业大学学报:自然科学版,2004,26(6):731-734.
    李德文,崔之久,刘耕年,等.岩溶风化壳形成演化及其循环意义.中国岩溶,2001,20(3):184-188.
    李天杰,赵烨,张科利,等.土壤地理学第三版.北京:高等教育出版社,2004:280-281.
    李旭东,张善余.贵州喀斯特高原人口分布的自然环境因素Ⅰ主要影响因素研究.西华师范大学学报(自然科学版),2006,27(3):256-262.
    李阳兵,王世杰,容丽.关于喀斯特石漠和石漠化概念的讨论.中国沙漠,2004,24(6):689-695.
    李阳兵,高明,邵景安,等.岩溶山区不同植被群落土壤生态系统特性研究.地理科学,2005,25(5):705-802.
    李阳兵,王世杰,谭秋,等.喀斯特石漠化的研究现状与存在的问题.地球与环境,2006,34(3):9-14.
    李阳兵,王世杰,王济,等.岩溶生态系统的土壤特性及其今后研究方向.中国岩溶,2006,25(4):285-289.
    李阳兵,王世杰,熊康宁.花江峡谷石漠化土地生态重建及其启示.中国人口·资源与环境,2005,l5(l):138-142.
    李忠,叶炜. CO2在陆地生态系统与大气圈中的循环.土壤圈物质循环与农业和环境.江苏科学技术出版社,1993:114-127.
    梁福源,宋林华,王富昌,等.路南石林地区土壤空气中CO2浓度分布规律与土下溶蚀形态研究.中国岩溶,2000,19(2):180-187.
    林大仪,黄昌勇.土壤学.北京:中国林业出版社,2002,97-98.
    刘长礼,张云,宋超,等.施用农肥对岩溶溶蚀作用的影响及其生态环境意义.中国地质,2009,36(6):1395-1404.
    刘再华,袁道先.我国典型表层岩溶系统的地球化学动态特征及其环境意义.地质论评,2000,46:324-327.
    刘再华.碳酸盐岩岩溶作用对大气CO2沉降的贡献.中国岩溶,2000,(04):3-10.
    潘根兴,孙玉华,腾永忠,等.湿润亚热带峰丛洼地岩溶土壤中碳分布及其转移.应用生态学报,2000,11(1):69-72.
    潘根兴.干旱性地区土壤发生性碳酸盐及其在陆地系统碳转移上的意义.南京农业大学学报,1999,22(1):52-57.
    彭贤伟.花江喀斯特峡谷区社区发展与生态环境治理.贵州师范大学学报(自然科学版),2003,21(4):1-76.
    曲建升,孙成权,张志强,等.全球变化科学中的碳循环研究进展与趋向.地球科学进展,2003,(06):980-987.
    容丽,王世杰,杜雪莲.喀斯特低热河谷石漠化区环境梯度的小气候效应—以贵州花江峡谷区小流域为例.生态学杂志,2006,25(9):1038-1043.
    沈宏,曹志洪,胡正义.土壤活性有机碳的表征及其生态效应.生态学杂志,1999,18(3):32-38.
    苏维词,朱文孝,熊康宁.贵州喀斯特山区的石漠化及其生态经济治理模式.中国岩溶,2002,21(1):19-25.
    唐灿,周平根.北京典型溶洞区土壤中的CO2及其对岩溶作用的驱动.中国岩溶,1999,18(3):213-217.
    王冬银,谢世友,章程.典型岩溶区不同土地利用方式下雨季、旱季岩溶作用研究.生态环境学报,2009,(06):2366-2372.
    王连庆,乔子江,郑达兴.渝东南岩溶石山地区石漠化遥感调查及发展趋势分析.地质力学学报,2003,9(1):78-84.
    王玲,刘海隆.重庆岩溶区气候变化对水文水资源的影响.水文,2007,27(3):71-74.
    王世杰,季宏军,欧阳自远,等.碳酸盐岩风化成土的初步研究.中国科学(D辑:地球科学),1999,2(5):441-449.
    王世杰,李阳兵,李瑞玲.喀斯特石漠化的形成背景、演化与治理.第四纪研究,2003,23(6):657-666.
    王世杰.喀斯特石漠化概念演绎及其科学内涵的探讨.中国岩溶,2002,21(2):101-105.
    王世杰.喀斯特石漠化-中国西南最严重的生态地质环境问题.矿物岩石地球化学通报,2003,22(2):120-126.
    王涛,李强,王增银.碳酸盐岩微生物溶蚀作用特征及意义.水文地质工程地质,2007,(03):6-9.
    王宇,张贵.滇东岩溶石山地区石漠化特征及成因.地球科学进展,2003,18(6):933-938.
    卫茂荣.一次取样连续测定土壤物理性质的方法.辽宁林业科技,1990,(01):56-57.
    文启孝.土壤有机质研究方法.北京业出版社,1984:316-318.
    熊平生,袁道先,谢世友.我国南方岩溶山区石漠化基本问题研究进展.中国岩溶,2010,29(4):355-362.
    徐则民,黄润秋,唐正光,等.中国南方碳酸盐岩上覆红土形成机制研究进展.地球与环境,2005,33(4):29-36.
    杨瑞吉,杨祁峰,牛俊义.表征土壤肥力主要指标的研究进展.甘肃农业大学学报,2004,39(l):86-91
    于天仁,陈志诚.土壤发生中的化学过程.北京:科学出版社,1990:336-365.
    余龙江,吴云,李为,等.微生物碳酸酐酶对石灰岩的溶蚀驱动作用研究.中国岩溶,2004,23(3):59-62.
    袁道先,蔡桂鸿.岩溶环境学.重庆:重庆科学技术出版社,1988,59-71.
    袁道先,刘再华,蒋忠诚,等.碳循环与岩溶地质环境,北京:科学出版社,2002,36-78.
    袁道先.碳循环与全球岩溶.第四纪研究,1993,(01):1-6.
    袁道先.岩溶石漠化问题的全球视野和我国的治理对策与经验.草业科学,2008,25(9):19-25.
    张信宝,王世杰,贺秀斌,等.西南岩溶山地坡地石漠化分类刍议.地球与环境,2007,35(2):188-192.
    张信宝,王世杰,曹建华,等.西南喀斯特山地水土流失特点及有关石漠化的几个科学问题.中国岩溶,2010,29(3):274-279
    张英娟,董文杰,俞永强,等.中国西部地区未来气候变化趋势预测.气候与环境研究,2004,9(2):342-349.
    章程,谢运球,吕勇,等.不同土地利用方式对岩溶作用的影响-以广西弄拉峰丛洼地岩溶系统为例.地理学报,2006,(11):1181-1188.
    章程.不同土地利用下的岩溶作用强度及其碳汇效应.科学通报,2011,(26):2174-2180
    中国石漠化状况公报.国家林业局,2012,06.
    中华人民共和国林业行业标准-森林土壤渗滤率的测定LY/T1218-1999,国家林业局,30-33.
    周金星,郭红艳,崔明.喀斯特石漠化地区坡耕地综合治理技术研究.水保科协委员会2012年年会论文.
    周运超,张平究,潘根兴.表层岩溶系统中土-气-水界面碳流通的短尺度效应-以贵州茂兰国家喀斯特森林公园的秋季日动态监测为例.第四纪研究,2002,5(3):258-262.
    朱立军,李景阳.碳酸盐岩风化成土作用及其环境效应.北京:地质出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700