具有相变特性的氧化钒薄膜制备与光学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化钒薄膜具有良好的光致相变以及热致相变特性,在热激励方式或者光激励方式下,可以发生金属-半导体相变,其光学透射率和电阻率会发生突变,是应用于光电开关、光调制器件的理想半导体材料。因此,具有良好相变性能的氧化钒薄膜制备工艺,及其电学、光学测试技术成为目前研究的热点。本文利用直流对靶磁控溅射以及双离子束溅射两种方法,结合热处理工艺制备出具有相变特性的氧化钒薄膜,并且采用傅立叶变换红外光谱(FTIR)和太赫兹时域频谱系统(THz-TDS)对薄膜的相变特性进行了测试。
     利用直流对靶磁控溅射结合快速热处理工艺,在SiO_2衬底上制备了具有热致相变特性的氧化钒薄膜,相变前后薄膜方块电阻变化最大可达3个数量级。通过X射线光电子能谱(XPS)以及X射线衍射(XRD)分析方法,获知薄膜中以单斜结构的VO_2为主要成分。快速热处理有助于提高薄膜结晶度,减少晶界和晶体缺陷,从而有利于薄膜相变性能的提高。
     利用双离子束溅射在氮化硅衬底上沉积的氧化钒薄膜,经氮气环境400℃热处理3小时后,出现了明显的电学和光学相变特性。在相变点45℃附近,薄膜电阻值突变3个数量级。截取氧化钒薄膜在1550nm通讯波段透射率变化情况,在相变点附近红外透射率由32%锐减至1%;另外由980nm泵浦光激发氧化钒薄膜,同样导致薄膜红外透射率由32%降低至2%,为氧化钒薄膜在光控光开关领域的应用奠定了基础。
     利用太赫兹时域频谱系统(THz-TDS),对硅和SiO_2衬底上制备的氧化钒薄膜的光学开关特性进行了研究。在光致激发下,硅基氧化钒薄膜光开关各项指标:消光比7.96dB;插入损耗3dB,且具有较大带宽;开关速度最快可达20ns。硅基氧化钒薄膜在太赫兹波段的透射性能具有显著的频率特性。SiO_2衬底上制备的氧化钒薄膜经真空热处理后出现光致相变特性,光致激发前后薄膜的太赫兹透射率变化8%,可应用于光调制器件。
Vanadium Oxide (VO_x) thin films have excellent thermal-induced and photo-induced phase transition, and its metal-semiconductor phase transition could occur under thermal excitation or optical excitation with mutation in resistivity and optical transmission rate. VO_x thin films are the ideal semiconductor materials used in optical switches. At present, there is a research focus on fabrication of VO_x thin films with good phase transition performance, and corresponding optical and electrical test technology. By the methods of direct current facing targets magnetron sputtering and dual ion beam sputtering, combined with annealing process, the VO_x thin films which have phase transition were prepared. The phase transition properties of VO_x thin films were tested by Fourier transform infrared spectroscopy (FTIR) and THz time-domain spectroscopy system (THz-TDS).
     Using DC facing magnetron sputtering with rapid thermal annealing process, VO_x thin films with thermal-induced phase transition were prepared. The resistance of VO_x thin films changed up to three orders of magnitude, before and after phase transition. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analysis informed by the films of the monoclinic structure as the main component of VO_2. Rapid thermal annealing help improve film crystallinity, reducing the grain boundary and crystal defects, thus contributing the improvement of phase transition performance.
     By dual ion beam sputtering, VO_x thin films were deposited on Si3N4 substrates. After annealed in N2 atmosphere at 400℃for 3 hours, there was a clear electrical and optical phase transition with VO_x thin films. Near the phase transition point 45℃, the resistance of films had a mutation in three orders of magnitude. At the communication band 1550nm, the optical transmission of VO_x dropped from 32% to 1% before and after phase transition. When VO_x thin films under excitation by 980nm pump laser, it led to lower infrared transmission of VO_x thin films from 32% to 2%. These work laid the foundation for the optical switch.
     The optical switching characteristics of VO_x thin films were studied, by using THz-TDS. Under photo excitation, the indicators of VO_x optical switch were excellent, extinction ratio 7.96dB; insertion loss 3dB, and has a large bandwidth; the fastest switching speed up to 20ns. And the transmission properties of VO_x thin films in THz band had a significantly frequency characteristics. VO_x deposited on SiO_2 substrates after annealing in vacuum, photo-induced phase transition occurred. Before and after excitation, the THz transmission changed of 8%, which can be used in optical device.
引文
[1] F. J. Morin, Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature, Phys. Rev. Lett, 1959,3(1):34~36
    [2] S B Choi, J S Kyoung, H S Kim, et al. Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film. APPLIED PHYSICS LETTERS. 2011, 98, 071105:1~3
    [3]陈长琦,朱武,干蜀毅等,二氧化钒薄膜制备及其相变机理研究分析,真空科学与技术,2001,21(6):452-456
    [4]许旻,邱家,赵印中等,VO2薄膜及电学开关特性,真空科学与技术,2001,21(6):485~488
    [5] Jerominek H, Picard F, Vincent D,Vanadium oxide films for optical switching and detection[J]. Optical Engineer, 1993,32(9): 2092-2099
    [6] G. Golan,A. Axelevitch,B. Sigalov,et al.Metal–insulator phase transition in vanadium oxides films,Microelectronics Journal, 2003, 34: 255~258
    [7]沈楠,李毅,易新建,纳米VO2薄膜的制备及其可见光透过率的改善,红外与毫米波学报,2006,25(3):199~202
    [8] M. Borek,F. Qian,V. Nagabushnam,et al.,Pulsed laser deposition of oriented VO2 thin films on R-cut sapphire substrates,Applied Physics Letters,2009, 63(24): 3288-3290
    [9] Partlow D. P.,Gurkovich SR,Radford K C,et al.,Switchable vanadium oxide films by a sol-gel process,Journal of Applied Physics,1991,70(1):443-452
    [10] Li H X, Li F J, Yuan H T, et al. Factors affecting the electrochemical performance of vanadium oxide nanotube cathode materials, Electrochmeistry Communications,2006, 8: 1693~1698
    [11] Crociani L, Carta G, Natali M, et al. MOCVD of Vanadium Oxide Films with a Novel Vanadium(III) Precursor, Chemical Vapor Deposition, 2011, 17(1-3):6~8
    [12]尚东,林理彬,何捷等,特型二氧化钒薄膜的制备剂电阻温度系数的研究,四川大学学报(自然科学版),2005,42(3):523~527
    [13] Jerominek H, Picard F, Vincent D,Vanadium oxide films for optical switching and detection[J]. Optical Engineer, 1993,32(9): 2092-2099
    [14] Kato K, Song P K, Odaka H and Shigesato Y. Study on thermochromic VO2 films grown on ZnO-coated glass substrates for smart windows[J]. Jpn. J. Appl. Phys. 2003, 42(10): 6523-6531
    [15]宁永刚,孙晓泉,二氧化钒薄膜在激光防护上的应用研究,红外与激光工程,2005,34(5):530-534
    [16]王银玲,李美成,赵连城,磁控溅射氧化钒薄膜的相成分及电阻-温度特性,稀有金属材料与工程,2005,34(7):1077-1080
    [17] Mei Pan, Hongmei Zhong, Shaowei Wang, et al, Properties of VO2 thin film prepared with precursor VO(acac2), Journal of Crystal Growth, 2004 ,265(1-2):121~126
    [18]康晓春,赵颖,王胤博等,二氧化钒制备与应用的新进展,材料导报,2008,3:196~199
    [19]顾广新,魏勇,吴利民,透明隔热玻璃涂料的研制,电镀与涂饰,2009,28(3):49~52
    [20]杨旭,蔡长龙,周顺等,直流磁控溅射制备氧化钒薄膜,光学技术,2010,1:151~154
    [21]陈伯良,孙维,InSb凝视红外焦平面组件研制和应用,红外与激光工程2002,31(5): 419~423
    [22]何力,陈路,吴俊等,应对第三代红外焦平面技术挑战的HgCdTe分子束外延,半导体学报,2006,27(3):381~387
    [23]朱西安,孙浩,王成刚等,HgCdTe微台面红外焦平面技术研究,激光与红外,2005,35(11):826~828
    [24]程开富,国内外MSSBIRFPA的发展现状及其应用,集成电路通讯,2003,21(4):8~12
    [25] Hongchen Wang, Xinjian Yi, Guang Huang , IR microbolometer with self-supporting structure operating at room temperature, Infrared Physics & Technology,2004,45:53~57
    [26] Paul S, Berrier E, Franca M, et al. Oxidative dehydrogenation of propane under steady-state and transient regimes over alumina-supported catalysts prepared from mixed V2W4O4-19 hexametalate precursors[J]. J. Nat. Gas Chem. 2010, 19(2):123~133
    [27]徐毓龙,氧化物与化合物半导体基础,西安,西安电子科技大学出版社,1991:268~275
    [28] M Benmoussa,E Ibnouelghazi,A Bennouna,et al,Structural,electrical and optical properties of sputtered vanadium pentoxide thin films, Thin Solid Films,1995,265:22
    [29] P Umadevi,C L Nagendra,G K M Thutupalli, Structural,electrical and infrared optical properties of vanadium pentoxide thick film thermistors,Sebsirs & Actuators,1993,A39:59
    [30] M.N. Gurnee, M. Kohin, R. Blackwell, et al. Developments in uncooled IR technology at BAE Systems, Proceedings of SPIE, 2001, 4369:287-296
    [31] J. L. Tissot, IR detection with uncooled sensors, Infrared Physics & Technology, 2004, 46: 147~153
    [32]王宏臣,易新建,陈四海等,非致冷红外探测器用氧化钒多晶薄膜的制备,红外与毫米波学报,2004,23(1):64~66
    [33]潘梅,陆卫,氧化钒热致变色薄膜的研究进展,激光与红外,2002,32(6):374-376
    [34] Masaharu Fukuma, Sakae Zembutsu, Shintaro Miyazawa, Preparation of V02 thin film and its direct optical bit recording characteristics,1983,22(2):266-268
    [35]陈继述,胡燮荣,徐平茂,红外探测器.北京:国防工业出版社,1986:1~3
    [36]孙志君,红外焦平面阵列技术的未来二十年传感器世界,2002,8(11):l~8
    [37]常本康,蔡毅,红外成像阵列与系统,北京:科学出版社,2006,18-20
    [38]吴诚,苏君红,潘顺臣等,非致冷红外焦平面技术评述(上),红外技术,1999,2l(1):6-9
    [39]吴诚,苏君红,潘顺臣等,非致冷红外焦平面技术评述(下),红外技术,1999,21(2):1-3
    [40]何力,陈路,吴俊等,应对第三代红外焦平面技术挑战的HgCdTe分子束外延,半导体学报,2006,27(3):381-387
    [41]尹大川,许念坎,高性能二氧化钒薄膜的处理工艺,西北工业大学学报,1995,13(3):483~484
    [42]许旻,崔敬忠,贺德衍,非致冷红外焦平面阵列VO2薄膜结构和性能研究,微细加工技术,2003,1:34~39
    [43]王玫,李喜梅,崔敬忠,等,磁控溅射制备氧化钒薄膜的结构研究,兰州大学学报,1999,35(1):62~66
    [44]吴广明,吴永刚,倪星元,等,V2O5薄膜制备、结构及光学性质研究,功能材料,1999,30(4):404~406
    [45]王忠春,陈晓峰,李智勇,等,溅射总压对氧化钒薄膜的结构及电致变色性质的影响,硅酸盐学报,1999,27(1):28~33
    [46]袁宁一,李金华,氧化钒薄膜的结构、性能及制备技术的相关性,功能材料,2001,32(6):572~575
    [47]王宏臣,易新建,陈四海等,非致冷红外探测器用氧化钒多晶薄膜的制备,红外与毫米波学报,2004,23(1):64~66
    [48]周进,茹国平,李炳宗等,氧化钒热敏薄膜的制备及其性质的研究,红外与毫米波学报,2001,20(4):291~295
    [49]刘金城,鲁建业,田雪松等,磁控溅射法制备二氧化钒薄膜的最佳参量的研究,光子学报,2003,23(1):65-67
    [50]吴淼,胡明,吕宇强等,常温直流对靶溅射制备高TCR氧化钒薄膜的研究,天津大学学报,2006,39(7):806~809
    [51]陈长虹,易新建,张静等,基于VO_2薄膜非制冷红外探测器性能研究,红外与毫米波学报,2001,20(2):136~138
    [52]张春安,全球光开关市场规模,光电子技术与信息,2003,16(2):46
    [53]李亚捷,吴重庆,全光开关的功率代价分析,光通信技术,2010,5:20~22
    [54]任勇毛,秦刚,唐海娜等,高速长距离光网络传输协议性能分析,计算机学报,2008,31(10):1679~1686
    [55]刘宏展,袁明辉,曹文华,光线中的互相位调制效应及其应用,半导体光电,2002,4:233~237
    [56]李芳,何俊,徐团伟等,光纤激光传感技术及其应用,红外与激光工程,2009,6:1025~1032
    [57]翟锦华,全光通信中的光交换技术,科技信息,2009,6:272
    [58]连建,诸波,光弧子传输控制方案的探讨,光通信技术,2010,1:50~52
    [59]邵群峰,漆晓琼,张晓萍,多跨距非线性光纤链路中的小波去噪,中国激光,2009,3:592~596
    [60]田逢春,李显利,陈建军等,基于微机电系统光交叉连接的光学仿射变换,光电子技术,2010,30(2):88~93
    [61]胡国庆,孙超,王钰等,光分插复用器原理及应用,中国新通信,2008,10(1):55~61
    [62]宋健,孟凡玉,王志远等,一维非线性光子晶体全光开关,吉林大学学报,2009,27(6):569~572
    [63]王涛,李庆,李刚等,有源光子带隙高速全光开关的研究,光学学报,2009,7:1977~7982
    [64]胡小永,江萍,杨宏等,超快速低功率有机光子晶体全光开关,激光与光电子学进展,2009,46(2):23
    [65]吴金辉,高锦岳,基于可调谐Fano干涉的超快全光开关,物理,2006,35(2):100~102
    [66]陈君,基于MOEMS技术光开关及控制系统研究,黄石理工学院学报,2009,25(6):4~6
    [67]贾翠萍,朱海丰,MEMS光开关静电驱动结构的研究,科学技术与工程,2010,5:1252~1254
    [68]王微,孙小强,王希斌等,低功耗聚合物Mach-Zehnder热光开关,光子学报,2010,39(4):610~613
    [69]梁中翥,钟砚超,孔庆峰等,光通信中的新型光无源器件,光机电信息,2009,26(9):23~30
    [70]卢勇,林理彬,真空还原制备的VO_2热致相变薄膜光学性质研究,激光杂志,2001,22(3):8~10
    [71] S. Lysenko, A. J. Rua, V. Vikhnin, et al. Light-induced ultrafast phase transitions in VO_2 thin film, Applied Surface Science, 2006, 252:5512~5515
    [72] R. Lopez, L. A. Boatner, T. E. Haynes, et al. Enhanced hysteresis in the semiconductor to metal phase transition of VO_2 precipitates formed in SiO_2 by ion implantation, Applied Physics Letters, 2001, 79(19): 3161~3163
    [73] C. Sirtori,Bridge for the terahertz gap,Nature,2002,417(6885): 132~133
    [74] R. Blundell,J. Barrett,H. Gibson,et al.,Prospects for Terahertz radio astronomy from Northern Chile,2002: 159~166
    [75] M. Kemp,P. Taday,E. Cole,et al.,Security applications of terahertz technology,in 45
    [76] J. Federici,B. Schulkin,F. Huang,et al.,THz imaging and sensing for security applications in explosives,weapons and drugs,Semiconductor Science and Technology,2005,20:S266
    [77] P. Siegel,Terahertz technology,Microwave Theory and Techniques,IEEE Transactions on,2002,50(3): 910~928
    [78] P. Siegel,THz for space: The golden age,in 2010: 816~819
    [79] J. Federici and L. Moeller,Review of terahertz and subterahertz wireless communications,Journal of Applied Physics,2010,107(11): 111101
    [80] M. Fitch and R. Osiander,Terahertz waves for communications and sensing,Johns Hopkins APL Technical Digest,2004,25(4): 348~355
    [81] T. Liu,G. Lin,Y. Chang,et al.,Wireless audio and burst communication link with directly modulated THz photoconductive antenna,Optics Express,2005,13(25): 10416~10423
    [82]王卫宁,李洪起,张岩等,20种α-氨基酸的太赫兹频谱及其分子结构的相关性,物理化学学报,2009,25(10):2074~2079
    [83]陆益敏,汪家春,林志丹等337μm连续太赫兹激光透射成像,红外与激光工程,2010,39(2):232~235
    [84]张跃东,江月松,何云涛,采用光学处理方法的被动太赫兹波综合孔径成像,红外与激光工程,2010,39(3):477~481
    [85]王仍,葛进,方维政等,碲-熔剂方法生长ZnTe单晶的太赫兹辐射及探测,红外与毫米波学报,2009,28(1): 1~3
    [86]熊永前,秦斌,冯光耀等,基于自由电子激光的小型太赫兹源初步设计,中国物理c:英文版,2008,32(增刊1)301~303
    [87]李向军,陈裕泉,李九生,利用THz时域谱技术和支持向量机回归法快速分析食用油成分,中国食品学报,2010,10(2):195~200
    [88]陆继珍皮亦鸣,太赫兹频段的近程isar成像系统,半导体技术,2009,34(6): 611~614
    [89]逯美红,沈京玲,太赫兹时域频谱技术对化学混合物的成分分析研究,光学技术,2010,36(3):445~448
    [90] C. Chen, C. Hsieh, Y. Lin,et al. Magnetically tunable room-temperature 2 pi liquid crystal terahertz phase shifter,Optics Express, 2004, 12(12): 2625~2630
    [91] R. Kersting and G. Strasser and K. Unterrainer,Terahertz phase modulator,Electronics Letters,2002,36(13): 1156~1158
    [92] T. Kleine-Ostmann,P. Dawson,K. Pierz,et al.,Room-temperature operation of an electrically driven terahertz modulator,Applied Physics Letters,2009,84(18): 3555~3557
    [93] A. Maslov and D. Citrin , Quantum-well optical modulator at terahertz frequencies,Journal of Applied Physics,2003,93(12):10131
    [94] H. Chen,W. Padilla,R. Averitt,et al.,Active terahertz metamaterial devices, (Google Patents,2009)
    [95] C. Chen,C. Pan,C. Hsieh,et al.,Liquid-crystal-based terahertz tunable Lyot filter,Applied Physics Letters,2006,88(10):101~107
    [96] P. Jepsen,B. Fischer,A. Thoman,et al.,Metal-insulator phase transition in a VO3} thin film observed with terahertz spectroscopy,Physical Review B,2006,74(20): 205103
    [97]王昌雷,田震,邢歧荣等,硅基VO_2纳米薄膜光致绝缘体-金属相变的THz时域频谱研究,物理学报,2010,59(11):7857~7862
    [98] Tao chen, Ming Hu, Lei Tan, et al. Study on switching performance of VOx thin film in THz band, Proc. 10th ICSICT-2010: 1560~1562
    [99]刘冬青,郑文伟,程海峰等,二氧化钒薄膜制备及其热致变发射率特性研究,红外技术,2010,32(3):181~184
    [100]王胤博,二氧化钒智能窗玻璃,硅谷,2010,4:62
    [101]俞晓静,李毅,王海方等,二氧化钒纳米点阵红外光学特性研究,光子学报,2010,39(60):1120~1124
    [102]杜明军,吴志明,罗振飞等,直流磁控溅射法制备非晶态氧化钒薄膜光学特性研究,电子器件,2010,33(5):531~535
    [103]王利霞,何秀丽,高晓光,二氧化钒微测辐射热计的制备及工艺,功能材料与器件学报,2010,16(4):305~310
    [104]申泮文,车云霞,罗欲基,无机化学丛书-钛分族钒分族,北京,科学出版社,1998
    [105]潘梦霄,曹兴忠,李养贤等,氧化钒薄膜微观结构的研究,物理学报,2004,53(6):1956~1960
    [106]Y. S. Yoon, J. S. Kim, S. H. Choi, Structural and electrochemical properties of vanadium oxide thin films grown by d.c. and r.f. reactive sputtering at room temperature, Thin Solid Films 2004, 460:41~47
    [107]S. Surnev, M. G. Ramsey, F. P. Netzer, Vanadium oxide surface studies, Progress in surface science, 2003, 73(117):16
    [108]N. F. Mott, Proc. Phys. Soc. London Sect. 1949, A62:416
    [109]Goodenough J B, Phys. Rev, 1960, 117:1442
    [110]Mark A. R, John A. C, Infrared optical modulators for missile testing, Optics and laser Technology, 1998, 30:137~140
    [111]袁宁一,李金华,林成鲁,溶胶-凝胶VO_2薄膜转换特性研究,物理学报,2002,51(4):852~856
    [112]陈长琦,方应翠,朱武等,二氧化钒相变分析及应用,真空,2001,6:9~13
    [113]Hyun-Tak Kim, Byung-Gyu Chae, Doo-Hyeb Youn, Raman study of electric-field induced first-order metal-insulator transition in VO_2-based devices, Applied Physics Lertters, 2005,86,42101
    [114]Y. J. Chang, C. H. Koo, J. S. Yang, et al. Phase coexistence in the metal insulator transition of a VO_2 thin film, Thin Solide Films, 2005,486(1-2):46~49
    [115]F. C. Case, The influence of substrate temperature on the optical properties of ion-assisted reactively evaporated vanadium oxide thin films, Journal of Vacuum Science Technology, A 1988, 6(3):2010~2014
    [116]崔敬忠,达道安,姜万顺等,VO_2热致变色薄膜的结构和光电特性研究,物理学报,1998,47(3):454~460
    [117]李敏娇,张述林,丁秀敏等,氢还原法制备低相变温度掺钨VO_2薄膜,钢铁钒钛,2010,31(2):6~9
    [118]Kunio Okimura, Naotaka Kubo, Preparation of VO_2 Films with Metal-Insulator Transition on Sapphire and Silicon Substrates by Inductively Coupled Plasma-Assisted Sputtering, Japanese Journal of Applied Physics, 2005,44(36):L1150~L1153
    [119]Kunio Okimura, Naotaka Kubo, Growth of VO_2 films with metal-insulator transition on silicon substrates in inductively coupled plasma-assisted sputtering, Thin Solid Films, 2007,515(12):4992~4995
    [120]Yusuke Nihei, Yusuke Sasakawa, Kunio Okimura, Advantages of industively coupled plasma-assisted sputtering for preparation of stoichiometric VO_2 films with metal-insulator transition, Thin Solid Films, 2008, 516(11):3572~3576
    [121]袁宁一,李金华,林成鲁,氧化钒薄膜的制备方法及结构性能,江苏石油化工学院学报,2000,12(4):1~4
    [122]尹大川,许念坎,刘正堂等,VO_2薄膜的主要制备工艺参数研究,功能材料,1997,29(1):52~55
    [123]R T Tajendra Kumar, B Karunagaran, D Mangalaraj, et al. Study of a pulsed laser deposited vanadium oxide based microbolometer array, Smart Materials and Structures, 12 (2003) :188~192
    [124]D. H. Kim, H. S. Kwok, Pulsed laser deposition of VO_2 thin films, Applied Physics Letters, 1994, 65(25):3188~3190
    [125]V. S. Vikhnin, S. Lysenko, A. Rua, et al. Charge transfer model of metal insulator phase transition and ultrafast optical response in VO_2, Optical Materials, 2007, 29:1385~1389
    [126]H. Liu, S. Lysenko, A. Rua, et al. Laser excitation and excited state dynamics in vanadium dioxide thin film, Journal of Luminescence, 2006, 119-120:404~411
    [127]Nakajima M, Takubo N, Hiroi Z, et al. Photoinduced metallic state in VO_2 proved by the terahertz pump-probe spectroscopy. Applied Physics Letters, 2008, 92(1):011907

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700