基于时域透镜的高速非线性光纤通信链路的优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着当前互联网电话、视频点播等网络服务带来的网络数据量的急剧上升,光通信系统向40Gbit/s、100Gbit/s甚至Tbit/s的传输速率演进已经成为必然趋势,如何有效的利用当前已经铺设的光纤链路和已有的设备,对光纤通信链路的发送端和接收端进行优化和升级,克服光纤色散和非线性效应对高速光信号的影响,提高系统的传输质量就成为当前光纤通信研究应用领域内的热点问题。本文从时域透镜的基本原理入手,对利用时域透镜在高速非线性光纤通信链路中进行色散补偿、实现全光正交频分复用调制和进行光域小波滤波等优化方式通过数值仿真进行了分析和研究。通过与现有的光纤通信链路传输质量的比较,说明了时域透镜在对光纤通信链路进行优化,以及利用其对现有光纤通信系统进行升级的优势,主要研究内容如下:
     简要介绍了影响长距离光纤通信链路的色散、非线性效应及非线性噪声的性质;推导了使用沃特拉级数传递函数模型求解非线性薛定谔方程研究光信号变化时,所用沃特拉级数的阶数与输入信号的峰值光功率及光纤链路物理参数之间的关系,说明了光纤的色散与非线性效应的相互作用对信号的影响。
     介绍了时域透镜系统的基本结构,说明了时域透镜系统进行傅立叶变换或对信号进行展宽或压缩的基本性质,讨论了增大时域透镜输出信号频谱范围的方法及其对信号在传输过程中的影响。
     基于时域透镜可以进行全光傅立叶变换的性质,在光正交频分复用系统中利用时域透镜系统代替传统的用于计算快速傅立叶变换及数模模数转换的数字信号处理芯片对信号进行正交频分复用调制,克服电子器件计算速度的瓶颈对光通信系统传输速度的限制;并比较了两种系统中正交频分复用信号的频谱,以及在现有的色散补偿光纤链路中两种系统中传输高速光信号时接收信号的星座图及输入功率与误码率的关系曲线,说明了基于时域透镜的光正交频分复用系统的具有较好的通信质量。
     提出了两种基于时域透镜的色散补偿系统,4f时域透镜分立色散补偿和集总色散补偿两种方式。并分析了两种系统中,信号帧长度与信号保护间隔长度与色散补偿效果之间的关系;分别在采用强度调制、100Gbit/s的16-QAM及4-QAM的相干调制解调光通信系统中讨论了不同的时域透镜色散补偿方式下,光纤的色散及非线性效应对信号的影响,并在综合考虑光纤的色散,非线性效应及多跨距链路中掺铒光纤放大器的自发辐射噪声的情况下,给出了输入功率与误码率的关系曲线,并且对使用两种基于时域透镜的色散补偿方式和传统的DCF色散补偿系统进行了比较,进一步说明了4f时域透镜的集总色散补偿方式优于分立色散补偿方式和传统DCF色散补偿系统,更适用于高速大容量的光纤通信系统中。
     将小波去噪引入到光纤通信链路的接收端用以降低由光纤的非线性效应和EDFA的ASE噪声相互作用所产生的非线性噪声对强度调制直接检测光纤通信系统通信质量的影响,通过数值仿真说明了光域小波去噪可以有效的提高系统的信噪比改接收端信号质量,并且dmey小波的去噪效果最优。针对级联MZM实现光域小波分解的缺点,设计了基于时域透镜和马赫曾德尔干涉仪的对光通信系统中的传输信号进行全光小波分解的滤波器结构,为在光域内实现小波分解利用小波变换的优点改善系统的通信质量提供了一种新的方法。
     上述研究的结果表明了时域透镜在高速非线性光纤通信链路优化中的可行性和有效性,而且时域透镜对光纤通信链路的优化都在系统的发送或接收端,利于实际光纤通信系统的升级改造和节约成本。时域透镜系统在光纤通信系统中的使用可以提高系统克服色散及非线效应的能力,在保证光纤通信系统传输质量的同时提高光纤通信系统的容量,以适应高速发展的互联网数据业务对光纤主干网传输性能的要求。
With the development of many internet services such as VoIP and IPTV, the internet traffic in backbone communications network is increasing very fast. The optics fiber communication system's evolution to 40Gbit/s,100Gbit/s or even Tbit/s is necessary. How to overcome the effect of fiber dispersion and nonlinearity on the higher bit rate signal by upgrading the existing commercial fiber links and transceiver is becomingly the focus of the research field of optical fiber communication systems. This thesis analyzed not only the dispersion compensation schemes and optical orthogonal frequency multiplexing based on time lenses but also the optical wavelet de-noising applied in optical fiber communication systems by numerical simulation. The comparison of quality between the scheme proposed by this work and traditional systems showed the optimization by use of time lenses is effective and advantageous. The main points of this work were listed as below:
     The characristics of fiber dispersion and nonlinearity were briefly introduced. The relationship of the order of VSTF applied to study the optical pulse evolution in fiber and the parameters of optics fiber was derived, which showed the interaction between fiber dispersion and nonlinearity and their effects on signal.
     The analyzing of time lenses' basic structure showed its characteristic of all optical Fourier transform or inverse and the relationship of the dispersive part's dispersion and the phase curve of the phase modulator that is part of the time lenses. The method to enlarge the spectrum frequency range and its effect on the optical signal was discussed.
     By use of the time lenses as the all optical Fourier transformers and inverse Fourier transformers instead of IFFT/FFT and ADC/DAC, a coherent optical orthogonal frequency multiplexing system based on time lenses was proposed. The scheme proposed by this work can break the electronics computing speed bottlenecks restrain on higher speed optics fiber communications. The constellation maps of the signal transmitted in these two optical OFDM systems were compared. The results of comparison and the bit error rate vs. input optical power showed the advantages of the OFDM based on time lenses.
     Two fiber dispersion compensation schemes based on 4f time lenses was proposed as dispersion compensation with time lenses at receiver and with time lenses at transmitter and receiver. The signal frame length or guard interlude length's effect on the dipersion compensation results was studied in these two disperiosn compensation scheme based on time lenses mentioned above. At last with the synthesis of fiber dispersion, nonlinearity and EDFA's ASE noise, the relationship of the bit error rate vs. the input signal's optical power were curved in this two dispersion compensation schemes based on time lenses and DCF compensation fiber links within IM-DD,16-QAM and 100Gbit/s 4-QAM systems respectively. The results confirmed that the dispersion compensation system with 4f time lenses at receiver only was better than the other two schemes.
     Optical wavelet de-noising with several different types of wavelets such as db4, coif4 and dmey wavelet was applied at the end of the 40Gbit/s multi-span intensity-modulated fiber communication systems. The results of numerical simulations carried out show the effectiveness of the wavelet de-noising in the fiber-optic communication systems and wavelet de-noising with demy wavelet can achieve better result than with other type wavelet. To the point that the optical wavelet filter composed of cascaded MZM was complex, an optical wavelet decomposition filter by use of time lenses was proposed.
     All the above leads up to that, the optimization for optical communication system by use of time lenses was feasible and effectiveness. The application of time lenses can apply at transmitter and receiver only, which was better for the system upgrade and save the costs. The application of time lenses in optical fiber communication can improve the capability of overcoming the fiber dispersion and nonlinearity to guarantee the quality of higher bit rate optical fiber communication and make it adaptive to the demand on the backbone network caused of the increasing internet traffic.
引文
1. Maiman TH. Stimulated optical radiation in ruby. Nature,1960,187(4736):493-4
    2. Kao,K.C.;Hockham,G.A. Dielectric-fibre surface waveguides for optical frequencies. Optoelectronics, IEE Proceedings, vol.133, no.3, pp.191-198, June 1986
    3. Gnauck AH, Tkach RW, Chraplyvy AR, Li T. High-capacity optical transmission systems. J Lightwave Technol 2008;26:1032-45.
    4. Melle S, Jaeger J, Perkins D, Vusirikala V. Market drivers and implementation options for 100-GbE transport over the WAN. IEEE Appl Pract,2007,45(11):18-24
    5. H. Blauvelt, J. Parsons, D. Lewis, and H. Yen. Technical Digest of Conference on Optical Fiber Communication, New Orleans,1984 (Optical Society of America. Washington, DC,1984), pp.50-51.
    6. TENG, C C. Traveling-wave polymeric optical intensity modulator with more than 40 GHz of 3-dB electrical bandwidth. Applied Physics Letters. Vol.60, pp.1538-1540.30 Mar.1992
    7. Hui-Wen Chen, Jonathan D. Peters, and John E. Bowers. Forty Gb/s hybrid silicon Mach-Zehnder modulator with low chirp. Opt. Express 19,1455-1460 (2011)
    8. Rohde, M., et al. Robustness of DPSK direct detection transmission format in standard fiber WDM systems. Electronics Letters 36,1483-1484 (1999)
    9. Rosenkranz,W. Robust multi-level phase shift modulation in high-speed WDM transmission. Proceedings of the SPIE 5625,241-252 (2005)
    10. S. Bigo; E. Desurvire; B. Desruelle. All-optical RZ-to-NRZ format conversion at 10 Gbit/s with nonlinear optical loop mirror.Electronics Letters (October 1994),30 (22), pg.1868-1869
    11. Xu Lei;Wang, Bing C; Baby, Varghese; Glesk, Ivan; Prucnal, Paul R. Performance-improved all-optical RZ to NRZ format conversion using duplicator and wavelength converter. Optics Communications. Vol.206, no.1-3, pp.77-80.15 May 2002
    12. Walklin, S., Conradi, J. Multilevel signaling for increasing the reach of lOGb/s lightwave systems. IEEE Journal of Lightwave Technology 17(11),2235-2248 (1999)
    13. Zhao, J., et al. Analytical investigation of optimization, performance bound, and chromatic dispersion tolerance of 4-amplitude-shifted-keying format. In:Proceedings of Optical Fiber Communication Conference (OFC), JThB15 (2006)
    14. Wree, C., et al. Differential quadrature phase-shift keying for cost-effective doubling of the capacity in existing WDM systems. In:Proc.4th Conference on Photonic Networks, pp.161-168. Leipzig, Germany (2003)
    15. R. A. Griffin, A.C. Carter. Optical Differential Quadrature Phase Shift Keying for High Capacity Optical Transmission. OFC 2002
    16. A. H. Gnauck, P. J. Winzer. Optical Phase Shift Keyed Transmission. Jounal of Lightwave Technology, Vol.23, No.1, Jan 2005
    17. Tetsuya Kawanishi, Takahide Sakamoto, Tetsuya Miyazaki, Masayuki Izutsu, Takahisa Fujita, Shingo Mori, Kaoru Higuma, and Junichiro Ichikawa. High-speed optical DQPSK and FSK modulation using integrated Mach-Zehnder interferometers. Opt. Express 14,4469-4478 (2006)
    18. Jian Wang, Hao Huang, Xue Wang, Jeng-Yuan Yang, and Alan E. Willner. Multi-channel 100-Gbit/s DQPSK data exchange using bidirectional degenerate four-wave mixing. Opt. Express 19,3332-3338 (2011)
    19. Radhakrishnan Nagarajan, Jeffrey Rahn, Masaki Kato et al.10 Channel,45.6 Gb/s per Channel, Polarization-Multiplexed DQPSK, InP Receiver Photonic Integrated Circuit. J. Lightwave Technol.29, 386-395(2011)
    20. T. Tokle, C. R. Davidson, M. Nissov, J.-X. Cai, D. Foursa, A. Pilipetskii.6500 km transmission of RZ-DQPSK WDM signals. Electronics Letters, vol.40, no.1, pp.444-445, April 2004.
    21. Ohm, M. Optical 8-DPSK and receiver with direct detection and multilevel electrical signals. Advanced Modulation Formats,2004 IEEE/LEOS Workshop on, vol., no., pp.45-46,1-2 July 2004
    22. Hosung Yoon, Duckey Lee, and Namkyoo Park. Performance comparison of optical 8-ary differential phase-shift keying systems with different electrical decision schemes. Opt. Express 13,371-376 (2005)
    23. Tsukamoto, K. Katoh, and K. Kikuchi. Coherent Demodulation of Optical 8-Phase Shift-Keying Signals Using Homodyne Detection and Digital Signal Processing. in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America,2006), paper OThR5.
    24. Djordjevic, I.B.; Cvijetic, M.; Lei Xu; Ting Wang. Proposal for Beyond 100-Gb/s Optical Transmission Based on Bit-Interleaved LDPC-Coded Modulation. Photonics Technology Letters, IEEE, vol.19, no.12, pp.874-876,June15,2007
    25.Guo-Wei Lu, Takahide Sakamoto, Akito Chiba, Tetsuya Kawanishi, Tetsuya Miyazaki, Kaoru Higuma, Masaaki Sudo, and Junichiro Ichikawa.Reconfigurable multilevel transmitter using monolithically integrated quad Mach-Zehnder IQ modulator for optical 16-QAM and 8-PSK generation. Opt. Express 19,5596-5601(2011)
    26. Makovejs, S.; Millar, D.S.; Mikhailov, V.; Gavioli, G.; Killey, R.I.; Savory, S.J.; Bayvel, P. Novel Method of Generating QAM-16 Signals at 21.3 Gbaud and Transmission Over 480 km. Photonics Technology Letters, IEEE, vol.22, no.1, pp.36-38, Jan.1,2010
    27. Juan L. Corral, Rakesh Sambaraju, Miguel A. Piqueras, and Valentin Polo.Generation of pure electrical quadrature amplitude modulation with photonic vector modulator. Opt. Lett.33,1294-1296 (2008)
    28. Norimatsu, S., et al. An 8 Gb/s QPSK optical homodyne detection experiment using external cavity laser diodes. IEEE Photonics Technology Letters 4(7),765-767 (1992)
    29. Camatel, S., et al.2-PSK homodyne receiver based on a decision driven architecture and a sub-carrier optical PLL. In:Proceedings of Optical Fiber Communication Conference (OFC), OTuI3 (2006)
    30. Ezra Ip, Alan Pak Tao Lau, Daniel J. F. Barros, and Joseph M. Kahn. Coherent detection in optical fiber systems. Opt. Express 16,753-791 (2008)
    31. Giuseppe Talli and Paul D. Townsend. Hybrid DWDM-TDM Long-Reach PON for Next-Generation Optical Access. J. Lightwave Technol.24,2827-(2006)
    32. Hill, P.M.; Olshansky, R.; Burns, W.K. Optical polarization division multiplexing at 4 Gb/s. Photonics Technology Letters, IEEE, vol.4, no.5, pp.500-502, May 1992
    33. R. Noe. PLL-free synchronous QPSK polarization multiplex/diversity receiver concept with digital I&Q baseband processing. Photonics Technology Letters, IEEE, vol.17, no.4, pp.887-889, April 2005
    34.Fischer, J.K.; Molle, L.; Nolle, M.; Schmidt-Langhorst, C.; Hilt, J.; Ludwig, R.; Peckham, D.W.; Schubert, C.8×448-Gb/s WDM Transmission of 56-GBd PDM 16-QAM OTDM Signals Over 250-km Ultralarge Effective Area Fiber. Photonics Technology Letters, IEEE, vol.23, no.4, pp.239-241, Feb.15, 2011
    35.Kobayash T, Sano A, Yamada E. Electro-optically subcarrier multiplexed 110 Gb/s OFDM signal transmission over 80 km SMF without dispersion compensation. IET Electron Lett 2008; 44:225-6.
    36. Jansen SL, Morita I, Tanaka H.10×121.9-Gb/s PDM-OFDM transmission with 2-b/s/Hz spectral efficiency over 1000 km of SSMF. In:Opt. Fiber Commun. Conf., paper no. PDP2. San Diego; 2008.
    37. Shieh W, Yang Q, Ma Y.107 Gb/s coherent optical OFDM transmission over 1000-km SSMF fiber using orthogonal band multiplexing. Opt Express 2008; 16:6378-86.
    38. A. H. Gnauck and R. M. Jopson. Dispersion compensation for optical fiber systems," in Optical Fiber Telecommunications Ⅲ A, I. P. Kaminow and T. L. Koch, eds. (Academic Press, San Diego,1997).
    39. F. Forghieri, R. W. Tkach and A. R. Chraplyvy. Fiber nonlinearities and their impact on transmission systems. in Optical Fiber Telecommunications Ⅲ A, I. P. Kaminow and T. L. Koch, eds.(Academic Press, San Diego,1997).
    40. Jinno, M.; Sakamoto, T.; Kani, J.; Aisawa, S.; Oda, K.; Fukui, M.; Ono, H.; Oguchi, K.;, "First demonstration of 1580 nm wavelength band WDM transmission for doubling usable bandwidth and suppressing FWM in DSF," Electronics Letters, vol.33, no.10, pp.882-883,8 May 1997
    41. K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, S. Theriault, D. C. Johnson, J. Albert, and K. Takiguchi. Chirped in-fiber Bragg gratings for compensation of optical-fiber dispersion. Opt. Lett.19,1314-1316 (1994)
    42. Madsen, C.K.; Lenz, G. Optical all-pass filters for phase response design with applications for dispersion compensation. Photonics Technology Letters, IEEE, vol.10, no.7, pp.994-996, Jul 1998
    43.周志强,唐余亮,谢崇进.色散补偿光纤传输系统的最佳补偿方案.激光技术,第24卷,第5期2000年10月
    44. A. Yariv, D. Fekete, and D. M. Pepper. Compensation for channel dispersion by nonlinear optical phase conjugation. Opt. Lett.4,52-54 (1979).
    45. Watanabe, S.; Naito, T.; Chikama, T. Compensation of chromatic dispersion in a single-mode fiber by optical phase conjugation. Photonics Technology Letters, IEEE, vol.5, no.1, pp.92-95, Jan 1993
    46. Poole, C.D.; Wiesenfeld, J.M.; DiGiovanni, D.J.; Vengsarkar, A.M. Optical fiber-based dispersion compensation using higher order modes near cutoff. Lightwave Technology, Journal of, vol.12, no.10, pp.1746-1758,Oct 1994
    47. V. Srikant. Broadband dispersion and dispersion slope compensation in high bit rate and ultra long haul systems. OFC 2001, paper TuHl.
    48. M. J. Li. Recent progress in fiber dispersion compensators. European Conference on Optical Communication 2001, paper Th.M.1.1.
    49. S. N. Knudsen and T. Veng. Large effective area dispersion compensating fiber for cabled compensation of standard single mode fiber. OFC 2000, paper TuG5.
    50. Q. L. N.T., T. Veng, and L. Gruner-Nielsen. New dispersion compensating module for compensation of dispersion and dispersion slope of non-zero dispersion fibres in the C-band. OFC 2001, paper TuH5.
    51. K. Mukasa, H. Moridaira, T. Yagi, and K. Kokura. New type of dispersion management transmission line with MDFSD for long-haul 40 Gb/s transmission. OFC 2002, paper ThGG2.
    52. Tian-Shiang Yang and William L. Kath. Analysis of enhanced-power solitons in dispersion-managed optical fibers. July 1,1997/Vol.22, No.13/OPTICS LETTERS 985-987
    53. Xiaoqiong Qi, Xiaoping Zhang, Haiqing Wei, David V. Plant, "Linearity of nonlinear perturbations in fiber-optic transmission lines and its applications to nonlinear compensations", J. Opt. Soc. Am. B, Vol.23, No.10,October, pp.2032-2039,2006
    54. H. Wei and D. V. Plant. Fundamental equations of nonlinear fiber optics in Optical Modeling and Performance Predictions. Proc. SPIE5178,255-266 (2003).
    55. K. P. Ho, "Phase-modulated optical communication systems", Springer, U.S.:New York,2005
    56. J. P. Gordon, and L. F. Mollenauer.PHASE NOISE IN PHOTONIC COMMUNICATIONS-SYSTEMS USING LINEAR-AMPLIFIERS. Optics Letters, vol.15, no.23, pp.1351-1353, Dec,1990.
    57. B. Xu, and M. Brandt-Pearce. Analysis of noise amplification by a CW pump signal due to fiber nonlinearity. IEEE Photonics Technology Letters, vol.16, no.4, pp.1062-1064, Apr,2004.
    58. S. Kumar. Effect of dispersion on nonlinear phase noise in optical transmission systems. Optics Letters, vol.30, no.24, pp.3278-3280, Dec,2005.
    59. F. Zhang, C. A. Bunge, and K. Petermann. Analysis of nonlinear phase noise in single-channel return-to-zero differential phase-shift keying transmission systems. Optics Letters, vol.31, no.8, pp. 1038-1040, Apr,2006.
    60. K. P. Ho, and H. C. Wang. Effect of dispersion on nonlinear phase noise. Optics Letters, vol.31, no.14, pp.2109-2111, Jul,2006
    61. C. C. Wei, and J. Chen. Convergence of phase fluctuation induced by intrachannel four-wave mixing in differential phase-shift keying transmission systems via phase fluctuation averaging. Optics Letters, vol. 32, no.10, pp.1217-1219, May,2007.
    62. Xiao Qiong Qi, Xiao Ping Zhang and Qun Feng Shao. Reduction of parametric amplified noise on nonlinear fiber channels by use of wiener filtering. IEEE Journal of Lightwave Technology,2008, Vol 26, no 11
    63.漆晓琼,邵群峰,张晓萍.基于沃尔泰拉理论的集总光纤非线性噪声补偿[J].中国激光,2007,Vo134.issue 11
    64. K. P. Ho, and J. M. Kahn. Electronic compensation technique to mitigate nonlinear phase noise. Journal of Lightwave Technology, vol.22, no.3, pp.779-783, Mar,2004
    65. Mark D. Feuer, Sun-Yuan Huang, Orhan Coskun, and Misha Boroditsky. Electronic Dispersion Compensation for a 10-Gb/s Link Using a Directly Modulated Laser. IEEE PHOTONICS TECHNOLOGY LETTERS, VOL.15, NO.12, DECEMBER 2003
    66. Alfiad, M.S.; van den Borne, D.; Jansen, S.L.; Wuth, T.; Kuschnerov, M.; Grosso, G.; Napoli, A.; de Waardt, H. A Comparison of Electrical and Optical Dispersion Compensation for 111-Gb/s POLMUX-RZ-DQPSK. Journal of Lightwave Technology, vol.27, no.16, pp.3590-3598, Aug.15,2009
    67. Yang, Dong, Kumar, Shiva, Wang, Hao Temporal filtering using time lenses for optical transmission systems. Optics Communications vol.281 (2),2008, pp238-24
    68. S. Kumar, and D. Yang. Optical implementation of orthogonal frequency-division multiplexing using time Lenses. Opt. Lett.33(17),2002-2004 (2008).
    69. Dong Yang and Shiva Kumar. Realization of optical OFDM using time lenses and its comparison with optical OFDM using FFT. Opt. Express 17,17214-17226 (2009)
    70.何舟,梅君瑶,王传彪,梁晓军,叶斐,李蔚,黄德修.一种基于时间透镜的10 Gb/s无色散补偿高速光纤通信系统[J].中国激光,2011,38(1):0105007
    71.Yuan Li, Wei Li, Kecheng Yang, Yaojun Qiao, Junyao Mei, Huan Zhang. Experimental implementation of an all-optical OFDM system based on time lenses. Chin. Opt. Lett,2010,8(3):275-277
    72. Jing Shao, Wei Li, Xiaojun Liang. Phase pre-emphasis for PAPR reduction in optical OFDM systems based on OIDFT or time lens. Chin. Opt. Lett,2010,8(9):875-880
    73.Govind P. Agrawal.非线性光纤光学原理及应用[M].贾东方,余震虹译.北京:电子工业出版社,2003,22-35
    74. G. P. Agrawal. Fiber-Optic Communication Systems. Number ISBN 0-471-17540-4 in Wiley Series in Microwave and Optical Engineering. John Wiley and Sons, Inc.,3 edition,2002
    75. G. P. Agrawal. Nonlinear Fiber Optics. Number ISBN 0-12-045143-3. Academic Press,3 edition,2001.
    76. Jonas Martensson, Anders Berntson, and Mathias Westlund. Timing jitter owing to interchannel puls interactions in dispersion-managed transmission system. OPTICS LETTERS Vol.26,No.2
    77. Jonas Martensson, Anders Berntson. Generation and dynamics of ghost pulses in stongly dispersion-managed fiber-optic communication system. OPTICS LETTERS Vol.26,No.16
    78.邵群峰,漆晓琼,张晓萍.多跨距非线性光纤链路中的小波去噪.中国激光,2009,36(3):592-596
    79.李均,黄德修,张新亮光纤传输模型的数值计算研究光电子技术与信息2003 Apr;16(2)
    80. K.V.Peddannragari and Maite Brandt-Pearce. Volterra Series Transfer Function of Single-Mode Fibers. Journal of Lightwave Technology,1997,15(12):2232-2241
    81. D. Marcuse. Single channel operation in very long nonlinear fibers wit h optical amplifiers at zero dispersion. J.L i ghtwave Technol,1991,9 (3):356-361
    82.李立.光学小波变换的4f系统研究.重庆大学学位论文。2009.4
    83. James van Howe and Chris Xu. Ultrafast Optical Signal Processing Based Upon Space-Time Dualities. J. Lightwave Technol.24,2649-(2006)
    84. Adolf W. Lohmann and David Mendlovic. Temporal filtering with time lenses. Appl. Opt.31,6212-6219(1992)
    85. J.W. Goodman, Introduction to Fourier Optics, second ed. McGraw-Hill, San Francisco,1996
    86. R. van Nee and R. Prasad, OFDM for Wireless Multimedia Communications. Boston:Artech House, 2000.
    87. J. Armstrong. OFDM:From copper and wireless to optical. Presented at the Proc. OFC/NFOEC 2008, San Diego, CA,2008, Tutorial,OMM1.
    88. R. W. Chang. Orthogonal Frequency Multiplex Data Transmission System. USA U.S. Patent 3,488,445, 1966.
    89. William shieh, Ivan djordjevic. OFDM for optical communication system. San Diago:Academic Press, 2010
    90. Weinstein, S. B., and P. M. Ebert. Data Transmission by Frequency-Division Multiplexing Using the Discrete Fourier Transform. IEEE Trans. Commun. Technol. Vol. COM-19, October 1971, pp. 628-634
    91. W. Shieh, H. Bao, and Y. Tang. Coherent optical OFDM:theory and design. Opt. Express 16,841-859 (2008)
    92. Jean Armstrong. OFDM for Optical Communications. J. Lightwave Technol.27,189-204 (2009)
    93. Chmidt-Langhorst, C.; Ludwig, R.; Gross, D.-D.; Molle, L.; Seimetz, M.; Freund, R.; Schubert, C.;.Generation and coherent time-division demultiplexing of up to 5.1 Tb/s single-channel 8-PSK and 16-QAM signals. Optical Fiber Communication - incudes post deadline papers,2009. OFC 2009. Conference on, vol., no., pp.1-3,22-26 March 2009
    94. Sakamoto, T.; Chiba, A.; Kawanishi, T.; 50-km SMF transmission of 50-Gb/s 16 QAM generated by quad-parallel MZM. Optical Communication,2008. ECOC 2008.34th European Conference, pp.1-2, 21-25 Sept.2008
    95. Ste'phane Mallat, A Wavelet Tour of Signal Processing, second ed., Academic Press,1999.
    96. T. Olson, D. Healy and U. Osterberg. Wavelets in optical communications. COMPUTING IN SCIENCE & ENGINEERING,1999,1(1):51-56
    97. G.Cincotti, M.S.Moreolo and A.Neri. Optical Wavelet Signal Processing and Multiplexing. JOURNAL ON APPLIED SIGNAL PROCESSING,2005,10:1574-1583
    98. K. Jinguji, M. Oguma. Optical half-band filters. JOURNAL OF LIGHTWAVE TECHNOLOGY,2000, 18(2):252-259
    99. Moreolo, M S; Cincotti, G; Neri, A; Synthesis of optical wavelet filters. IEEE Photonics Technology Letters. Vol.16, no.7, pp.1679-1681. July 2004
    100. Jinguji.K, Kawachi. M; Synthesis of coherent two-port lattice-form opt ical delay-line circuit. IEEE/OSA Journal of Lightwave Technology. Vol.13, no.1, pp.73-82. Jan.1995

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700