高速光纤通信系统中基于时域透镜的新型光学Meyer小波滤波器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
未来光纤通信系统的发展趋势是更高传输速率、更大信道容量。那么怎么对现有系统朝着这个方向优化升级,并且还要充分考虑到现实推广的成本问题。这就是成为现代光纤通信系统研究领域内的热点课题。本文提出的光学Meyer小波滤波器在优化高速非线性光纤通信链路中具有一定可行性和有效性,为提高系统的输入功率和延长了系统的传输距离,提高全光通信系统的通信质量提供了新的思路。
     首先本文提出光纤通信系统中基于时域透镜的新型滤波器结构。依据这种新的滤波器结构,利用时域透镜和马赫曾德尔调制器设计并实现光学Meyer小波滤波器。它的优点是可以直接在光域内消除由光放大器噪声、光纤色散和非线性效应共同作用而产生的非线性噪声,避免电域中信号处理方法光电转换中存在的电子瓶颈限制,可满足光纤通信系统更高速率的需求。模拟了几种不同光纤链路以40Gbit/s传输速率强度调制系统传输后接收端信号直接通过本文的光学Meyer小波滤波器。对通过在不同分解层数和不同带宽条件光学Meyer小波滤波器的信号的归一化方差和误码率进行比较。将这些仿真结果与传统光带通滤波器的去噪结果进行对比,验证本文所设计的基于时域透镜的光学Meyer小波滤波器的去噪结果拥有明显优越性,且光学Meyer小波滤波器(一层,带宽为290G)有最低的误码率,所以它是最佳选择。当输入峰值功率为6mW,传输距离为900km时,误码率降低了约11dB;在输入信号峰值功率为10mW时,保持误码率为10-9的条件下,经过本文设计的光学Meyer小波滤波器后传输距离可达到840km大于通过传统光带通滤波器后的715km,明显延长了传输距离。实际应用时充分利用已铺设光纤和设备,只要将光学Meyer小波滤波器放置在系统接收端前就可以升级优化,成本较低便于商业推广。
The optical fiber communication system's evolution is to be with higher bit rate, more channel capacity. How to upgrade the existing commercial fiber links and save the cost in practice is becoming the focus topic in optical fiber communication systems. Optical Meyer wavelet filter based on time lenses proposed in this work can achieve better results than other optical filters so it can improve the channel capability and guarantee the quality of higher bit rate optical fiber communication. And it was feasible and effective for optimize optical communication system. The main work was shown as below:
     Firstly analyzing basic structure of2-f time lenses sub-system showed its characteristics of Fourier transform for optical signal in all-optical domain and the relation between the dispersion of the dispersive component and the quadratic phase of the phase modulator that is a time lens. According to the relation between input and output optical signal of2-f sub-system, factors that would affect output signal and the methods for avoid these factors were discussed.
     In this paper we proposed a novel scheme of optical Meyer filter based on time lenses. Then the detailed mathematical derivation was stated and we got important functions about Meyer wavelet decomposition and reconstruction process. According to these functions, an optical Meyer wavelet filter was designed and realized by use of time lenses and Mach-Zehnder modulators (MZMs). It can realize the wavelet decomposition of optical signals in all-optical domain and directly de-noise the distorted optical signal in high bit rate optical communication systems without photo-electric conversion. Numerical simulations were performed in different types of fiber links for intensity modulated (IM) signal when optical Meyer wavelet filter was applied at the end of40Gbit/s multi-span dispersive and nonlinear fiber transmission systems. By comparing Normalized Squared Deviations (NSDs) and Bit Error Rates (BERs) of the signals without de-noising, after optical band-pass filter and optical Meyer wavelet filter, we demonstrated that the nonlinear noise can be removed more effectively by optical Meyer wavelet filter. The BER curves in dispersion compensation links with optical Meyer wavelet filter at1level with290G bandwidth shows the best immunity to nonlinear noise, which can reduce BER about11dB with6mW input power and900km transmission distance, and can extend transmission distance to840km longer than715km that de-noising with optical band-pass filter at BER=10-9when compared with the traditional optical band-pass filter de-noising. And it is convenient to be applied in the existing fiber systems without changing the arrangement of fiber links in use when considering the cost for upgrading fiber communication systems in commercial application.
引文
[1]A. H. Gnauck and R. M. Jopson. Dispersion compensation for optical fiber systems [M]. Optical Fiber Telecommunications.1997, vol. Ⅲ A, pp.162-195 (ed. I. P. Kaminow and T. L. Koch,45 Academic Press, New York).
    [2]F. Forghieri, R. W. Tkach and A. R. Chraplyvy. Fiber nonlinearities and their impact on transmission systems [M]. Optical Fiber Telecommunications.1997, vol. Ⅲ A, pp.196-264 (I. P. Kaminow and T. L. Koch, Academic Press, New York,1997, Chap.8).
    [3]M. Jinno, T. Sakamoto, J. Kani, S. Aisawa, K. Oda, M. Fukui, H. Ono, and Oguchi. First demonstration of 1580 nm wavelength band WDM transmission for doubling usable bandwidth and suppressing FWM in DSF [J]. Electronics Letters.1997, vol.33, no.10, pp.882-883.
    [4]K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, S. Theriault, D. C. Johnson, J. Albert, and K. Takiguchi. Chirped in-fiber Bragg gratings for compensation of optical-fiber dispersion [J]. Opt. Letters.1994, vol.19, no.17, pp.1314-1316.
    [5]C. K. Madsen, G. Lenz. Optical all-pass filters for phase response design with applications for dispersion compensation [J]. Photonics Technology Letters, IEEE.1998, vol.10, no.7, pp.994-996.
    [6]A. Yariv, D. Fekete, and D. M. Pepper. Compensation for channel dispersion by nonlinear optical phase conjugation [J]. Opt. Letters.1979, vol.4, no.2, pp.52-54.
    [7]S. Watanabe, T. Naito, and T.Chikama. Compensation of chromatic dispersion in a single-mode fiber by optical phase conjugation [J]. Photonics Technology Letters, IEEE.1993, vol.5, no.l, pp.92-95.
    [8]周志强,唐余亮,谢崇进.色散补偿光纤传输系统的最佳补偿方案[J].激光技术.2000,vo1.24,no.5,pp.265-269.
    [9]C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar. Optical fiber-based dispersion compensation using higher order modes near cutoff [J]. Journal of Lightwave Technology.1994, vol.12, no.10, pp.1746-1758.
    [10]V. Srikant. Broadband dispersion and dispersion slope compensation in high bit rate and ultra long haul systems. OFC.2001, vol.2, paper:TuHl.
    [11]M. J. Li. Recent progress in fiber dispersion compensators [C]. ECOC.2001, vol.4, pp.486-489.
    [12]S. N. Knudsen and T. Veng. Large effective area dispersion compensating fiber for cabled compensation of standard single mode fiber. OFC.2000, paper TuG5.
    [13]Q. L. N.T., T. Veng, and L. Gruner-Nielsen. New dispersion compensating module for compensation of dispersion and dispersion slope of non-zero dispersion fibres in the C-band. OFC.2001, paper TuH5.
    [14]K. Mukasa, H. Moridaira, T. Yagi, and K. Kokura. New type of dispersion management transmi-ssion line with MDFSD for long-haul 40 Gb/s transmission. OFC.2002, paper ThGG2.
    [15]Xiaoqiong Qi, Xiaoping Zhang, Haiqing Wei, David V. Plant. Linearity of nonlinear perturbations in fiber-optic transmission lines and its applications to nonlinear compensations [J]. JOSAB.2006, vol.23, no.10, pp.2032-2039.
    [16]H. Wei and D. V. Plant. Fundamental equations of nonlinear fiber optics in Optical Modeling and Performance Predictions. Proc. SPIE.2003, vol.5178, pp.255-266.
    [17]K. P. Ho. Phase-modulated optical communication systems [M]. Springer, U.S.:New York, 2005.
    [18]J. P. Gordon, and L. F. Mollenauer. PHASE NOISE IN PHOTONIC COMMUNICATIONS-SYSTEMS USING LINEAR-AMPLIFIERS [J]. Optics Letters.1990, vol.15, no.23, pp. 1351-1353,.
    [19]Keang Po Ho. Phase-Modulated Optical Communication [M].2005, New York:Springer, pp.189-190.
    [20]O. E. Agazzi, M. R. Hueda, H. S. Career et al.. Maximum-likelihood sequence eatimation in dispersive optical channels [J]. Journal of Lightwave Technology.2005, vol.23, no.2, pp. 749-763.
    [21]Mark D. Feuer, Sun-Yuan Huang, Orhan Coskun, and Misha Boroditsky. Electronic Dispersion Compensation for a 10-Gb/s Link Using a Directly Modulated Laser [J]. IEEE PHOTONICS TECHNOLOGY LETTERS.2003, vol.15, no.12, pp.1788-1790.
    [22]K. P. Ho, and J. M. Kahn. Electronic compensation technique to mitigate nonlinear phase noise [J]. Journal of Lightwave Technology.2004, vol.22, no.3, pp.779-783.
    [23]S. Kumar. Effect of dispersion on nonlinear phase noise in optical transmission systems [J]. Optics Letters.2005, vol.30, no.24, pp.3278-3280.
    [24]C. C. Wei and J. Chen. Convergence of phase fluctuation induced by intrachannel four-wave mixing in differential phase-shift keying transmission systems via phase fluctuation averaging [J]. Optics Letters.2007, vol.32, no.10, pp.1217-1219.
    [25]漆晓琼,邵群峰,张晓萍.基于沃尔泰拉理论的集总光纤非线性噪声补偿[J].中国激光,2007,vol.34,no.11,pp.1527-1532.
    [26]Xiao Qiong Qi, Xiao Ping Zhang and Qun Feng Shao. Reduction of parametric amplified noise on nonlinear fiber channels by use of wiener filtering [J]. IEEE Journal of Lightwave Technology. 2008, vol.26, no.18, pp.3210-3215.
    [27]M. S. Alfiad, D. van den Borne, S. L. Jansen, T. Wuth, M. Kuschnerov, G. Grosso, A. Napoli, and H. de Waardt. A Comparison of Electrical and Optical Dispersion Compensation for 111-Gb/s POLMUX-RZ-DQPSK [J]. Journal of Lightwave Technology.2009, vol.27, no.16, pp.3590-3598.
    [28]T. Olson, D. Healy, U. Osterberg. Wavelets in optical communications[J]. Computing in Science & Engineering,1999, vol.1, no.l, pp.51-56.
    [29]C. S. Burrus, R. A. Gopinath, and H. Guo. Introduction to wavelets and wavelet transforms:a primer,2nd ed [M]. Upper Saddle River, N.J.:Prentice Hall,1998.
    [30]S. G. Mallat. A wavelet tour of signal processing,2nd ed. San Diego:Academic Press,1999.
    [31]M. S. Moreolo, G. Cincotti, and A. Neri. Synthesis of optical wavelet filters [J]. IEEE Photonics Technology Letters.2004, vol.16, no.7, pp.1679-1681.
    [32]G. Cincotti, M. S. Moreolo, and A. Neri. Optical wavelet signals processing and multiplexing [J]. Eurasip Journal on Applied Signal Processing.2005, vol.2005, pp.1574-1583.
    [33]K. Jinguji and M. Oguma. Optical half-band filters [J]. Journal of Lightwave Technology.2000, vol.18,no.2, pp.252-259.
    [34]S. A. Akkhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, and A. P. Sukhorukov. Nonstationary nonlinear optical effects and ultrafast light pulse formation [J]. IEEE J. Quantum Electron.1968, vol.QE-4, no.10, pp.598-605.
    [35]B. H. Kolner and M. Nazarathy. Temporal imaging with a time lens [J]. Optics Letters.1989, vol. 14, no.12, pp.630-632.
    [36]A. W. Lohmann and D. Mendlovic. Temporal filtering with time lenses [J]. Appl Opt.1992, vol. 31, no.29, pp.6212-6219.
    [37]Dong Yang, Shiva Kumar, Hao Wang. Temporal filtering using time lenses for optical transmission systems [J]. Optics Communications.2008, vol.281, no.2, pp.238-247.
    [38]S. Kumar, and D. Yang. Optical implementation of orthogonal frequency-division multiplexing using time Lenses [J]. Opt. Letters.2008, vol.33, no.17, pp.2002-2004.
    [39]Govind P. Agrawal非线性光纤光学原理及应用[M].贾东方,余震虹译.北京:电子工业出版社,2003,pp.22-35.
    [40]G. P. Agrawal. Fiber-Optic Communication Systems in Wiley Series in Microwave and Optical Engineering [M]. John Wiley and Sons, Inc.,3rd edition,2002.
    [41]G. P. Agrawal. Nonlinear Fiber Optics [M]. Academic Press,3rd edition,2001.
    [42]Jonas Martensson, Anders Berntson, and Mathias Westlund. Timing jitter owing to intrachannel pulse interactions in dispersion-managed transmission system [J]. Opt. Letters.2001, vol.26, no.2, pp.55-57.
    [43]P. Johannisson, D. Anderson, A. Berntson, and J. Martensson. Generation and dynamics of ghost pulses in strongly dispersion-managed fiber-optic communication system [J]. Opt. Letters.2001, vol.26, no.16, pp.1227-1229.
    [44]邵群峰,漆晓琼,张晓萍.多跨距非线性光纤链路中的小波去噪[J].中国激光.2009,vo1.36,no.3,pp.592-596.
    [45]李立.光学小波变换的4f系统研究[硕士论文].重庆:重庆大学.2009.
    [46]G. P. Agrawal. Fiber-Optic Communication Systems. Number ISBN 0-471-17540-4 in Wiley Series in Microwave and Optical Engineering. John Wiley and Sons, Inc.,3 edition,2000.
    [47]James van Howe and Chris Xu. Ultrafast Optical Signal Processing Based Upon Space-Time Dualities [J]. Journal of Lightwave Technology.2006, vol.24, no.7, pp.2649-2662.
    [48]A. W. Lohmann and D. Mendlovic. Temporal filtering with time lenses [J]. Appl Opt.1992, vol. 31, no.29, pp.6212-6219.
    [49]Dong Yang and Shiva Kumar. Realization of optical OFDM using time lenses and its comparison with optical OFDM using FFT [J]. Opt. Express.2009, vol.17, pp.17214-17226.
    [50]邵群峰.基于时域透镜的光纤通信系统优化[博士论文].甘肃:兰州大学.2011.
    [51]X. P. Zhang, Q. F. Shao, X. Q. Qi, H. Li, and L. Xiang. Optical wavelet de-noising applied in multi-span nonlinear fiber links [J]. Optics Communications.2010, vol.283, pp.1261-1267.
    [52]S. G. Mallat. A wavelet tour of signal processing [M].1999,2nd ed. San Diego:Academic Press, pp.247-248.
    [53]K. P. Ho. Phase-modulated optical communication systems [M].2005, New York:Springer, pp.40-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700