强力错距旋压制备纳米/超细晶筒形件机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米/超细晶材料由于特征尺寸极小、性能优异而倍受关注,但是由于受制备技术的制约,目前难以获得高纯、致密、晶界清晰的理想三维块体纳米/超细晶金属材料。随着对纳米材料研究的不断深入和纳米技术的不断发展,将强力错距旋压大变形技术与纳米技术结合起来制备纳米/超细晶筒形件引起高度关注。相关研究发现通过反复强力旋压,在金属材料表面可制备出一定厚度的纳米结构表层,即实现了筒形件表面纳米化。然而要实现筒形件整个纵截面上晶粒的纳米/超细晶化,则需要穿越宏观尺度下的表象,深入系统地研究强力错距旋压剧烈塑性变形诱导纳米/超细晶的形成机理以及初始晶粒尺寸、强力错距旋压工艺参数以及再结晶热处理对筒形件晶粒细化的影响机制。
     本文针对目前国内外尚未开展的采用强力错距旋压制备纳米/超细晶筒形件进行研究,研究工作围绕纳米/超细晶筒形件的强力错距旋压成形方法、成形机理以及强力错距旋压工艺参数对晶粒尺寸的影响展开。
     基于晶体塑性理论和ABAQUS有限元软件,建立了多晶体细观塑性本构模型和Poisson-Voronoi细观结构有限元模型(PVFEM),给出了强烈塑性变形时多晶体运动动力学基本方程,编制了相应的率无关有限元程序(通过ABAQUS用户子程序UMAT形式实现),并将此有限元程序作为用户子程序嵌入有限元软件ABAQUS中,模拟和分析了筒形件强力旋压时旋轮作用区特征晶粒在强烈塑性变形过程中形状系数比(晶粒的等效椭圆长短轴之比)随变形量的变化,详细分析了晶粒中切应力、切应变与晶粒塑性变形之间的关系,为精确预报与控制强力错距旋压制备纳米/超细晶筒形件的过程提供了可视化模型。
     在经对比分析确定的强力错距旋压成形方法的基础上,设计出了专用的旋压成形工艺装备,并以20钢为毛坯材料,选择合适的成形参数(如旋轮结构形状、旋压道次、道次变薄率、错距量、旋轮进给比等),拟定三种不同的实验方案分别从材料初始组织、旋压工艺参数和热处理规范等成形要素展开了系统的实验研究。实验结果表明:通过“20钢管坯——多道次强旋——静态再结晶——强旋——再结晶退火”的复合成形工艺,成功实现了组织参数(主要为铁素体晶粒尺寸和形态)在一定程度上可控的纳米/超细晶结构筒形件的制备,其晶粒平均尺寸约为600nm。
     在理论分析多晶体金属强力错距旋压时变形机理的基础上,借助金相分析技术、SEM及TEM技术对强力错距旋压及再结晶退火过程中20钢筒形件微观组织结构进行了表征并研究了其变化特点,获得了强力错距旋压剧烈塑性变形诱发20钢旋压件纳米/超细晶粒的形成机理,探讨了强力错距旋压过程中晶粒细化的影响因素。从选区电子衍射谱确定了晶体结构、组织结构和相互的取向关系,进而获得了变形中开动滑移系的信息,探讨了旋压过程中材料晶粒的细化机制和大角度晶界形成机理。
     通过对20钢筒形件金相组织、SEM/TEM微观组织表征和拉伸实验数据及断口形貌的深入分析与归纳,探索了强力错距旋压剧烈冷变形过程中珠光体片间距LSP、渗碳体沉淀对20钢旋压件的力学性能的影响,分析了强力错距旋压冷成形时20钢及淬火态20钢微裂纹产生与扩展以及破裂失效的特点与机理,研究了强力错距旋压冷变形过程中诱发的大量第二相粒子(颗粒状渗碳体)对晶界的钉扎和晶界运动的抑制作用。实验结果表明珠光体片间距LSP在强力错距旋压剧烈塑性变形过程中随筒形件壁厚减薄率的增大而显著减小,20钢旋压件抗拉强度σb随LSP的倒数增大而增大,其延伸率δ随LSP的倒数增大而减小。淬火态20钢在强力旋压起旋阶段材料流动不稳定,在拉应力σx的作用下旋轮作用区微空洞彼此连接形成微裂纹,随着强力旋压多道次成形的进一步加载,微裂纹在与裂纹所在平面垂直的拉应力σ x的作用下沿着与筒形件切向成60°的平面扩展。
Nano/ultrafine grained materials (NUGM) fabricated via SPD (severe plastic deformation)has aroused a growing interest of specialists in materials science. However in recent years, itis difficult to manufacture the ideal three dimensional block NUGM with high purity, highdensity and distinct grain boundaries for lack of optimal processing technologies.Nevertheless, with the development of nano-technologies and advanced studies, more andmore researchers began to combine the power spinning technology with nano-technologiesfor fabricating the nano/ultrafine grained cylindrical parts. Related research shows thatthrough the repeated power spinning processes, cylindrical parts with nano structured surfacewere prepared, namely surface nano crystallization. However, in order to realizenano/ultrafine crystallization of the whole cross section, studies of nano/ultrafine grainforming mechanism induced by severe shear deformation in process of power staggerspinning and the effect of initial grain sizees, power stagger spinning process parameters andrecrystallization heat treatment conditions on grain refinement were carried out.
     Research in this dissertation was mainly focused on the mechanism of fabricatingnano/ultrafine grained cylindrical parts by power stagger spinning which has not beeninvestigated till now, and its purposes are to discuss the forming methods and mechanism ofnano/ultrafine grained cylindrical parts by power stagger spinning and the effects of processparameters on grain sizes.
     Based on crystal plasticity theory and the commercial finite element software ABAQUS,the polycrystalline mesoscopic plastic constitutive model and Poisson-voronoi finite elementmodel (PVFEM) were established, and several kinematical equations of polycrystalline insevere plastic deformation were also built. Further more, a rate independent program wascompiled (by ABAQUS user subroutine UMAT). By importing the program as a UMATsubroutine, study of the variable grain shape factor (the length ratio of longer axes to shortaxes of the equivalent ellipse) in forming area was carried out, and then the relationshipbetween resolved stress of slip system and macroscopic stress was also discussed in detail. Bydoing so, a visual model for accurately forecasting and controlling of forming process fornano/ultrafine polycrystalline was completed.
     Selecting power stagger spinning as the optimal forming method for fabricatingnano/ultrafine grained cylindrical parts, the tooling and fixture were prepared. Theexperimental study of three different programs were carried out by selecting20steel pipe as its blank and choosing different process parameters including roller profile, spinning passes,wall thickness thinning ratio, roller intervals, roller feed ratio, and so on. The results revealthat the nano/ultrafine grained cylindrical parts were successfully fabricated by a compositeforming process that started using3-pass spinning followed by580℃×0.5h staticrecrystallization,2-pass spinning and580℃×1h static recrystallization annealing insequence, and its size is600nm on average.
     Based on the theoretical analysis of deformation mechanism, the microstructural evolutionof20steel both in process of power stagger spinning and subsequent annealing wasinvestigated via metallographic analysis technology, SEM and TEM techniques, and then theforming mechanism of nano/ultrafine grains induced by severe shear deformation in theprocess of power stagger spinning was also revealed. Further more, the affecting factors forgrain refinement were discussed. By the investigation of selected area electron diffraction(SAD), the crystal structures, texture and the activated slip system of specimen were obtained,then forming mechanism of large angle grain boundaries (LAGB) was also discussed.
     Through analysis of the metallographic organizations, SEM/TEM images, tensileexperiment datas and fracture morphology of20steel spun workpieces, effect of layer spacingof pearlite (LSP) and cementite precipitation on mechanical properties during the process ofpower stagger spinning was investigated, and then both the characteristics and its mechanismof the microcrack and the plastic fracture for20steel and quenched20steel were also studied.Further more, the pinning&hinder effect of the second phase particles (granular cementite)induced by power stagger spinning on grain boundary migrations were discussed. Theexperimental results show that the layer spacing of pearlite (LSP) decreases as the thinningratio increases during power stagger spinning, and the tensile strength σbof spun tubes isproportional to the reciprocal of LSP, while the elongation δ is inversely proportional to thereciprocal of LSP. Small tough dimples connect gradually with tensile stress σxaround cracktip, then micro crack is formed later with multi-pass and multi-direction loading. By this way,crack further extends along60°to tangential direction. Finally, ductile fracture of spunworkpiece comes into being.
引文
[1]熊艳才.航空复杂构件精密成型技术基础[M].北京:国防工业出版社,2012:1-3
    [2] Meyers M. A., Mishra A., Benson D. J.. Mechanical properties of nanocrystallinematerials [J]. Progr. Mater. Sci.,2006(51):427-556
    [3] Dao M., Lu L., Asaro R. J., et al. Toward a quantitative understanding of mechanicalbehavior of nanocrystalline metals [J]. Acta. Mater.,2007(55):4041-4065
    [4] Carl C. Koch, I. Lya A. Ovid’Ko, Sudipta Seal, et al. Structural NanocrystallineMaterials-Fundamentals and Applications [M]. Cambridge University Press,2007:25-27
    [5]翁宇庆.超细晶钢——钢的组织细化理论与控制技术[M].北京:冶金工业出版社,2003:5-41
    [6] Cahn R. W.. Nanostructured Materials.Nature [J]. Materials Science,1990:348-389
    [7][美]约翰J.伯克,沃克·维斯.超细晶粒金属[M].王燕雯,张永昌.北京:国防工业出版社,1982:68-72
    [8]陈达.纳米晶体的结构模型及性质研究[J].金属学报,1994,30(8):348-354
    [9]邸玉贤.纳米金属材料拉伸力学性能的非线性有限元分析[D].天津:天津大学,2004
    [10]卢年瑞,宋晓艳,张久兴,等.惰性气体蒸发冷凝法制备尺寸可控的纯稀土纳米粉末[J].粉末冶金技术,2007,25(6):424-429
    [11]李蒙,赵允岭,祝庆.非晶晶化法制备纳米晶Fe36Co36B20Si4Nb4[J].热加工工艺,2008(12):47-49
    [12]陈玉清,李超,解向前.电沉积法制备镉靶[J].原子能科学技术,2002(Z1):406-408
    [13]利锋.电子束照射法脱硫脱氮技术工艺[J].环境保护科学,2004,30(123):4-6
    [14]Valiev R. Z., Korznikov A. V., Mulyukov R. R.. Structure and properties of ultrafinegrained materials by sever plastic deformation [J]. Mater. Sci. Eng.,1993, A186:141-145
    [15]HAN BING Q., ENRIQUE J. LAVERNIA, FARGHALLI A. MOHAMED. DislocationStructure and Deformation in Iron Processed by Equal-Channel-Angular Pressing [J].METALLURGICAL AND MATERIALS TRANSACTIONS A,2004,35A:1343-1350
    [16]S. Scheriau, R. Pippan. Severe Plastic Deformation of Steels [J]. BHM,2008,153:242-246
    [17]杨保健,夏琴香,程秀全,等. SPD制备纳米/超细晶金属材料的成形方法[J].锻压技术,2011,36(2):48-52
    [18]Segal V. M.. Equal channel angular extrusion of flat products [J]. Materials Science andEngineering,2008:178-185
    [19]Valiev R. Z., KrasiInikov N. A., Tsenev N. K.. Plastic deformation of alloys withsubmicron grained structure [J]. Mater. Sci. Eng.,1991, A137:35-40
    [20]Iwahashi Y., Wang J., Horita Z., et al. Principle of equal channel angular pressing for theprocessing of ultrafine grained material [J]. Scripta. Mater.,1996(2):143-148
    [21]J. M. Garc′a-Infanta, S. Swaminathan, T. R. McNelley, et al. Grain shape andmicrostructural evolution during equal channel angular pressing [J]. Scripta Materialia,2008,58:17-20
    [22]Koji Neishi, Zenji Horita, Langdon T. G.. Achieving superplasticity in a Cu-40%Zn a11oythrough severe plastic deformation [J]. Scripta. Mater.,2001,45:965-968
    [23]Horita Z., Furukawa M., Nemoto M.. Super plastic forming at high strain rates aftersevere plastic deformation [J]. Acta. Mater.,2000,48:3633-3637
    [24]Aoki K., Kimura Y., Azushima A., et al. Ultrafine grained steels [M]. Tokyo (Japan): TheIron and Steel Institute of Japan,2001:266
    [25]Bridgman P. W.. Studies in Large Plastic Flow and Fracture [J]. New York: McGraw-Hill,1952:267-268
    [26]Valiev R. Z., Mukherjee A. K.. Nanostructures and unique properties in intermeralliessubjects to severe plastic deformation [J]. Scripta. Mater.,2001,44(8):1747-1750
    [27]Valiev R. Z., Islamgaliev R. K., Alexandrov I. V.. Bulk nanostructured materials fromsevere plastic deformation [J]. Prog. Mater. Sci.,2000,45(2):103-189
    [28]Saito Y., Utsumomiya H., Tsuji N., et al. Novel ultra-high straining process for bulkmaterials: development of the accumulative roll-bonding process [J]. Acta. Mater.,1999,47(2):579-583
    [29]Salishchev G. A., Valiakhmetov O. R., Galeyev R. M.. Mechanical Behaviour of FineGrained TiAl Intermetallic Compound-I. Superplasticity [J]. Journal of Materials Science,1992,40(3):581-587
    [30]柏艳辉,周南强,白彬,等.采用旋压法实现材料表面纳米化[J].中国工程物理研究院科技年报,2003,1:471
    [31]贾新朝,姚草根,吕宏军,等.细晶薄壁筒形件的旋压成形[J].航空制造技术,2007:516-518
    [32]HUANG J. Y., ZHU Y. T., ALEXANDER D. J., et al. Development of repetitivecorrugation and straightening [J]. Mater. Sci. Eng. A,2004,371(2):35-39
    [33]Ueji R., Tsuji N.. Nanoscale crystallographic analysis of ultrafine grained IF steelfabricated by ARB process [J]. Acta. Mater.,2002,47(2):69-76
    [34]Aoki K., Kimura Y.. Development and Properties of High Strengthened Carbon SteelsProduced by Repetitive Side Extrusion and Heat Treatment Process [J]. Mater. Sci.Forum,2007,53(9):2884-2891
    [35]周宇静,程秀全,夏琴香.热处理工艺对6061铝合金筒形件旋压过程及其性能影响[J].锻压技术,2011,36(3):54-57
    [36]张利鹏,刘智冲,周宏宇.简形件强力旋压发展过程及其现状分析[J].塑形工程学报,2006,2(1):43-46
    [37]俞蓉蓉,蔡志章.地下金属管道的腐蚀与防护[M].北京:石油工业出版社,1998:18-21
    [38]http://www.nanomaterialscompany.com
    [39]Carlson, J.D., Matthis,W., Toscano, J. R.. Industrial and commercial applications of smartstructures technologies [M]. ed. Anna-Maria R. McGowan. Proceedings of SPIE,2001,4332:308
    [40]http://nanotech-now.com/current-uses.htm
    [41]Buchholz, K.. Nanocomposite debuts on GM vehicles [J]. Automotive EngineeringInternational Online, A,2003(4):2-4
    [42]Zhong, L.W.. Advanced Materials and Processes [J]. ASM International Journal,2004(1):22-25
    [43]Xia Qinxiang, Susumu Shima, Hidetoshi Kotera, et al. A study of the one-path deepdrawing spinning of cups [J]. Journal of Materials Processing Technology,2005,159(3):397-400
    [44]梅瑛,李瑞琴.筒形件强力反旋的数值模拟及旋压力分析[J].机械设计与研究,2007.23(4):65-68
    [45]王成和,刘克璋.旋压技术[M].北京:机械工业出版社,1986:48:66-67
    [46]周宇静,程秀全,夏琴香.细长薄壁筒形件错距旋压成形工艺研究[J].轻合金加工技术,2011,39(8):30-34
    [47]夏琴香,任晓龙,阮锋,等.民品旋压技术的应用[J].新技术新工艺,2002,12:34-35
    [48]Wen Ailing, Yan Xiuxia, Ren Ruiming, et al. Effect of high-energy shot peering time onfatigue performance of TC4alloy [J]. Hot Working Technology,2009,38(14):127-131
    [49]Zhang Conghui, He Xiaomei. Mechanism of surface nanocrystallization of titaniumsurface mechanical attrition [J]. Chinese Journal of Rare Metals,2009,33(6):770-773
    [50]Tan N. R., Wang Z. B., Tong W. P., et al. Plastic strain-induced grain refinement at thenanometer scale in copper [J]. Acta. Mater.,2002,54(19):5281-5291
    [51]陈适先.筒形件强力旋压的塑性流动场及旋压力解析[J].机械工程学报,1982,18(3):41-45
    [52]Micha Gur, Jehuda Tirosh. Plastic flow instability under compressive loading duringshear spinning process [J]. Transactions of the ASME. J. of Eng. for Ind.,1982,104:17-22
    [53]Wong C. C., Danno A., Tong K. K., et al. Cold rotary forming of thin-wall componentfrom flat-disc blank [J]. Journal of materials processing technology,2008,208:53-62
    [54]Hayama M., Kudo H.. Analysis of diametrical growth and working forces in tubespinning [J]. Bulletin of Japan Society of Mechanical Engineers,1979,22:776-784
    [55]Kalpakjian S., Rajagopal S.. Spinning of tubes [J]. A reviews Journal of applied metalworking,1988,2(3):211-223
    [56]Rammohan T., Mishra R.. Studies on power spinning of tubes [C]. Int. J. Prod. Res.,1972,10(4):351-36
    [57]叶山益次郎,工藤洋明.回转しごき加工の研究—Tube spinningの解析[J]. Journal ofJSME,1966,69(5):631-639
    [58]杨保健,夏琴香,程秀全,等.纳米/超细晶筒形件强力旋压变形机理[J].华南理工大学学报(自然科学版),2013,41(3):90-94
    [59]夏琴香.三维非轴对称零件旋压成形机理研究[J].机械工程学报,2004,40(2):153-156
    [60]赖周艺.非圆横截面空心零件旋压成形机理研究[D].广州:华南理工大学,2012
    [61]翟福宝.筒形件错距旋压三维数值模拟及工艺参数优化研究[D].上海:上海交通大学,2001
    [62]金军,李德富,郭胜利,等. Ni-Cr-Mo合金旋压管材组织性能的研究[J].金属铸锻焊技术,2009,38(19):17-20
    [63]赵云豪.高温合金旋压塑性变形稳定性实验研究[J].锻压技术,2003,28(5):47-50
    [64]肖于德,吴永玉,黎文献,等.旋压加工对喷射沉积Al-8.5Fe-1.3V-1.7Si合金挤压管组织和性能的影响[J].中南大学学报,2005,36(3):358-363
    [65]李宏伟.宏细观本构关系数值化及其在有限元模拟中的应用[D].西安:西北工业大学,2007
    [66]XU Wenchen, SHAN Debin, WANG Zhenlong, et al. Effect of spinning deformation onmicrostructure evolution and mechanical property of TA15titanium alloy [J]. Trans.Nonferrous Met. SOC. China,2007(17):1205-1211
    [67]孙凌燕.杯形薄壁内齿轮旋压成形机理及工艺优化研究[D].广州:华南理工大学,2010
    [68]夏琴香.三维非轴对称偏心及倾斜管件缩径旋压成形理论与方法研究[D].广州:华南理工大学,2006
    [69]张鹏.错距旋压制备纳米/超细晶筒形件方法及试验研究[D].广州:华南理工大学,2012
    [70]林艳.多晶体材料塑性变形过程中织构演变的有限元模拟[D].杭州:浙江大学,2005
    [71]陆新征,林旭川,叶列平.多尺度有限元建模方法及其应用[J].华中科技大学学报(城市科学版),2008,25(4):76-80
    [72]王自强,段祝平.塑性细观力学[M].北京:科学出版社,1995:90-104
    [73]赵敬世.位错理论基础[M].北京:国防工业出版社,1989:1-4
    [74]陆璐,王辅忠,王照旭.有限元方法在金属塑性成形中的应用[J].材料导报,2008,22(6):87-91
    [75]杨觉先.金属塑性变形物理基础[M].北京:冶金工业出版社,1988:48-50
    [76]Bunge H. J.. Texture analysis in materials science: Mathematical Methods [M]. London:Butterworth.1982:182-186
    [77]Taylor G. I.. Plastic strain in metals [J]. Journal of the institute of Metals,1938,62:307-324
    [78]毛卫民,赵新兵.金属的再结晶与晶粒长大[M].北京:冶金工业出版社,1994:11-13
    [79]Orowan E.. The Plastic behavior of Crystal [J]. Z. Phys,1934,89:634-651
    [80]Rudolf Peierls. Introduction [J]. Niels Bohr Collected Works,1986(9):82-83
    [81]Taylor G. I.. The Mechanism of Plastic Deformation of crystal Part I. Theoretical [J].Proceedings of the Royal Society, London,1934,145A:362-387
    [82]Poyanyi V. M.. Micro mechanics of crystal and polycrystals [J]. Z. phys.,1934,89:660-673
    [83]Taylor G. I., Elam C.. The distortion of an aluminum crystal during a tensile test [J].Proceeding of the royal society of Landon,1923, A102:643-667
    [84]Taylor G. I., Elam C.. The plastic extension and fracture of aluminum crystals [J].Proceeding of the royal society of Landon,1925, A108:28-5l
    [85]Yang Baojian, Xia Qinxiang, Xiao Gangfeng, et al. Research on Key Technologies ofMesoscopic FEA Model for Polycrystalline Metal Power Spinning [J]. Applied MaterialsResearch,2012(4):286-289
    [86]Bishop J., Hill R.. A theoretical derivation of the plastic properties of a polycrystallinecenter-faced metal [J]. Phylisophycal magazine,1951,42:414-427
    [87]Hill R., Rice J. R.. Constitutive analysis of elastic-plastic crystal arbitrary strain [J]. J.Mech. Phys. Solids,1972,20:401-413
    [88]Kim H. K., Oh A. I.. Finite element analysis of grain-by-grain deformation by crystalplasticity with couple stress [J]. Int. J. Plasticity,2003,19:1245-1270
    [89]Becker R., Panchanadeeswaran S.. Effect of grain interaction on deformation and localtexture in polycrystals [J]. Acta. Metall. Marer.,1995,43:2701-2719
    [90]Kalidindi S. R., Bronkhorst C. A., Anand L.. Crystallographic texture evolution in bulkdeformation processing of fcc metals [J]. J. mech. Phys. Solids,1992,40(3):537-569
    [91]Nakamachi E., Hiraiwa K., Morimoto H., et al. Elastic/crystalline viscoplastic finiteelement analysis of single and polycrystal sheet deformation and their experimentalverification [J]. Int. J. of plasticity,2000,16:1419-1441
    [92]Kim D. J., Ku T. W., Kang B. S.. Finite element analysis of micro-rolling using grain andgrain boundary elements [J]. Journal of Materials Processing Technology,2002,130:456-461
    [93]李大永,张少睿,彭颖红,等.板材冲压成形的晶体塑性有限元模拟[J].机械工程学报,2008,44(1):190-194
    [94]Hill R.. Generalized Constitutive Relations for Incremental Deformation of MetalCrystals by Multislip [J]. J. Mech. Phys. Solids,1966,14:95-102
    [95]郑子樵.材料科学基础[M].长沙:中南大学出版社,2005:329-333
    [96]Hoffmann T., Bertram A., Shim S., et al. Experimental Identification and Validation of aCrystal Plasticity Model for a Low Carbon Steel on Different Length Scales [J]. Int. J.Mater. Form,2010,3(1):65-68
    [97]Ashok V. K., Chulho Y.. Study of work hardening models for single crystals usingthree-diamentional finite element analysis [J]. Int. J. Plasticity,1999,15:737-754
    [98]Mahesh Shenoy, Yustianto Tjiptowidjojo, David McDowell. Microstructure-sensitivemodeling of polycrystalline IN100[J]. International Journal of Plasticity,2008,24:1694-1730
    [99]Veera Sundararaghavan, Nicholas Zabaras. Design of microstructure-sensitive propertiesin elasto-viscoplastic polycrystals using multi-scale homogenization [J]. InternationalJournal of Plasticity,2006,22:1799-1824
    [100] Peirce D., Asaro R. J., Needleman A.. Material rate dependence and localizeddeformation in crystalline solids, and localized deformation in ductile single crystals [J].Acta. Metall.,1983,31:1951-1976
    [101] Franz Aurenhammer. Voronoi Diagram-a survey of a fundamental geometric datastructure [J]. ACM Computing Surveys,1991,23(3):345-405
    [102] Kumar Susmit. Computer simulation of3D material microstructure and itsapplication in the determination of mechanical behavior of polycrystalline materials andengineering structures [D]. Pennsylvania: Pennsylvania State University,1992
    [103]毕刚.低碳低合金钢晶粒超细化研究[D].上海:上海交通大学,2004
    [104] Xia Q. X., Cheng X. Q., Ruan F., et al. Finite Element Simulation and Experimentalinvestigation on the Forming Forces of3D Non-axisymmetrical tubes spinning [J].International Journal of Mechanical Sciences,2006,48(7):726-735
    [105]王成和.旋压技术[M].北京:机械工业出版社,1986:541-543
    [106]胡正寰,夏巨谌.中国材料工程大典(第21卷)——材料塑性成形工程(下)[M].北京:化学工业出版社,2005:158-159
    [107]牟少正,韩冬.有色金属旋压技术研究现状[J].航天制造技术,2008(4):38-42
    [108]劲松,叶能永,张士宏,等. TP2内螺纹铜管滚珠旋压成形缺陷模拟与分析[J].锻压技术,2011(5):46-50
    [109]干勇.中国材料工程大典(第2卷)-钢铁材料工程(上)[M].北京:化学工业出版社,2006:436-438
    [110]张丝雨.最新金属材料牌号、性能、用途及中外牌号对照速用速查实用手册[M].香港:中国科技文化出版社,2005:303-304
    [111]潘金生,仝健民,田民波.材料科学基础[M].北京:清华大学出版社,1998:281
    [112] Nie Xiliang, Wang Renhui, Ye Yiying, et al. Calculations of stacking fault energy forFCC metals and their alloys based on an improved embedded·atom method [J]. SolidState Communications,1995(96):729-734
    [113] Mishra, A.. Microstructural evolution in ultra-fine grained copper processed bysevere plastic deformation [D]. San Diego: University of California,2007
    [114]吴兴文.金相分析技术实验教程[M].武汉:武汉理工大学出版社,2010:15-20
    [115]杨明辉,梁佰祥,夏琴香,等.旋压技术分类与应用[J].机电工程技术,2004,33(11):14-16
    [116]薛克敏,吕炎,川井谦一.筒形件强旋工艺参数对金属切向流动的影响[J].哈尔滨工业大学学报,2001,33(1):86-88
    [117]王成和,刘克璋.旋压技术[M].北京:机械工业出版社,1986:441-500
    [118]夏琴香.一种齿轮旋压成形装置[P].中国:ZL200520061626.X,2006
    [119]胡正寰,夏巨谌.中国材料工程大典(第21卷)——材料塑性成形工程(下)[M].北京:化学工业出版社,2005,8:331
    [120]陈适先.强力旋压工艺与装备[M].北京:国防工业出版社,1986:12
    [121]李茂盛.浅谈错距旋压技术[C].第十二届全国旋压技术交流年会本文集,2011:6-10
    [122]赵西成,姚筱春,刘晓燕,等.退火温度对超低碳钢ECAP变形组织的影响[J].材料热处理学报,2005,26(6):80-82
    [123] Ueji R., Tsuji N., Minamino Y., et al. Effect of Rolling Reduction on UltrafineGrained Structure and Mechanical Properties of Low-Carbon Steel ThermomechanicallyProcessed from Martensite Starting Structure [J]. Science and Technology of AdvancedMaterials,2004,5:153-162
    [124] George, Krauss. Martensite in Steel: Strength and Structure [J]. Materials Scienceand Engineering A,1999,273:40-57
    [125] Lu K., Lu J.. Nanostructured surface layer on metallic materials induced by surfacemechanical attrition treatment [J]. Materials Science and Engineering A,2004,375:38-45
    [126] Carl C. K., ILya A. O., Sudipta S., et al. Structural Nanocrystalline Materials-Fundamentals And Applications [M]. MA: Cambridge University Press,2007:4-9
    [127] Shin D. H., Kin I.. Grain refinement mechanism during equal-channel angularpressing of a low-carbon steel [J]. Acta. Materialia.,2001(49):1285-1292
    [128] Avitzur B., Choi J. C., Kim J. M.. The unity of upper-bound approaches toplane-strain deformation problems [J]. Journal of Mechanical Working Technology,1987,15(3):297-307
    [129] Wong C. C., Dean T. A., Lin J.. A review of spinning, shear forming and flowforming processes [J]. International Journal of Machine Tools&Manufacture,2003(43):1419-1435
    [130] Roy M. J., Klassen R. J., Wood J. T.. Evolution of plastic strain during a flowforming process [J]. Journal of materials processing technology,2009,209:1018-1025
    [131]吕炎,刘英伟,单德彬.筒形件强旋三维刚塑性有限元分析[J].中国有色金属学报,1999,9(1):118-122
    [132] Huang J. Y., Zhu Y. T., Jiang H., et al. Microstructures and DislocationConfigurations in Nanostructured Cu Processed by Repetitive Corrugation andSraightening [J]. Acta. Mater.,2001(49):1497-1505
    [133]哈宽富.金属力学性质的微观理论[M].北京:科学出版社,1983:64-73
    [134]徐滨士.纳米表面工程[M].北京:化学工业出版社,2004:385-390
    [135] Wu X. L., Tao N. R., Lu K., et a1. Microstructure and evolution ofmechanically-induced ultrafine grain in surface layer of Al-alloy subjected to USSR [J].Acta. Mater.,2002(50):2075-2084
    [136] Tao N. R., Wang Z. B., Tong W. B., et a1. An investigation of surfacenanoaystallization mechanism in Fe induced by surface mechanical attrition treatment [J].Acta. Mater.,2002(50):4603-4616
    [137] Mohammed Haouaoui. An Investigation of Bulk Nanocrystalline Copper FabricatedVia Severe Plastic Deformation and Nanoparticle Consolidation [D]. Texas: Texas A&MUniversity,2005
    [138] Kang Suk Bong, Lim Cha Yong, Wook Hyoung, et al. Microstructure EvolutionHardening Behavior of2024Aluminum Alloy Proeessed by Severe Plastic Deformation[J]. Materials Science Forum,2002,396(2):1163-1168
    [139] Valiev R. Z., Alexandrov I. V.. Development of severe plastic deformation techniquesfor the fabrication of bulk nanostructured materials [J]. Annales de Chimie Science desMateriaux,2002,27(3):3-14
    [140] Birringer R., Gleiter H., Klein H. P., et al. Phys. Lett.[J].1984,102A:365
    [141] Jin L., Lin D. L., Mao D. L., et al. Microstructure evolution of AZ31Mg alloy duringequal channel angular extrusion [J]. Mater. Sci.&Eng. A,2006,423:247-252
    [142] Khodabakhshi F., Kazeminezhad M., Kokabi A. H.. Constrained groove pressing oflow carbon steel: Nano-structure and mechanical properties [J]. Materials Science andEngineering A,2010,527:4043-4049
    [143] Dutta J., Hofmann H.. Nanomaterials-Nano-Structure Induced Effects-EPFL[M].MDPI press,2005:76-78
    [144]王凯旋,曾卫东,赵永庆,等.钛合金显微组织与性能定量关系的模型[J].稀有金属材料与工程,2011,40(5):784-787
    [145] Embury J. D., Fisher R. M.. The Structure and Properties of Drawn Pearlite [J].1966(14):147-159
    [146]胡光立,谢希文.钢的热处理[M].第二版.西安:西北工业大学出版社,1996:75-82
    [147] Langford G.. Deformation of Pearlite [J]. Metall. Trans. A,1977, SA:861-864
    [148] Nishida S., Yoshie A., Imagumbai M.. Work hardening of hypereutectoid andeutecoid steels during drawing [J]. ISIJ Int.,1998(38):177-181
    [149] Zhu B., Asaro R. J., Krysl P., et al. Effects of grain size distribution on themechanical response of nanocrystalline metals: Part II [J]. Acta. Materialia.,2006(54):3307-3320
    [150] Liu C. T., Gurland J.. The Strengthening Mechanism in Spheroidized Carbon Steels[J]. Trans.TMS-AIME,1968,242(8):1535-1542
    [151] Hansen N. Hall-Patch relation and boundary strengthening [J].2004,51(8):801-806
    [152]薛克敏,李萍,吕炎,川井谦一.筒形件强旋工艺参数对金属切向流动的影响[J].哈尔滨工业大学学报,2000年10月第32卷第5期:86-88
    [153]郑长卿.韧性断裂细观力学的初步研究及其应用[M].西北工业大学出版社,1988,9:80-82
    [154]曹辉. ECAP CuFeP合金的热稳定性及Fe单质回溶研究[D].北京:中国科学院研究生院,2006
    [155] Birringer R., Gleiter H., Klein H. P., et al. Phys. Lett.[J].1984,102A:365
    [156] Vinogradov A., Patlan V., Suzuki Y., et al. Structure and properties of ultra-fine grainCu-Cr-Zr alloy produced by ECAP [J]. Acta. Materialia.,2002,50:1639-1651
    [157] Ivaniznko Y., Wundedich R. K., Valiev R. Z., et al. Annealing behavior ofnanostructured carbon steel produced by SPD [J]. Scripta. Materialia.,2003,49:947-952
    [158] Restova T. D., Davydov V. G., Yelagin V. I., et al. Effect of scandium onrecrystallization of aluminum and its alloys [J]. In aluminum alloys: Their Physical andMechanical Properties,2000(3):793-798

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700