Fenton高级氧化技术氧化降解多环芳烃类染料废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究课题系国家自然科学基金创新研究群体基金资助项目(50621403)的部分研究内容,并受重庆市自然科学基金研究项目(07BB7145)资助。
     多环芳烃类染料废水是持久性难降解有机污染物最主要的来源之一。尤其是当前染料正朝着抗光解、抗热及抗生物氧化方向发展,使其处理难度加大,传统的废水处理技术已经难以实现对其达标排放处理。因此,研发一种高效、经济、适用的染料废水处理技术,对于保护水环境、推动我国印染业的发展,具有极深远的意义。
     本论文以多环芳烃类染料废水为处理目标,以罗丹明B染料为模拟研究对象,采用光助Fenton反应、微波强化Fenton反应和微波强化类Fenton反应,对模拟罗丹明B染料废水和实际多环芳烃类染料废水进行了实验研究。探索性地开展了以下四个方面的研究工作:(1)以太阳光、高压汞灯和室内自然光为光源,引入废铁屑参与反应,开展光助Fenton反应降解罗丹明B染料废水的降解特性研究。(2)为提高Fenton试剂法产生·OH的效率,实验采用微波作为促进手段,进行了罗丹明B染料废水降解特性的研究;同时,模拟染料废水中过渡金属离子Cr(Ⅵ)替代Fe2+参与Fenton反应,在微波强化作用下,进行罗丹明B染料废水降解特性的研究。(3)开展了光助Fenton反应、微波强化Fenton反应和微波强化类Fenton反应氧化降解的罗丹明B染料废水动力学行为研究,并对光助Fenton反应条件下,罗丹明B降解机理与途径进行了较为深入地探讨。(4)论文还对高级fenton氧化技术处理实际染料废水的产业化应用进行了系统的探讨。
     通过上述实验研究与理论分析,论文获得了如下研究成果:
     ①光助Fenton反应能有效地对多环芳烃类染料罗丹明B进行脱色降解,以太阳光或高压汞灯为光源能明显加速反应进程,室内光线条件下脱色降解速率较慢;针对500ml 100mg·L-1罗丹明B溶液进行光助(高压汞灯)Fenton反应氧化降解,其反应最优化条件为:pH=3.5,18mmol·L-1Fe2+溶液用量5.0ml,30%H2O2用量5.0ml。反应1小时后,罗丹明B去除率达到99.9%,CODcr去除率达到93.8%。
     ②微波与Fenton试剂联用,相互促进,具有一定协同效应,能加快降解有机物罗丹明B的反应速率。针对500ml 100mg·L-1罗丹明B溶液进行微波Fenton反应氧化降解,其反应最优化条件为:pH=3.0、30%H2O2溶液0.70ml、0.020mol·L-1Fe2+溶液4.00ml、微波作用8min。此时,罗丹明B去除率达到99.9%,CODcr去除率达到90.2%。
     ③微波辐射(Cr(Ⅵ)-H2O2)类Fenton试剂法催化降解多环芳烃有机物罗丹明B取得了良好的处理效果。针对500ml 100mg·L-1罗丹明B溶液进行微波类Fenton反应氧化降解,其反应最优化条件为:pH=3.4、30%H2O2溶液1.00ml、0.040 mol·L-1Cr(Ⅵ)溶液4.00ml、微波作用8min。此时,罗丹明B去除率达到99.0%,CODcr去除率达到80.42%。
     ④在pH=3.5的条件下,光助Fenton反应降解染料罗丹明B的反应级数为2.57,其反应的表观动力学方程为: V = 5×1 0?9×P1 .2845×F 0.3660×E0.9204;在pH=3.0的条件下,微波辐射Fenton反应降解罗丹明B的反应级数为2.13,其反应的表动力学方程为: V = 0.064085×P 0.4089×F 1.4655×E0.2562;在pH=3.4的条件下,微波辐射(Cr(Ⅵ)-H2O2)类Fenton反应降解罗丹明B的反应级数为2.85,其反应的表动力学方程为: V = 8.29182×1 0?5×P 0.8763×G 1.3719×E0.5975。
     ⑤在光助Fenton反应条件下,羟基自由基·OH攻击罗丹明B的大共轭发色基团中不饱和共轭键,使其断裂,导致废水的脱色与氧降分解。降解过程中可能主要有罗丹明B脱去1-4个乙基后的中间产物和染色环结构破坏后生成的苯甲酸、邻苯二甲酸、对羟基苯甲酸、乙二酸等中间产物;罗丹明B分子中的氨基最终完全转化为了NO3?,废水中没有NO2 ?和N O?等其它形式的氮存在;
     ⑥通过对Fenton高级氧化技术处理实际染料废水产业化应用的研究表明,Fenton高级氧化技术离实际产业化应用仍有不小的距离。但该技术集聚的优势,其技术操作与管理的便捷性,以及该技术废水处理成本尚有较大的下降空间,决定了Fenton高级氧化技术是一极具发展潜力的染料废水处理技术。
     论文的创新与学术价值在于:
     ①避开Fenton高级氧化技术降解罗丹明B染料废水复杂的基元反应研究,开展了反应表观动力学行为研究,确立了反应表观动力学方程。从反应宏观的角度有效地掌握了该类染料废水处理技术氧化降解污染物的反应规律。从而为提高氧化降解效率,优化反应条件奠定了理论基础。
     ②在研究光助Fenton反应氧化降解罗丹明B染料废水的中间产物与最终产物的基础上,揭示了罗丹明B氧化降解机理,并提出了罗丹明B染料废水最可能的降解途径,从而获得该染料废水处理技术氧化降解污染物的基本规律。这为探索多环芳烃类染料废水的氧化降解规律提供了重要的理论依据与技术路线。
     ③在Fenton高级氧化技术降解多环芳烃类染料废水实验与理论研究的基础上,首次对该类技术在产业化应用过程中面临的实际染料废水的降解特性、处理规模放大后技术适应性、处理成本,以及降解过程中的卫生与毒理性等关键问题进行了系统的探讨。为推进该类染料废水处理技术产业化进程奠定了实践基础,并提供理论指导。
This research subject, sponsored by CSTC (07BB7145), is part of a major creative research subject (50621403) of NFSC.
     Polycyclic Aromatic Hydrocarbons (PAHs) dye wastewater is one of the key sources of persistent organic pollutants which are hard to be degraded. The trend to photodegradation resistance, heat resistance and anti-biological oxidation of dyestuff especially hardens the difficulty of wastewater processing, so the traditional wastewater treatment technique cannot meet the needs of discharge standard. Therefore, it has far-reaching significance to find an economical and applicable technique of wastewater treatment with high efficiency to protect the water environment and promote the development of printing and dyeing industry.
     This dissertation, with the purpose of PAHs dye wastewater and Rhodamine B dyestuff as simulative research object, has an experimental research of simulative Rhodamine B and PAHS dyestuff wastewater with the adoption of Photo-Fenton reaction, microwave promoting fenton reaction and microwave promoting fenton-like reaction. Four aspects has been studied in this dissertation: (1)the degradation characteristics of Bhodamine B dyestuff wastewater of pHoto-fenton reaction are studied with the introducing of sunshine, high-voltage mercuric lamps and indoor light as lamp-house and scrap iron reaction; (2) To improve the efficiency of oxidation process, microwave-Fenton process was investigated; in the meanwhile, to avoid or lessen the secondary pollution of Fe3+ into wastewater in Fenton reaction, to broaden the usage scale of pH in Fenton reaction and to reduce the cost of the wastewater treatment bringing by the new technique and novel technology, the degradation characteristics of Rhodamine B are studied under the effect of microwave promoting and Fenton reaction in which transition metal ion Cr(VI) is used instead of Fe2+ in the wastewater;(3)the Dynamic Behavior of Rhodamine B in oxidation degradation is studied under the reactions of Photo-Fenton, microwave promoting fenton and microwave promoting fenton-like, the degradation mechanism and methods of Rhodamine B are also discussed under the reaction of Photo-Fenton;(4)the feasibility of advanced fenton oxidation technology processing dye wastewater in practical industries were discussed systemically.
     The following results are achieved in this dissertation from the above experimental research and theoretical analysis:
     ①Photo-Fenton reaction can effectively decolor and degrade PAHs dye Rhodamine B, and it is more obvious under the light source of sunshine or high-voltage mercuric lamps and lower of indoor light; the oxidation degradation of optimizing conditions of Photo-Fenton reaction aimed at 500ml 100mg·L-1 Rhodamine B liquor are: pH=3.5,18mmol?L-1Fe2+ liquor 5.0ml,30%H2O2 5.00ml, and one hour later, the removal rate of Rhodamine B reaches 99.9% and CODcr is 93.8%.
     ②The co-use and Synergistic effect of microwave and Fenton reagent can speed the degradation of Rhodamine B. The optimizing oxidation degradation conditions of 500ml 100mg·L-1 Rhodamine B reagent in Microwave-Fenton are: pH=3.0, 0.70ml 30% H2O2 liquor, 4.00ml 0.020mol·L-1 Fe2+ liquor, microwave 8min and the removal rate of Rhodamine B reaches 99.9%, while CODcr is 90.2%.
     ③The catalytic degradation or Rhodamine B with micro radiation(Cr(Ⅵ) -H2O2)Fenton-like reagent has achieved favorable results; the optimizing oxidation degradation conditions of 500ml 100mg·L-1 Rhodamine B reagent in microwave-Fenton are: pH=3.4, 1.00ml 30% H2O2 liquor, 4.00ml 0.040 mol·L-1 Cr(Ⅵ) liquor, microwave 8min and the removal rate of Rhodamine B reaches 99.9%, while CODcr is 80.24%.
     ④Under the condition of pH=3.5, the degradation reaction order of dye Rhodamine B of pHoto-Fenton is 2.57, and apparent kinetics equation is V = 5×1 0?9×P1 .2845×F 0.3660×E0.9204; pH=3.0, the reaction oder of microwave promoting Fenton is 2.13 and the equation is V = 0.064085×P 0.4089×F 1.4655×E0.2562;pH = 3.4, the reaction order of microwave(Cr(Ⅵ)-H2O2)promoting Fenton-like reagent is 2.85 and the equation is V = 8.29182×1 0?5×P 0.8763×G 1.3719×E0.5975。
     ⑤Under the reaction of Photo-Fenton, Hydroxyl·OH will attack unsaturated conjugation bond of conjugated Chromophoric Group in Rhodamine B, make it broken and lead to the analytic oxidation of dyestuff. During the analytic process, Rhodomind B mainly remove the intermediate product of 1-4 Ethyl and other intermediate products produced after the break of Chromophoric Ring structure, such as Benzoic Acid, phthalic Acid, 4-Hydroxybenzoic Acid and oxalic acid; amido in Rhodamine B is changed into NO3? totally and there is no other form of nitrogen existed like NO2 ? and N O?in the wastewater.Moreover, on the analysis basis degradation Pathways for Rhodomind B was proposed.
     ⑥In addition,preliminary feasibility analysis the application of Fenton advanced oixdation process in industries were carried out, and it was considered that there is still a huge gap between Fenton advanced oxidation technology and its use into practice. However, Fenton advanced oxidation technology is one potential dye wastewater treatment technology because of its advantages, the convenience of operation and management and the declining space of technology treatment.
     The major creative parts and learning values are as the followings:
     ①Instead from the aspect of primitive reaction of Rhodamine B dye waste water degraded from Fenton Advanced Oxidation Technology, the research of this dissertation is focused on the study and equation establishment of reactive apparent dynamic behavior, grasping the reactive rule of pollutants oxidative degradation of this kind of dye waste water treatment techniques and thus settling the theoretical foundation of accelerating the oxidative degradation and optimizing the reactive conditions.②O n the basis of the intermediate and final products of Rhodamine B dye waste water after photo-Fenton reaction oxidative degradation, this dissertation has revealed the oxidative degradation mechanism of Rhodamine B, proposing the possible degradative approaches of Rhodamine B dye waste water, achieving the basic rule of pollutants oxidative degradation of this kind of dye waste water treatment techniques and proposing the critical theoretical foundation and techniques of exploring the oxidative degradation rule of PAHs dye waste water.
     ③On the basis of PAHs dye waste water experiments and theoretical studies of
     Fenton advanced oxidation technology, this dissertation, for the first time, has systematically discussed the following key questions, such as the degradative characteristics of the dye waste water in the practice of industry, the technological adaptability after the spread of treatment dimensions, the cost of treatment and the sanitation, toxicity and logos during the degradative process, thus establishing the practice foundation of boosting the industrialization of this kind of dye waste water treatment techniques and providing the theoretical guidance for it.
引文
[1] 国家环境保护总局.2006 年中国环境状况公报.环境保护,2007
    [2] 谢磊,杨润昌,周书天.高浓度甲基橙溶液的低压湿式催化氧化处理.环境工程,1999,17(6):69-71
    [3] 温东辉,陈吕军.高浓度难降解染料废水的治理.石油化工环境保护.1996,1: 8-13
    [4] 张楠.染料废水的脱色研究.南京理工大学学报.1997,21(6): 513-516
    [5] 李天琪,卢义程.染料废水湿式氧化技术.工业用水与废水,1999,30(1): 6-8
    [6] 刘梅宏.纳滤膜技术处理印染废水实验研究.水处理技术,2002,28(1): 42-44
    [7] 李家珍.染料、染色工业废水处理.北京:化学工业出版社.1997
    [8] 徐向荣,王文华,李华斌.均相氧化法处理有机废水研究综述.环境导报,1998,4:7-10
    [9] 白春学, 钟俊波, 徐锁洪.难降解有机物去除技术的研究与应用进展.辽宁化工,2004,33
    [10] Neyens E., Baeyens J. A review of classic Fenton’s peroxidation as an advanced oxidation technique.Journal of Hazardous Materials, 2003,B98:33–50.
    [11] 谢锐.我国染料行业几种主要废水的治理技术概况.化工环保,1994, 14(3):139-143
    [12] Rozzi A. Ficara E. Cellamare C. M. and Bortone G., Characterization of Textile Wastewater and Other Industrial Wastewaters by Respirometric and Titration Biosensors, Wat. Sci.Tech.,1999, 40(1):161-168.
    [13] Venceslau M. C., Tom S. and Simon J. J., Characterisation of Textile Wastewater- A Revies, Environ. Tech., 1994,15(9), 917-929.
    [14] Gulays H., Process for the Removal of Recalcitrant Organics from Industrial Wastewater, Wat. Sci. Tech., 1997,36(2-3): 9-16.
    [15] 侯文俊,余健.印染废水处理技术的研究新进展.化工环保,2004,24(增):105-107
    [16] 程云,周启星,马奇英,等. 染料废水处理技术的研究与进展.环境污染治理技术与设备, 2003, 4(6): 56-60.
    [17] 洪颖,陈国松,张红漫,等.蒽醌类染料废水处理的研究进展.工业水处理,2004,24(10):5-8
    [18] 李宏,李晓红,彭德军等. 多环芳烃结晶紫的光助芬顿降解脱色研究. 光谱学与光谱分析. 2007,27(8):1452-1458.
    [19] 文晟. 水体中多环芳烃的 TiO2 光催化降解研究. [博士学位论文].广州:中国科学院广州地球科学研究所,2002,10:1-9.
    [20] 魏国.光助非均相 Fenton 体系用于活性艳红 X-3B 脱色的研究. [硕士学位论文].北京:北京林业大学,2004,6:17-19
    [21] Neamtu M.,Yediler A.,Siminiceanu I.,Macoveanu M.,Kettrup A.,Decolorization of disperse red354 azo dye in water by several oxidation processes-a comparative study,Dyes and pigments 2004,60:61-68.
    [22] Surpateanu Mioara, Zaharia Carmen. Advanced oxidation processes for decolorization of aqueous solution containing Acid Red G azo dye. CEJC, 2004,2(4): 573-588.
    [23] Slokar Y.M., Le Marechal A.M.Methods of decoloration of textile wastewaters. Dyes and Pigments, 1998,37:335–356.
    [24] Azbar N., Yonar T., Kestioglu K. Comparison of various advanced oxidation processes and chemical treatment methods for COD and color removal from a polyester and acetate fiber dyeing effluent. ChemospHere, 2004, 55:35–43.
    [25] 李庄.高浓度染料废水(含偶氮染料废水)处理技术的研究. [硕士学位论文].长沙:湖南大学,2001,4.
    [26] 陈颖,唐受印,戴友芝.载Ni-Cu-K活性炭催化氧化法处理染料废水活性红X-3B.环境污染治理技术与设备, 2004,5(2):68-71.
    [27] 董丽丽,董五欣.有机染料废水处理技术的新探究.邢台学院学报,2003,18(2):78-80.
    [28] 陈银生,张新胜,袁渭康.印染废水处理技术.化工进展,2001,5:39-42.
    [29] 孙晓君,冯玉杰,蔡伟民,等.废水中难降解有机物的高级氧化技术.化工环保,2001,21(5): 264-268.
    [30] 周建,章亭曦,洪利光. 染料废水的催化氧化处理. 环境污染与防治,2000 ,22 (4) :25-26.
    [31] 朱虹,孙杰,李剑超.印染废水处理技术.北京:中国纺织工业出版社,2000
    [32] Brillas E.,Calpe J. C.,Casado J.,Mineralization of 2,4-D by advanced electrochemical oxidation processes,Wat. Res. 2000,34(8):2253- 2262.
    [33] Brillas E.,Boye B.,Banos M. A.,Calpe J. C.,Garrido J. A.,Electrochemical degradation of chloropHenoxy and chlorobenzoic herbicides in acidic aqueous medium by the peroxi-coagulation method, ChemospHere ,2003,51:227-235.
    [34] Buxton G. V.,Greenstock C. L.,Helman W. P.,Ross A. B.,Critical review of rate constants for reaction of hydrated electrons,hydrogen atoms and hydroxyl radicals(OH·/O-) in aqueous solution,J. PHys. Chem. Ref. Data,1998,17:513-886.
    [35] Gnann M.,Gregor C. H.,Schelle S.,Chemical oxidative process for purifying highly contained wastewater,WO patent 93/08129,Peroxid- Chemie GmbH,DE,1993
    [36] Schumann U.,Grundler P.,Electrochemical degradation of organic substances at PbO2 anodes monitoring by continuous CO2 measure -ments,Wat. Res. ,1998,32(9):2835-2842.
    [37] Ventura A.,Jacquet G.,Bermond A.,Camel V.,Electrochemical generation of the Fenton’s reagent application to atrazine degradation,Water research,2002,36:517-3522.
    [38] Benefield L. D., Judkins J. F. Jr. and Weand B. L., Process Chemistry for Water andWastewater Treatment,, 1981.
    [39] Kim Y. K. and Huh I. . R. Enhancing Biological Treatability of Landfill Leachate by Chemical Oxidation, Environ. Engr. Sci ., 1997,14(1): 73-79.
    [40] Liane Lage E. C., Geraldo L. Sant’Anna Jr, Ronaldo Nobrega, Molecular Weight Distribution of Chlorolignin in Bleached Kraft Effluent by GPC and Ultrafiltration, Bioresource Technology, 1999,68: 63-70.
    [41] 白春学, 钟俊波, 徐锁洪.难降解有机物去除技术的研究与应用进展.辽宁化工,2004,33 (1):4-49.
    [42] 刘颖.染料废水的可生化性及其处理工艺研究.[硕士学位论文].山东:中国海洋大学,2005,6.
    [43] 林少芳.高效菌对染料脱色降解的研究. [硕士学位论文].福建:福州师范大学,2005,5.
    [44] Yu, T. et al. Stratification of microbial metabolic processes and redox potential change in an aerobic biofilm studied using microelectrodes.Water Science andTechnology. 1998, 37(4-5):195-198
    [45] 冯愚斌.印染废水处理设计实例,环境保护,1997, 9: 11-12.
    [46] 中岗元信,南广己,前田嘉道.嫌气条件下にわ行ゐ反应染料及ひ染色排水の铁生物,纤维学会志,1995, 51 (1): 57-63.
    [47] Knapp JS, Newby PS. The Microbiological Decolorization of an Industrial Effluent Containing Diazo-linkedchro-mopHore, WaterReasearch, 1995, 29(7):1807-1809.
    [48] 李慧蓉. 白腐真菌对染料的脱色降解及应用前景, 染料与染色,2002,6:
    [49] 肖锦.我国絮凝剂发展现状与对策.现代化工,1997, 12: 6-9
    [50] 杨巍.美国水处理化学品市场现状与展望.工业水处理,1998, 18 (2): 7-10
    [51] 卢秋晓,黎莉. 锌系复合絮凝剂处理印染废水的研究. 江西化工.2005,2:89-93.
    [52] 霍宇凝, 薛莉, 袁虹. 高分子复合絮凝剂对活性印染废水的脱色性能研究. 工业水处理.2006,1:34-37.
    [53] 陈润铭,招琳樱,朱锡海. 水溶性磺化聚苯乙烯在阳离子染料废水处理中的应用. 环境化学.1999,5:40-44.
    [54] Marc Pera-Titus, Verónica Garcia-Molina , Miguel A. Banos, et al. Degradation of chloropHenols by means of advanced oxidation processes: a general review. Applied Catalysis B: Environmental, 2004,47:219–256.
    [55] Hachem C., Bocquillon F., ZahraaO.,et al. Decolourization of textile industry wastewater by the pHotocatalytic degradation process. Dyes and Pigments, 2001,49:117-125.
    [56] Parag R.Gogate, Aniruddha B.Pandit. A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Advances in Environmental Research, 2004,8: 501-551.
    [57] Wang Rui, Chen Chen-Loung, Gratzl Josef S. Dechlorination of chloropHenols found in pulp bleach plant E-1 effluents by advanced oxidation processes. Bioresource Technology, 2005, 96 :897- 906.
    [58] 北京市环境技术与设备研究中心等单位.三废处理工程技术手册(废水卷).北京:化学工业出版社,2002.
    [59] 沈光范.纺织工业废水处理.北京:中国环境科学出版社,1991.
    [60] 詹旭, 罗泽娇,马腾. 高岭土吸附剂去除含锰废水中锰离子的实验研究. 地质科技情报.,2005,24(1):95-98.
    [61] 张一先,朱洪根. 处理有机物废水时的高岭土吸附性能研究,非金属矿,1991,3:27-29.
    [62] 倪晓斌,赵陈,童建颖. 炉渣的吸附性能及在废水处理中的应用实验. 化工生产与技术,2005,6:42-43.
    [63] 刘精今,李小明,杨麒. 炉渣的吸附性能及在废水处理中的应用. 工业用水与废水,2003,1:12-15.
    [64] 阎存仙.粉煤灰吸附去除活性蓝 X-3B.上海交通大学学报,1998,9:56-59.
    [65] Mckay G,Porter J,PrasadG R.,Air and Soil Pollution.1999,114(3-4):423-438.
    [66] Khattri S D,Singh,M K.Adsorption Science and Technology.1999,17(4):269-282.
    [67] Graham N,Chen X G,Jayaseelan S.water Science and Technology.2001,43(2):245-252.
    [68] Vik Eilen A,Carlson Dale A., Eikum Arild S,et al.Electrocoagulation of Potable W ater.W at.R es.1984,18(ll):1355-1360.
    [69] 史建福,陈荣修.活性染料染色模拟液的电化学混凝研究.四川环境 .1991,10(2):19-28.
    [70] 杨岳平,宋爽.电絮凝法处理毛纺染色废水.环境保护.2000,(8):19-20.
    [71] Lin Sheng H, Peng Chi F. Treatment of textile wastewater by electrochemicalm ethod.Wat.Res.1994,28(2):277-282.
    [72] Model M. Processing Methods for the Oxidation of Organics in Supercritical Water[P].US Patent:4543190, 1985-09-24
    [73] 丁巍. 高级氧化技术在处理染料废水中的研究. [硕士学位论文].辽宁:大连轻工业学院,2006,6.
    [74] Abdemaleka F,Gharbia S, BenstaaliB,et.al.Plasmachemical degradation of azo dyes by humid air plasma:Yellow Supranol 4GL,Scarlet Red Nylosan F3GL and industrial waste.Wster Research,2004,38(9):2339-2347.
    [75] Christian Petrier et al,Sonochemical degradation of pHenol in diluteaqueous solution: comparison of the reaction rates at 20 and 487KHz.PHys.Chem, 1994,98:1052
    [76] Entezari ,M.H; Kruus,P;Otson,R. Effect of frequence on sonochemicalreaction IINissociation of carbon disulfide. Ultrasonics Sonochemistry,1997,4(1):49-61.
    [77] Inez Hua et al., Optimization of ultrasonic irradiation as an advancedoxidation technology. Environ.Sci.Technol, 1997,31:2237-2248.
    [78] AlexD eV isschere ta l.,Kinetic model for the sonochemicalde gradation of monocyclic compounds in aqueous solution. PHys.Chem,1996,100:11636-11642.
    [79] Naomi L.Stock,Julie Peller,K Vinodgopal.,et.al..Environmental Science and Technology.2000,34(9):1747-1750.
    [80] 祁梦兰.声化学氧化-SBR 法处理染料废水.河北科技大学学报(自然科学版),1997,18(1): 76-80.
    [81] ZanoniM V B,Sene J J,Andreeva D,et.al.Chatacterization and pHotocatalytic activity of Au/TiO2 thin films for azo-dye degradation.Joumal of Catalysis.2003,220(1):127-135.
    [82] 王怡中,李薇.用于染料废水处理的光催化氧化方法.科技开发动态,2005,32(4):45-47.
    [83] Rao K. Venkata Subba, Subrahmanyam Machiraju, Boule Pierre.Immobilized TiO2 pHotocatalyst during long-term use: decrease of its activity. Applied Catalysis B: Environmental, 2004,49:239–249.
    [84] Bhattacharyya A., Kawi S., Ray M.B. PHotocatalytic degradation of orange II by TiO2 catalysts supported on adsorbents. Catalysis Today, 2004,98:431-439.
    [85] 张音波.TiO2 光催化降解甲基橙的实验及机理研究.[硕士学位论文].广东:广东工业大学, 2002,4.
    [86] 李绍锋,张秀忠,张德明,等. Fenton 试剂氧化降解活性染料的实验研究. 给水排水,2002,28 (3): 46 - 49.
    [87] 徐向荣,王文华,李华斌. Fenton 试剂与染料溶液的反应.环境科学,1999 ,20 (5) :72 - 74.
    [88] 徐向荣,王文华,李华斌. Fenton 试剂处理酸性染料废水的研究.环境导报,1997 ,6 :23 - 24.
    [89] 徐新华,陈调庆,杨雪涛.活性染料染色废水的光助 Fenton 处理实验研究. 污染防治技术, 1999, 12 (4) :228 -230.
    [90] 相欣奕,郑怀礼.Fenton 反应处理染料废水研究进展.重庆建筑大学学报,2004,26(4):126- 130.
    [91] 胥维昌.染料行业废水处理现和展望.染料工业,2002,39(6):35-39.
    [92] 刘立华,张边瑞.处理染料废水的研究进展.化工科技市场,2005,11:20-23.
    [93] 李茵.染料废水处理技术的研究进展.化工时刊.2005,19(10):60-63.
    [94] 刘冬莲.染料废水处理方法的研究进展.河南化工.2004,12:5-8
    [95] 梁宏,曾抗美.染料废水处理方法的研究进展.四川轻化工学院学报.2003,16(2)20-24.
    [96] 凌芳,李光明.染料废水的治理现状及展望.江苏环境科技.2006,19(12):98-101.
    [97] 孙颖 , 雷彩虹 . 染料 废 水脱色的物理化学处理技术 . 中国环境管理干部学院学报.2006,16(4):87-88.
    [98] 刘琰,孙德智.高级氧化技术处理染料废水的研究进展.工业水处理.2006,26(6):1-5.
    [99] Kremer M L, Stein G. The catalytic decomposition of hydrogen peroxide by ferricperchlorate. Trans. Faraday Sec.,1959,55:959-973.
    [100]Barb W G, Baxendale J H, George P, et al. Reaction of ferrous and ferric ionswith hydrogen peroxide.Part I.The ferrous ion reaction. Trans. Faraday Soc.,1951,47:462-500
    [101]KremerM.L. Complexvisas.’Free Radical’ mechanism for the catalytic:decomposition of H2O2 by Fe2+. Int.J.chem. Kinet,1985(17):1299-1314.
    [102]Wink.D.A ,Nimbus.R.W,Deserters M. F,et.al. Akinetic investigation of intermediates formed during the Fenton reagent mediated degradation of Nnitrosodimethyl a mine. Chem. Rev. Toxicol,1991(4):510一512.
    [103]Walling C. and Kato S. The oxidation of alcohols by Fenton reagent:The effect of copper ion. J. American Chem. Soc. , 1971,93: 4275-4281.
    [104]Walling C. and Goose A. (1973) Mechanism of the ferric ion catalyzed decomposition of hydrogen peroxide effect of organic substrates. J. American Chem. Soc., 1973, 95:2987-2991
    [105]李灵香玉, 马香娟. 羟基自由基(·OH)的特性及其在光化学氧化中的反应机理. 化工技术与开发.2006,8:26-29.
    [106]常文贵,张胜义. 高级氧化技术中羟基自由基产生的机理. 安庆师范学院学报(自然科学版).2004,4:26-29.
    [107]韩鹤友,何治柯, 曾云鹗. 羟自由基的分析研究进展. 分析科学学报.2001,1:54-56.
    [108]柏华,刘佳,刘福柱. 自由基的研究进展. 江西饲料.2007,3:1-3.
    [109]程丽华, 黄君礼,高会旺. Fenton 试剂对水中酚类物质的去除效果研究. 环境科学与技术.2004,4:1-4.
    [110] 卢义程 , 赵建夫 , 李天琪 . 高浓度乳化废水芬顿氧化实验研究 . 工业用水与废水.1999,4:23-25.
    [111]宋军,吕有良,金奇庭. 利用芬顿试剂预处理西咪替丁制药废水. 南京化工大学学报(自然科学版).2000,3:39-42.
    [112]张国蓉, 刘安军,贾永利等. 基于 Fenton 反应的羟基自由基对胶原蛋白的氧化降解作用. 天津科技大学学报.2006,2:13-15.
    [113]肖羽堂, 陈拥军,张晶晶等. Fenton 试剂预处理 H 酸废水的影响因素及其可生化性. 环境化学.2001,3:39-42.
    [114]金龙,赵由才. Fenton 试剂和矿化垃圾生物反应床联合处理电厂离子交换树脂再生废水. 给水排水.2004,12:132-136.
    [115]张铁锴, 吴红军, 王宝辉等. Fenton 法去除油田污水中聚丙烯酰胺的可行性分析. 工业用水与废水.2005,3:48-53.
    [116]李生彬,王拯,饶姗姗等. Fenton 试剂氧化处理拆弹炸药废水.西北民族大学学报(自然科学版).2005,1:24-26
    [117]李德, 谢其标, 陈龙海等. Fenton 试剂法处理造纸废水的应用研究.2005,3:34-36.
    [118]徐劲, 孙水裕, 张萍等. Fenton 试剂降解选矿废水中残余黄药. 化工环保.2005,2:25-27.
    [119]王滨松, 黄君礼, 张杰. Fenton 试剂氧化活性染料废水的研究. 哈尔滨工业大学学报.2005,9:100-104.
    [120]张晖, Huang C.P. Fenton 法处理垃圾渗滤液. 中国给水排水.2001,3:1-4.
    [121]钟恒文,二宫加奈. 生污泥的 Fenton 氧化处理. 中国给水排水.2003,8:41-44.
    [122]程丽华, 黄君礼,高会旺. Fenton 试剂降解氯酚类物质的研究进展. 化工环保.2004,s1:72-75
    [123]Chan K.H., Chu W. Model applications and mechanism study on the degradation of atrazine by Fenton’s system. Journal of Hazardous Materials 2005,B118: 227–237.
    [124]胡勤海, 王志荣, 陈艳等. UV/Fenton 氧化降解水溶液中甲基叔丁基醚的实验研究. 环境污染与防治.2005,8:1-4.
    [125]朱秀华, 张诚,丁珂等. Fenton 催化氧化技术处理硝基苯类废水的研究现状. 中外能源.2006,5:59-62.
    [126]Benitez F. J., Acero J. L., Real F. J. and Leal A. I. The role of hydroxyl radicals for the decomposition of p-Hydroxy PHenylacetic acid in aqueous solutions. Wat. Res. , 2001,35(5):1338-1343.
    [127]Buxton G. V., Greenstock C. L., Helman W. P. and Ross A. B. Critical review of rate constants for reactions of hydrated electrons , hydrogen atoms, and hydroxyl radicals(HO·/O–· )in aqueoussolution. J. PHys. Chem. Ref. Date. 1998,17:513-886.
    [128]Ewa L. G., Sprah G. and Harms S. Influence of some groundwater and surface waters constituents on the degradation of 4-ChloropHenol by the Fenton reaction. ChemospHere .1995,30: 9-20.
    [129]Gallard H. and De Latt J. Kinetic modeling of Fe(Ⅲ)/H2O2oxidation reactions in dilute aqueous solution using atrazine as a modelorganic compound. Wat. Res..2000, 34(12):3107-3116.
    [130]Gallard H., Latt J. DE and Legube B. (1999) SpectropHotometric study of the formation of iron( Ⅲ )-htdroperoxy complexes in homogeneous aqueous solutions. Wat. Res.. 1999,33(13):2929-2936.
    [131]Liao C. H. Modeling of UV-catalyzed hydroxyl peroxide decomposition in the presence of Chloride Ion. J. of Chinese Institute of Environ. Eng.. 1998,8(1): 35-42.
    [132]Liao C. H., Kang S. F. and Wu F. A. Hydroxyl radical scavenging role of Chloride and Bicarbonate ions in the H2O2/UV process. ChemospHere .2001, 44:1193-1200.
    [133]Lunar L., Sicilia D., Rubio S., Perez-Bendito D. and Nickel U. Degradation of pHotograpHic developers by Fenton reagent:Comdition optimization and kinetics for metol oxidation. Wat. Res.. 2000,34(6):1791-1802.
    [134]Lindsey M. E. and Tarr M. A. Quantitation of hydroxyl radical during Fenton oxidation following a single addition of iron and peroxide. ChemospHere ,2000,41: 409-417.
    [135]Lin S. H., and Lin C. M. and Leu H. G. Operating characteristics and kinetic studies of surfactant wastewater treatment by Fenton oxidation. Wat. Res..1999, 33(7), 1735-1741.
    [136]Hu C., Yu J.C., Hao Z. et al. Effects of acidity and inorganic ions on the pHotocatalytic degradation of different azo dyes. Applied Catalysis B :Environmental, 2003, 46:35–47.
    [137]Lu M.C.,Chen J. N.,Chang C. P.,Effect of inorganic ions oxidation of dichlorvos insecticide with Fenton’s reagent,ChemospHere,1997, 35(10):2285-2293.
    [138]Safarzadeh-Amiri A.,Bolton J.R.,Cater S. R.,Ferrioxalate-mediated pHotodegration of Organic pollutants in contaminated water,Wat. Sci., 1997,31(4):787-798.
    [139]Seller R.M., SpectropHotometric Determination of Hydrogen Peroxide Using Potassium (IV) Oxalate, Analyst, 1980,105(10): 950-954.
    [140]张科杰. Fenton 试剂处理酸性玫瑰红 B 染色废水的实验研究. [硕士学位论文].天津:天津大学,2004,12
    [141]叶招莲,陈育红.催化氧化处理酸性染料废水.环境保护.2001,23:4-6.
    [142] 陈 芳 艳 . Fenton 试 剂 处 理 活 性 艳 橙 X-GN 染 料 废 水 研 究 . 辽 宁 城 乡 环 境 科技.2002,22(6):14-16.
    [143] 顾平 , 刘奎 , 杨造燕 . Fenton 试剂处理活性黑 KBR 染料废水研究 . 中国给水排水.1997,13(6):16-18.
    [144]Mochidzuki K. and Takeuchi Y., Improvement of Biodegradability of Ethylenediaminetetraacetic Acid in Biological Activated Carbon Treatment by Chemical Preoxidation, Separation and Purification Technology, 1999,17(2):125-130.
    [145]暴雅娴,华兆哲,陈坚,等.Fenton 氧化法处理含甲基橙染料模拟废水的条件研究.中国环境保护优秀论文集,2005,北京:中国环境科学出版社:1141-1144.
    [146]杜桂荣,孙占学,黄克玲,等. Fenton 氧化-混凝法处理含活性染料废水的研究.华东地质学院学报,2002,25(4):305-307
    [147]孟刚.强化生化前处理降解光盘染料废水的研究.[硕士学位论文].重庆:重庆大学,2002,5.
    [148]杨大春,张光辉,顾平. Fenton-微滤工艺处理印染废水研究.中国给水排水,2003,19(3):46-48.
    [149]Scott G. HuLing etal. Influence of peat on Fenton Oxidation. Wat. Res., 2001, 35(7): 1687-1694.
    [150]Feng W.,Nansheng D.,Helin H.,Degradation mechanism of azo dye C. I. reactive red 2 by ironpowder reduction and pHotooxidation in aqueous solutions,ChemospHere , 2000,41:1233-1238.
    [151]Seller R. M., SpectropHotometric Determination of Hydrogen Peroxide Using Potassium (IV) Oxalate, Analyst, 1980,105(10): 950-954.
    [152]张铁锴, 吴红军,王宝辉等. Fenton 法去除油田污水中聚丙烯酰胺的可行性分析. 工业用水与废水.2005,3:50-53.
    [153] 高艳娇 , 黄继国 , 聂广正等 .Fenton 氧化法深度处理垃圾渗滤液 . 工业用水与废水.2005,6:35-37.
    [154]张德莉, 黄应平,罗光富等. Fenton 及 PHoto-Fenton 反应研究进展. 环境化学.2006,2:1-4.
    [155]朱琳娜,吴超,何争光. Fenton 试剂法处理难生物降解有机废水最新进展. 能源技术与管理.2006,2:80-83.
    [156]刘英艳, 刘勇弟. Fenton 氧化法的类型及特点. 净水技术.2005,3:40-42.
    [157] 赵景联 , 任国勇 . 微波辐射 Fenton 试剂氧化催化降解水中三氯乙烯 . 微波学报.2003,1:55-57.
    [158]徐科峰, 李忠,魏帅等. 微波对 Fenton 试剂降解苯酚反应活化能的影响. 华南理工大学学报(自然科学版).2005,12:1-4.
    [159]傅厚暾, 赵俐敏,冯娟等. Fenton 试剂-超声波降解对硝基苯胺产物的分析. 江汉大学学报(自然科学版).2004,2:84-86.
    [160]F. Javier Tivas, Fernando Beltrdn, Olga Gimeno, Fatima Carvalho. Fenton-like Oxidation of Landfill Leachate .Journal of environmental science and health.2003,38(2):371—379.
    [161] 谢光炎, 肖锦 . 不同金属离子存在下双氧水对难降解有机物的催化氧化 . 化工环保.1999,19(4):243- 244.
    [162]刘德启,魏敏,张颖等.稀十催化双氧水氧化耦合处理染料中间体废水研究(1).环境污染与防治.2002 ,24 (3):135-137.
    [163]张乃东,郑威彭永臻.铁屑-Fenton 法处理焦化含酚废水的研究.哈尔滨建筑人学学报.2002,35(2):57 – 60.
    [164] 姚 方 , 徐 大 有 , 吕 延 文 等 . 含 硝 基 苯 及 其 衍 生 物 染 料 废 水 的 处 理 . 工 业 水 处理.2003,23(6):18-20.
    [165]张伟,孙金蓉,赵立新等.废铁屑-H2O2 法处理炼油厂含酚废水.化工环保.1997,17(6):342-345.
    [166]K .B arbusinski,J .M ajewski.Discoloration of azo dye acid red 18 by Fenton reagent in the presence of Iron powder.Polish Journal of Environmental Studies.2003,12(2):151-155.
    [167]Balmer M.E., Sulzberger B.. Atrazine Degradation in Irradiated Iron/Oxalate Systems: Effects of pH and Oxalate. Environmental Science and Technology.1999, 33: 2418.
    [168]Bielski B.H.J., Cabelli D.E., Arudi R.L., Ross A.B., Reactivity of HO·/O· radicals in aqueoussolution. Journal of pHysical and chemical reference data.1985, 14: 1041.
    [169]Jeong J.S, Yoon J.Y., Dual roles of CO2-for degrading synthetic organic chemicals in the pHoto/ferrioxalate system.Water Research.2004,38: 3531
    [170]Lee Y.H., Yoon J.Y., Jeong J.S., Lee C.H., Kim S.Y., Influence of various reaction parameters on 2,4-D removal in pHoto/ferrioxalate/H2O2 process.ChemospHere, 2003,51:901.
    [171]Bandara J.,Nadtochenko V.,Kiwi J.,Pulgarin C.,Dynamics of oxidant addition as a parameter in the modeling of dye mineralization (Orange II) via advanced oxidation technologies.Wat. Sci. Tech..1997, 35(4):87-93.
    [172]Krutzler T.,Bauer R.,Optimization of a pHoto-Fenton prototype reactor.ChemospHere.1999, 38(11):2517-2532.
    [173]Kang S. F.,Liao C. H.,Hung H. P.,Peroxidation treatment of dye manufacturing wastewater in the presence of ultraviolet light and ferrous ions.Journal of hazardous materials.1999, B65:317-333.
    [174]Emilio C. A.,Jardim W. F.,Litter M. I.,Mansilla H. D.,EDTA destruction using the solar ferrioxalate advanced oxidation technology comparison with solar pHoto-Fenton treatment,Journal of pHotochemistry and pHotobiology. Chemistry .2002,151:.121-127.
    [175]Perez, M., F. Torrades, X. Domenech, and J. Peral Fenton and pHoto-Fenton oxidation of textile effluents. Water Research.2002, 36: 2703-2710.
    [176]Plgnatello,F. G. T. Alam, and F. M. Daniela Solar pHotodegradation of dichloroacetic acid and 2,4-dichloropHenol using an enhanced pHoto-Fenton process. ChemospHere. 2002,48: 385-391.
    [177]李太友,刘琼玉. 光助 Fenton 法氧化降解苯胺的研究. 江汉大学学报.2001,6:8-12.
    [178]陈琳, 雷乐成,杜瑛珣. UV/Fenton 光催化氧化降解对氯苯酚废水反应动力学. 环境科学学报.2004,2:27-30.
    [179]赵录庆, 姜聚慧, 郭强等. UV/Fenton 试剂法处理含偶氮蓝染料模拟废水的研究. 河南师范大学学报(自然科学版).2002,2:40-43.
    [180]Richard Gedye, Frank Smith, Kennech Westaway, et al. The use of microwave ovens for rapid organic synthesis. Tetrahedron Letters , 1986 , 27(3) :279-282
    [181]Raymond J Giguere, Terry L Bray, Scott M Duncan, et al. Application of commercial microwave ovens to organic synthesis Tetrahedron Letters , 1986 , 27 (41) :4945-4948.
    [182]王静,姜凤超.微波有机合成反应的新进展.有机化学,2002,23(3):211-219.
    [183]王剑虹,严莲荷,周申凡,等.微波技术在环境保护领域中的应用.工业水处理,2003,23(4):18-24.
    [184]曾里,夏之宁.超声波和微波对中药提取的促进和影响.化学研究与应用,2002,14(3):245-249.
    [185]胡章,钟杰平,李思东,等.微波辐射在壳聚糖高分子材料中的应用.高分子通报,2006,11:25-31.
    [186]宗柏,傅大放,张璐.用微薄加热清除磺基水杨酸污染.环境污染与防治,1999,21(1):22-24.
    [187]潘爱芹,严莲荷,蒋齐光,等.微波催化氧化法处理炼油废水.环境科学与技术,2004,27(增):114-117.
    [188]Wen PEI Chen SHEN. Heck Arylation of Cyclohexene Promoted by Ultrasonic and Micro wave in Ionic Liquid:a Novel Method of the Synthesis of 3-NapHthylcyclohexene.中国化学快报:英文版,2006.17(12):1534-1536.
    [189]陈小兵,李丽,王昭,等. 微波催化技术的应用研究进展. 辽宁石油化工大学学报,2006.26(4):15-17.
    [190]叶孝勇,陆进,李林. 微波加热在有机反应中的应用.贵阳学院学报,2006,1:42-44.
    [191]张先如,徐政. 微波在有机合成化学中的应用及进展.合成化学,2005.13(1):1-5.
    [192]张猛,建平. 微波辐射技术在有机合成中的应用.化学试剂,2004,26(3):148-152.
    [193]益文.微波辐射下羰基化合物在水中的 NaBH4 还原反应.试剂与精细化学品,2006,12:6-9
    [194]杨振曦,彭蜀晋.微波化学在环境保护中的应用.化学教学,2006,3:36-38.
    [195]张泽志,颜阳,杨发忠,等. 环境保护领域中微波能的应用进展研究.云南化工,2005, 32(3):41—44.
    [196]杨强.微波技术在环境保护中的应用.环境保护:2001,1:41-43.
    [197]徐美忠,谢毓元.微波炉加快有机化学反应速率.化学通报,1993,6:8-11.
    [198]Tang J, Zhang T, Ma L, et al. Microwave-assisted purification of automotive emissions. J Catal,2002,211(2):560-564.
    [199]Jong Yeol Jeon, Hee Young Kim. Microwave irradiation effect on di.usion of organic molecules in polymer. European Polymer Journal, 2000,36: 895-899.
    [200]Jerby E., Dikhtyar V., Aktushev O., et al. The microwave drill. Science, 2002, 298:587-589
    [201]Menendez J.A.,Inguanzo M., Pis J.J. Microwave-induced pyrolysis of sewage sludge. Water Res 2001,36(13):3261-3264.
    [202]张漪,崔建兰,唐昌盛,等.微波促进二氯菊酸甲酯的水解新工艺研究.应用化工,2006,35(11):861-863.
    [203]肖新荣.微波辐射 Fenton 试剂-活性炭催化氧化体系降解水中苯酚. 南华大学学报(自然科学版),2004,18(4):22-25
    [204]陶长元,向,刘仁龙等. 微波和微波 Fenton 组合法处理渗滤液的对比. 辽宁石油化工大学学.2006,4:21-23
    [205]郑小明,周仁贤. 环境保护中的催化治理技术.化学工业出版社,2003
    [206]刘作华. 微波促进含铬矿物催化氧化甲基橙的研究.[博士学位论文].重庆:重庆大学.2005.11
    [207]于怀东,项念,杨扬等. 锰离子对 Fenton 反应的影响. 武汉大学学报(理学版).2006,4:49-52.
    [208]于怀东,方茹,陈士明等. 锰离子参与的类 Fenton 反应的 HPLC 和 ESR 波谱研究. 化学学报.2005,14:57-60.
    [209]方茹,杨少宗,国林等.对锰离子参与类 Fenton 反应机理的研究.生物学杂志.2007,2:9-11.
    [210]方茹,杨少宗.锰及锰卟啉对自由基抑制作用初探. 唐山师范学院学报.2002,2:1-4.
    [211]张其春,卢渊,薄和秋等. 镀铜铁屑—Fenton 氧化反应的一种新催化剂. 成都理工大学学报(自然科学版),2004,4:62-64.
    [212]赵学庄. 化学反应动力学原理.北京:高等教育出版社.1984.
    [213]Watanabe T, Takizawa T, Honda K. PHotocatalysis through Excitation of Adsorbates. 1. Highly Efficient N-Deethylationof Rhodamine B Adsorbed to Cds. J PHys Chem, 1977,81:1845-1851.
    [214]刘华俊,彭天佑,彭正合等.Dy/WO3 光催化降解罗丹明 B 的反应机理.武汉大学学报.2007,53(2):127-134.
    [215]黄应平,刘德富,张水英等.可见光/Fenton 光催化降解有机染料.高等学校化学学报.2005,26(12):2273-2277.
    [216]尹京花,赵莲花等.掺铁二氧化钛催化氧化罗丹明 B 溶液的反应机理初探.延边大学学报(自然科学版),2004,30(3):178-181.
    [217]马颖,姚建年.罗丹明 B 在 TiO2 薄膜和 P-25 涂层催化下光反应的比较.感光科学与光化学,1998,16(2):117-121

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700