NdFeB磁体环境加速腐蚀行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
NdFeB磁体作为一种重要的金属功能器件被广泛应用于信息电子、能源交通、通讯医疗、国防航空等众多领域,在高科技领域及社会生活中占据越来越重要的地位。由于稀土钕元素的化学活性非常高,易于氧化,所以耐蚀性对于NdFeB磁体的应用非常关键。恒定湿热腐蚀试验、盐雾腐蚀试验和高压加速腐蚀试验通常用于评价稀土永磁材料的耐蚀性,本文针对不同合金成分的NdFeB磁体在这三种加速腐蚀环境中的腐蚀行为及其机理进行研究,讨论合金成分及不同腐蚀试验条件对磁体磁通损失的影响,首次研究了热变形NdFeB磁体耐腐蚀特性。通过电化学腐蚀试验的方法研究了烧结NdFeB磁体的电化学腐蚀行为和机理。这为大幅度提高NdFeB磁体自身的耐腐蚀性能,为进一步揭示NdFeB磁体的腐蚀机制提供可能的理论指导。
     通过恒定湿热腐蚀试验、中性盐雾腐蚀试验和高压加速腐蚀试验,系统研究了不同成分的烧结NdFeB磁体在这三种环境下的腐蚀行为和腐蚀动力学。研究发现尽管高压加速腐蚀试验的条件无论是温度、湿度、压力都比恒定湿热腐蚀试验要严苛,但是烧结NdFeB磁体在高压加速腐蚀环境中的腐蚀速率比恒定湿热和中性盐雾腐蚀环境要缓慢得多。认为高压加速腐蚀试验的湿度为100%RH(饱和湿度),试样表面液膜厚度较大,氧的扩散受到限制,加上高压水蒸汽致使供氧不足,导致腐蚀速率放缓。
     研究发现NdFeB磁体的盐雾腐蚀进程可分为两个阶段,并给出了盐雾腐蚀反应速率拟合方程。在盐雾腐蚀环境中,样品表面首先形成点蚀。认为由于氯离子极容易吸附和扩散到基体相中,在氯离子的协同作用下腐蚀面不断扩大。在腐蚀初期由于腐蚀产物的生成速率大于溶解速率,表现为“腐蚀增重期”;当腐蚀进一步进行时,由于体积膨胀使得样品内部产生应力,导致腐蚀产物脱落溶解,当腐蚀产物的溶解速率远大于生成速率时,表现为“腐蚀失重期”。
     通过对比分析烧结NdFeB磁体和热变形NdFeB磁体在中性盐雾腐蚀环境中的耐蚀性,发现热变形磁体在中性盐雾腐蚀环境中展现出了更好的耐蚀性能。认为热变形磁体具有独特的片状纳米晶组织结构,富钕相的晶粒更加细小,分布更加均匀,使得晶间腐蚀发生的通道变窄,从而最大限度的抑制晶间腐蚀的速率,提高磁体的耐蚀性能。
     通过电化学腐蚀试验测量了烧结NdFeB磁体在3.0%NaOH溶液,自来水,3.5%NaCl溶液以及0.1mol/LHCl溶液中的极化曲线和交流阻抗谱,研究发现:在NaOH溶液中,烧结NdFeB磁体发生了明显的钝化现象,磁体表面形成了致密的氢氧化物钝化膜,对基体有一定的保护作用;在自来水中,磁体表面生成的腐蚀产物膜对磁体的腐蚀进程具有一定的缓冲作用,但无法阻止腐蚀反应的继续进行;在NaCl溶液中,大量的Cl-离子不仅会破坏腐蚀产物膜在磁体表面的覆盖,还会加速阳极区域的活性溶解;在HCl溶液中,磁体很容易发生活性溶解反应,腐蚀速率明显快于其他溶液。
     通过对不同合金成分的烧结NdFeB磁体在不同腐蚀环境和不同性质电化学溶液中的腐蚀行为研究,系统阐明了以重稀土元素Dy部分取代Nd,及微量添加Co等元素,能够明显提高烧结NdFeB磁体在不同环境,不同介质中的耐蚀性。这对钕铁硼生产厂家通过合金成分设计有效提高烧结NdFeB基体的耐蚀性具有重要的指导意义。
NdFeB permanent magnets which serve as important metal functional devices are widely used in various fields, such as electronics, information, communication, energy, transportation, medical apparatus, aviation and so on. They play more and more important roles in our high-tech and daily life. Due to the high chemical activity of Nd and easily oxidized, poor corrosion resistance of NdFeB magnets greatly limit the application. Constant hot-humid(HH), neutral salt spray(NSS) and pressure cooker test(PCT) are usually used to evaluate corrosion resistance of NdFeB magnets. Corrosion behavior and mechanism of different alloy composition of NdFeB magnets in the above corrosive climates were discussed. The effects of alloy composition and different corrosive environments on magnetic flux loss were also discussed. Electrochemical corrosion behavior and mechanism were investigated via dynamic potential polarization curve and electrochemical impedance spectroscopy.
     The corrosion velocity rate in PCT climate was much slower than that in NSS and HH climates through the NSS, HH and PCT tests. The thickness of liquid film of magnet surface in PCT climate was much bigger than those in NSS and HH climates because of its saturated humidity(100%RH). It was probably because that high-pressure steam led to an oxygen-deficient supply, and the steam/liquid film on the surface of magnets would hinder the diffusion of oxygen. The atmospheric corrosion happened electrochemical reaction under the thin liquid film. The corrosion velocity rate under full immersion state(PCT) was much slower than those under thin liquid membrane state(NSS and HH).
     The corrosion process of NdFeB magnets in NSS climate included two steps, and corrosion reaction dynamic velocity equation was given. In NSS climate, magnet surface formed pitting corrosion at first, and then the corrosion areas expanded increasingly due to the synergy effect of chloride ion which could adsorb and diffuse into the matrix phases. In the beginning, magnet surface formed oxidation film when formation velocity of corrosion products on the magnet surface was faster than dissolution velocity of them, corrosion process displayed weight gain slightly. Then corrosion proceeded further, corrosion products film spalled and dissolved into the solution because of internal stress resulted from volume expansion. When dissolution velocity of corrosion products film was faster than formation velocity, corrosion process displayed weight loss fast.
     The corrosion behavior of NdFeB magnets prepared by sintering and hot deforming were compared. Effect of microstructures on corrosion resistance of NdFeB magnets had been discussed. Hot deformed magnets exhibited much better corrosion resistance than sintered ones in the neutral salt spray climate. It was because that hot deformed magnets had platelet-shaped nanograins microstructure, in which grain boundary Nd-rich phases were much fine, uniform and disperse. The different microstructure between sintered and hot deformed magnets caused the different corrosion behavior.
     The corrosion behavior and mechanism of sintered NdFeB magnets under different electrochemical conditions were investigated by means of electrochemical technology including polarization curve, electrochemical impedance spectroscopy. The corrosion dynamic models of sintered NdFeB magnets in different solutions were established. In alkaline solution, NdFeB magnets exhibited passive phenomenon evidently. The uniform and compact hydroxide passivation film formed on the magnets surface could protect the matrix of NdFeB magnets away from attack. In piped water, corrosion product film could not prevent corrosion reaction occuring, but could slow corrosion reaction velocity to a certain extent. In NaCl solution, a large member of Cl ions would not only destroy corrosion product film, but also accelerate active dissolution of anode areas. In HCl solution, sintered NdFeB magnets occured activation dissolution easily. Therefore, corrosion rate in acid solution was obviously higher than those in other solutions.
     The corrosion behavior and mechanism of different alloy composition of NdFeB magnets in different corrosion climates and electrochemical electrolytes was investigated. It showed that corrosion resistance of NdFeB magnets could be improved obviously by Dy substitution for Nd partially and minor Co addition. It is very significant for NdFeB manufacturers to improve corrosion resistance of magnet substrate through alloy composition design.
引文
[1]Nesbitt E. A., Wernick R. J. H., Corenzwit E. Magnetic Moments of Alloys and Compounds of Iron and Cobalt with Rare Earth Metal Additions J. Appl. Phys.1959,30(3):365
    [2]Hubbard W. M., Adams E., Gilfrich J. Magnetic Moments of Alloys of Gadolinium with Some of the Transition Elements. J. Appl. Phys.1960,31: S368
    [3]Hoffer G., Strnat, K. Magnetocrystalline anisotropy of YCo5 and Y2Co17. IEEE Trans. Magn., MAG-7 (1966) 487
    [4]Strnat K., Hoffer G., Olson J., et al. A Family of New Cobalt-Base Permanent Magnet Materials. J. Appl. Phys.1967,38(3):1001
    [5]Buschow K.H.J., Luiten W, Naastepad P A, et al. Magnetic material with a (BH)max of 18.5 million Gauss Oersteds. Philips Tech, Rev,1968,29:336
    [6]Ojima T., Tomizawa S, Yoneyama T, et al. New Type Rare Earth Cobalt Magnets with an Energy Product of 30 MGOe. Jpn. J. Appl. Phys.1977, 16(4):671
    [7]Sagawa M., Fujimura S., Togawa N., et al. New Material for Permanent Magnets on a Base of Nd and Fe(invited). J. Appl. Phys.1987,55(6):2083
    [8]Coehoorn R., de Mooij D. B. Duchateau, J. P. et al. Novel permanent magnetic materials made by rapid quenching. J. Phys. Colloque 49 (1988) C8-669
    [9]周寿增,董清飞,超强永磁体-稀土铁系永磁材料,北京:冶金工业出版社,1999.70-76
    [10]Tokunaga M., Kogure H., Endoh M., et al. Improvement of thermal stability of Nd-Dy-Fe-Co-B sintered magnets by additions of Al, Nd and Ga. IEEE Trans. Magn., MAG-23 (1987) 2287
    [11]Takahashi M., Uchida K, Taniguchi F., et al. High performance Nd-Fe-B sintered magnets made by the wet process. J. Appl. Phys.,83 (1998) 6402
    [12]Harada H. Proceeding of "Nd-Fe-B 98" Gorham/Intertech Consulting, Beijing China:October, (1998) 18
    [13]Matsuura Y. Recent development of Nd-Fe-B sintered magnets and their applications J. Magn. Magn. Mater.,303 (2006) 344
    [14]Scott D. W, Ma B. M., Liang Y. L., et al. Micro structural control of NdFeB cast ingots for achieving 50 MGOe sintered magnets. J. Appl. Phys.,79 (1996)4830
    [15]Bermardi J., Fidler J., Sagawa M., et al. Micro structural analysis of strip cast Nd-Fe-B alloys for high (BH)max magnets. J. Appl. Phys.,83 (1998) 6396
    [16]金子裕治ほガ.粉体ぉょび粉末冶金,41(1994)695
    [17]Lee. D, Hilton. J.S, Chen. C. H, Huang. M. Q, et al. Bulk isotropic and anisotropic nanocomposite rare-Earth magnets. IEEE Trans, on Magn,40 (2004) 2904
    [18]Liu. Sam, Lee. Don, Huang Meiqin, Ashil Higgins, et al. Research and development of bulk anisotropic nanograin composite rare earth permanent magnets. Proc. of the 19th international Workshop on REPM, (2006) 123
    [19]唐任远,现代永磁电机理论与设计,北京:机械工业出版社,1997.19
    [20]Li W, Jiang L, Wang D W, et al. Rare-earth-transition-metal-boron permanent magnets with smaller temperature coefficients. Journal of the Less-Common Metals,1986,126:95
    [21]周寿增,郭灿杰,呼琴等.高磁能积低温度系数的铁基永磁合金的磁性能与组织结构.北京钢铁学院学报,1988,10(3):317
    [22]Tokunaga M, Harada H, Trout S R, et al. Effect of Nb additions on the irreversible losses of Nd-Fe-B type magnets. IEEE Transactions on Magnetics,1987,23:2284
    [23]Tokunaga M, Kogure H, Endoh M, et al. Improvement of thermal stability of Nd-Dy-Fe-Co-B sintered magnets by additions of Al, Nd and Ga. IEEE Transactions on Magnetics,1987,23:2287
    [24]成问好,李卫,李传健.添加Nb对Nd-Fe-B磁体温度稳定性的影响.金属学报,2001,37:87
    [25]Cheng W H, Li W, Li C J, et al. The magnetic properties, thermal stability and micro structure of Nd-Fe-B-Ga sintered magnets prepared by blending method. Journal of Magnetism and Magnetic Materials,2001,234:274
    [26]Velicescu M, Fernengel W, Rodewald W, et al. High-energy sintered Nd-Dy-Fe-B magnets with Co and Cu additions. Journal of Magnetism and Magnetic Materials,1996:157-158:47
    [27]Yan G L, McGuiness P J, Harris I R. Environmental degradation of NdFeB magnets. Journal of Alloys and Compounds,2009,478:188
    [28]Kim A S, Jacobson J M. Oxidation and oxidation protection of Nd-Fe-B magnets. IEEE Transactions on Magnetics,1987,23:2509
    [29]Jacobson J, Kim A. Oxidation behavior of Nd-Fe-B magnets. Journal of Applied Physics,1987,61:3763
    [30]Edgley D S, Le Breton J M, Steyaert S, et al. Characterisation of high temperature oxidation of Nd-Fe-B magnets. Journal of Magnetism and Magnetic Materials,1997,173:29
    [31]Li Y, Evans H E, Harris I R, et al. The Oxidation of NdFeB Magnets. Oxidation of Metals,2003,59:167
    [32]Cygan F D, McNallan M J. Corrosion of NdFeB permanent magnets in humid environments at temperatures up to 150℃. J. Magn. Magn. Mater., 1995,139:131
    [33]Katter M, Zapf L, Blank R, et al. Corrosion Mechanism of RE-Fe-Co-Cu-Ga-Al-B magnets. IEEE Trans. Magn.,2001,37:2474
    [34]谢发勤,郜涛,邹光荣.NdFeB磁体组成相的电化学腐蚀行为.腐蚀科学与防护技术,2002,14:260
    [35]Schultz L, El-Aziz A M, Barkleit G, et al. Corrosion behaviour of Nd-Fe-B permanent magnetic alloys. Materials Science and Engineering A,1999,267: 307
    [36]姜力强,郑精武.烧结钕铁硼在各种酸介质中的腐蚀研究.稀有金属材料与工程,2006,35:340
    [37]Zheng J W, Xia Q P, Qiao L, et al. Study on the Electrochemical Corrosion Behavior of Nd-Fe-B-Sintered Magnets in Different Remanence States. Corrosion Science Section,2008,8:800
    [38]Warren G W, Chang K E. Corrosion behavior of NdFeB with Co and V additions. Journal of Applied Physics,1993,73:6479
    [39]Fernengel W, Rodewald W, Blank R. The influence of Co on the corrosion resistance of sintered NdFeB magnets. Journal of Magnetism and Magnetic Materials.1999,196-197:288
    [40]于濂清,黄翠翠,袁永锋.Nd,Dy含量对高磁能积烧结NdFeB磁性能和 耐蚀性影响.粉末冶金工业,2008,18:19
    [41]金子裕治NEOMAX50烧结钕铁硼新表面处理技术Eng Mater(日),1998,46(12):27
    [42]谢发勤,马宗跃.离子镀铝的Nd-Fe-B永磁体性能研究.磁性材料及器件,1995,26(1):7
    [43]Brown D, Ma B M, Chen Z M. Developments in the processing and properties of NdFeb-type permanent magnets. J. Magn Magn Mater,2002, 248:432
    [44]周寿增.稀土永磁材料及其应用.北京:冶金工业出版社,1995:8
    [45]唐任远.现代永磁电机理论与设计.北京:机械工业出版社,1997:16
    [46]Korman C E, Mayergoyz I D. Preisach model driven by stochastic inputs as a model for aftereffect. IEEE Transactions on Magnetics,1996,32:4204
    [47]Torre E D, Bennett L H.A Preisach model for aftereffect. IEEE Transactions on Magnetics,1998,34:1276
    [48]Mitchler P D, Dahlberg E D, Wesseling E E, et al. Henkel plots in a temperature and time dependent Preisach model. IEEE Transactions on Magnetics,1996,32:3185
    [49]Basso V, Beatrice C, LoBue M, et al. Connection between hysteresis and thermal relaxation in magnetic materials. Physical Review B,2000,61:1278
    [50]Kneller E. Ferromagnetismus. Berlin:Springer Verlag,1962
    [51]Slonczewski J C. "Magnetic annealing" in Magnetism. New York:Academic Press,1963
    [52]Neel L. Le trainage magnetique. Journal de Physique et le Radium,1951,12: 339
    [53]Kronmuller H. Theory of magnetic after-effects in ferromagnetic amorphous alloys. Philosophical Magazine Part B,1983,48:127
    [54]姜寿亭,李卫.凝聚态磁性物理.北京:科学出版社,2003
    [55]张宏伟,掌勺英,孙继荣等.磁体中的相互作用对磁粘滞的影响.第十二届全国磁学和磁性材料会议.武夷山,2005:156
    [56]朱丹阳,高润生,甄良.Fe-Cr-Co永磁合金的磁性能稳定性.材料科学与工艺,2004,12:215
    [57]Wohlfarth E P. The coefficient of magnetic viscosity. Journal of Physics F: Metal Physics,1984,14:L155
    [58]朱明刚,李岫梅,郭朝晖等.Nd-Fe-B永磁材料低磁时效机理研究.物理学报,2005,54:5895
    [59]Fang Y K, Yang L, Li W, et al. Magnetic micro structures of high coercivity Nd-Fe-B sintered magnet in remanent and incomplete thermal demagnetization states. Journal of Magnetism and Magnetic Materials,2010, 322:3720
    [60]Haavisto M, et al. Magnetization losses in sintered NdFeB permanent magnets with time. In:Proc. of 20th Int. Workshop on Rare-Earth Magnets and their Application, Knossos-Crete, Greece,2008:370
    [61]Shintaro T, et al. Flux loss of Nd-Fe-B sintered magnet for long time aging. In:Papers of Technical Meeting on Magnetics, IEE Japan,2006, Mag-06: 1-6
    [62]Masaaki T, et al. Long Term Stability of Nd-Fe-B Sintered Magnets in a Partially Magnetized State.In:Papers of Technical Meeting on Magnetics, IEE Japan,2004, Mag-04:15-20
    [63]李安华,董生智,李卫.烧结Sm2Co17型永磁材料的力学性能及断裂行为的各向异性.物理学报,2002,51(10):2320
    [64]Li A H, Dong S Z, Li W. A Study of the Fracture in Sintered Sm-Co Permanent Magnetic Materials. Science in China (Series G),2003,46 (3): 241
    [65]李安华,董生智,李卫.烧结NdFeB永磁材料的力学性能及断裂行为的各向异性.稀有金属材料与工程,2003,32(8):631
    [66]Li W, Li A H, Wang H J. Anisotropic Fracture Behavior of Sintered Rare-Earth Permanent Magnets. IEEE Transactions on Magnetics,2005,41: 2339
    [67]Li A H, Li W, Dong S Z, et al. Sintered Nd-Fe-B magnets with high strength. Journal of Magnetism and Magnetic Materials,2003,265:331
    [68]王会杰,李安华,朱明刚等.Ti添加对烧结Nd-Fe-B磁体力学性能和磁性能的影响.中国稀土学报,2005,23:116
    [69]Li W, Li A H, Wang H J, et al. Study on strengthening and toughening of sintered rare-earth permanent magnets. Journal of Applied Physics,2009, 105:07A703
    [70]Wang H J, Li A H, Zhu M G, et al. Sintered Nd-Fe-B magnets with improved impact stability. Journal of Magnetism and Magnetic Materials,2006,307: 268
    [71]Wang H J, Li A H, Li W. Effect of Pr and Dy substitution on the impact resistance of sintered Nd-Fe-B magnets. Intermetallics,2006,15:985
    [72]Hirosawa S. Current high-performance permanent magnets. In:Proc. of 20th Int. Workshop on Rare-Earth Magnets and their Application, Knossos-Crete, Greece,2008:16-19
    [73]Akiya T., Kato H., Sagawa M. and Koyama K. Enhancement of coercivity in Al and Cu added Nd-Fe-B sintered magnets by high field annealing. In:IOC Conference Series:Materials Science and Engineering.2009
    [74]Li W.F., Ohkubo T. and Hono K. Effect of post-sinter annealing on the coercivity and micro structure of NdFeB permanent magnets. In:Acta Materialia.2009,57:1337-1346
    [75]Park K. T., Hiraga K. and Sagawa M. Effect of metal-coating and consecutive heat treatment on coercivity of thin Nd-Fe-B sintered magnets. In:Proc.16th Workshop Rare-Earth Magnets and Their Applications, Sendai, 2000,257-264
    [76]Hirota K., Nakamura H., Minowa T. and Honshima M. Coercivity enhancement by the grain boundary diffusion process to Nd-Fe-B sintered magnets. In:IEEE Trans. on Magn.2006,42(10):2909-2911
    [77]Kato H., Akiya T., Sagawa M., Koyama K. and Miyazaki T. Effect of high magnetic field on the coercivity in sintered Nd-Fe-B magnets. In:J. Magn. Magn. Mater,2007,310(2):2596-2598
    [78]Park K. T, et al. Effect of metal-coating and consecutive heat treatment on coercivity of thin Nd-Fe-B magnets. In:Proc. of 20th Int. Workshop on Rare-Earth Magnets and their Application, Sendai, Japan,2000:257-264
    [79]Nakamura H, Hirota K, Shimao M, et al. Magnetic properties of extremely small Nd-Fe-B sintered magnets. IEEE Transactions on Magnetics,2005,41: 3844
    [80]刘国军,李家节,赵睿等.混合合金法添加DyHx对烧结Nd-Fe-B磁体性能和微观结构的影响.功能材料,2010,41(1):35
    [81]Fidler J, Schrefl T. Overview of Nd-Fe-B magnets and coercivity.Journal of Applied Physics,1996,79:5029
    [82]张建成,李卫.晶粒尺寸及取向对钕铁硼磁体磁性能的影响.金属功能材料,1999,6(1):17
    [83]Kronmiiller H, Durst K D, Sagawa M. Analysis of the magnetic hardening mechanism in RE-FeB permanent magnets. Journal of Magnetism and Magnetic Materials,1988,74:291
    [84]Fukagawa T, Hirosawa S. Influence of Nd/Nd2Fe14B interface microstructure on the coercivity of surface Nd2Fe14B grains in Nd-sputtered Nd-Fe-B sintered magnets. Scripta Materialia,2008,59:183
    [85]贾铮,戴长松,陈玲.电化学测量方法.北京:化学工业出版社,2006.
    [86]贺琦军,李卫,潘伟,et a1.混合合金法添加合金元素对烧结Nd-Fe-B磁体耐氢性能的影响.磁性材料及器件,2003,34:19-22.
    [87]朱明刚,李岫梅,郭朝晖,李卫.Nd-Fe-B永磁材料低磁时效机理研究.物理学报,2005,54:5895-5900.
    [88]贺琦军,李卫.钕铁硼永磁材料防腐蚀研究进展.金属功能材料,2001,8:8-13.
    [89]Kim A S, Camp F E, and Lizzi T. Hydrogen induced corrosion mechanism in NdFeB magnets. J. Appl.Phys.,1996,79:4840-4842.
    [90]Katter M, Zapf L, Blank R, et al. Corrosion Mechanism of RE-Fe-Co-Cu-Ga-Al-B magnets. IEEE Trans. Magn.,2001,37:2474-24
    [91]Yan Gaolin, McGuiness P J, Farr J P G, et al. Environmental degradation of NdFeB magnets. J. Alloys Compd.2009,478:188-192
    [92]Kaszuwara W, Leonowicz M. Long-term corrosion tests on Nd-Fe-B sintered magnets. Mater. Lett.1999,40:18-22.
    [93]Kim A S, Jacobson J M. Oxidation and oxidation protection of Nd-Fe-B magnets. IEEE Trans. Magn. Magn.,1987,23:2509-2511.
    [94]Jacobson J, Kim A. Oxidation behavior of Nd-Fe-B magnets. J. Appl. Phys., 1987,61:3763-3765.
    [95]魏宝明.金属腐蚀理论及应用.北京:化学工业出版社,
    [96]Fidler J, Schrefl T. Overview of Nd-Fe-B magnets and coercivity. J. Appl. Phys.,1996,79:5029-5034.
    [97]Cygan D. F., and McNallan M. J. Corrosion of NdFeB permanent magnets in humid environments at temperatures up to 150℃. J. Magn. Magn. Mater. 139,131 (1995).
    [98]Kim A. S., Camp F. E., and Lizzi T. Hydrogen induced corrosion mechanism in NdFeB magnets. J. Appl. Phys.79,4840 (1996).
    [99]Katter M., Zapf L., Blank R., Fernengel W., and Rodewald W. Corrosion Mechanism of RE-Fe-Co-Cu-Ga-Al-B magnets. IEEE Trans. Magn.37,2474 (2001).
    [100]Yan G. L., McGuiness P. J., Farr J. G., and Harris I.R. Environmental degradation of NdFeB magnets. J. Alloys Comp.478,188 (2009).
    [101]El-Moneim A.A. and Gebert A. Electrochemical characterization of galvanically coupled single phases and nanocrystalline NdFeB-based magnets in NaCl solutions. J. Appl. Electrochem.33,795 (2003).
    [102]Liu W. Q., Yue M., Liu C. Y, Zhang D. T., and Zhang J. X. Oxidation kinetics of Nd-Fe-B permanent magnets with modified micro structure. J. Appl. Phys.103,07E108 (2008).
    [103]刘卫强,岳明,张久兴,et al.富钕相对烧结NdFeB磁体耐腐蚀性的影响.稀有金属材料与工程,2007,36:1066.
    [104]曹楚南,张鉴清,电化学阻抗谱导论,北京:科学出版社,2002,82
    [105]贾铮,戴长松,陈玲,电化学测量方法,北京:化学工业出版社,2006,167

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700