经典瞬时受体电位Ⅰ型通道(TRPC_1)在SHR左室肥厚发生发展中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
左室肥厚(left ventricular hypertrophy, LVH)是高血压病的常见并发症,被视为是猝死、心力衰竭等心血管事件的独立危险因素。先前研究表明,在基因敲除和动脉缩窄的大鼠左室肥厚动物模型上,经典瞬时受体电位Ⅰ型通道(transientreceptor potential canonical type1channels, TRPC_1)参与了其LVH的发生发展。本研究采用自发性高血压大鼠(SHR)左室肥厚模型,首先动态研究不同周龄TRPC_1表达及SHR左室肥厚发生发展之间的关系,再研究TRPC_1通路下游信号分子:钙调磷酸酶(calcineurin, CaN)、激活T细胞核因子-3(nuclear factor of activated Tcells-3, NAFTC3)的表达变化,以期研究TRPC_1、CaN、NFATC_3表达在SHR左室肥厚发生发展过程中的作用;并研究替米沙坦(telmisartan, Tel)干预TRPC_1表达和环孢素A(cyclosporinA, CsA)抑制CaN后SHR左室肥厚的变化,进一步证实TRPC_1参与了SHR左室肥厚的发生发展。
     第一部分不同周龄SHR左室TRPC_1表达的动态变化
     目的:通过研究TRPC_1随SHR周龄增加的动态变化,探讨TRPC_1是否参与SHR左室肥厚的发生发展。
     方法:32只雄性SHR为实验组,随机分为4周龄组、8周龄组、12周龄组、18周龄组等亚组(n=8),相同周龄雄性Wistar-Kyoto (WKY)大鼠作为对照组(n=8)。分别测量收缩压(SBP)、体重(BW)、室间隔厚度(IVS)、左室后壁厚度(LVPW)。测定心脏质量(HW)和左心室质量(LVW),并计算左室质量指数(LVMI)。Real-time PCR、免疫组化和western blot分别检测TRPC_1、CaN、NFATC_3的mRNA转录和蛋白表达。p-NFATC_3蛋白表达用western blot测定,计算p-NFATC_3/NFATC_3比值。
     结果:
     1血压:SHR组SBP随着周龄的增加而显著升高(ρ<0.05),4周龄SHR组与WKY组SBP无明显差异性(ρ>0.05),但8周龄起SHR组SBP均显著高于同周龄WKY组SBP(ρ<0.05)。
     2左室肥厚:SHR组IVS、LVPW随着周龄的增加而增加(ρ<0.05),4周龄SHR*:国家自然基金(81170143)和福建医科大学重大科研项目计划课题资助(09ZD010)组与WKY组IVS、LVPW分别相比无明显区别(ρ>0.05),8周龄起SHR组IVS、LVPW分别显著高于同周龄的WKY组(ρ<0.05)。8周龄后SHR组LVMI分别明显高于同周龄的WKY组(ρ<0.05)。
     3TRPC_1、CaN、NFATC_3表达的变化:SHR组左心室TRPC_1、CaN、NFATC_3mRNA转录和蛋白表达随着周龄增加而增加,8周龄起SHR组均明显高于同周龄的WKY组(ρ<0.05),但8周龄-18周龄SHR组的p-NFATC_3/NFATC_3比值明显低于的WKY组(ρ<0.05)。
     结论:8周龄的SHR发生左室肥厚的改变并随周龄增加而加重;在SHR左室肥厚的发生与发展过程中,TRPC_1及其下游分子CaN、NFATC_3表达逐渐上调,说明TRPC_1与SHR左室肥厚的发生与发展相关。
     第二部分干预TRPC_1和CaN的表达对SHR左室肥厚的影响
     目的:研究替米沙坦和环孢素A干预后,SHR左室肥厚与左心室TRPC_1、CaN、NFATC_3的表达的变化,进一步探讨TRPC_1是否参与SHR左室肥厚的发生发展。
     方法:8周龄雄性SHR随机分为5组(n=8),分别为:SHR组、替米沙坦组(8mg/kg.d,T组)、氨氯地平组(10mg/kg.d, A组)、低剂量环孢素A组(1.25mg/kg.d, LC组)、高剂量环孢素A组(5mg/kg.d, HC组)。选8周龄雄性WKY大鼠作为对照组(n=8)。干预10周后,测定大鼠体重(BW)、收缩压(SBP)、室间隔厚度(IVS)、左室后壁厚度(LVPW)。测定心脏质量(HW)、左心室质量(LVW)、计算左室质量指数(LVMI)。Real-time PCR、免疫组化和western blot分别检测TRPC_1、CaN、NFATC_3mRNA转录和蛋白表达。p-NFATC_3蛋白表达用western blot测定,计算p-NFATC_3/NFATC_3比值。
     结果:
     1血压:SHR组SBP显著高于WKY组(ρ<0.05)。与SHR组比较,T组和A组SBP显著降低(ρ<0.05),LC组SBP无明显变化(ρ>0.05),HC组SBP显著增高(225.58±6.92mmHg vs.211.65±8.43mmHg, ρ<0.05)。
     2左室肥厚:SHR组IVS、LVPW明显高于WKY组(ρ<0.05)。与SHR组比较,T组和LC组IVS和LVPW分别显著降低(ρ<0.05),A组和HC组IVS和LVPW无显著变化(ρ>0.05)。SHR组LVMI显著高于WKY组(ρ<0.05)。与SHR组比较,T组和LC组LVMI分别明显降低(ρ<0.05),而A组和HC组LVMI无明显变化(ρ>0.05)。
     3TRPC_1、CaN、NFATC_3表达的变化:SHR组左心室TRPC_1、CaN、NFATC_3mRNA转录和蛋白表达分别显著高于WKY组(ρ<0.05),而p-NFATC_3/NFATC_3比值显著低于WKY组(ρ<0.05)。与SHR组比较,T组TRPC_1、CaN、NFATC_3mRNA转录和蛋白表达表达明显降低(ρ<0.05),但p-NFATC_3/NFATC_3比值显著提高(ρ<0.05),A组TRPC_1、CaN、NFATC_3mRNA转录与蛋白表达及p-NFATC_3/NFATC_3比值分别与SHR组相比无明显变化(ρ>0.05)。与SHR组比较,LC组TRPC_1、CaN、NFATC_3mRNA和蛋白表达下降(ρ<0.05),p-NFATC_3/NFATC_3比值增高(ρ<0.05),而HC对TRPC_1、CaN、NFATC_3mRNA转录与蛋白表达及p-NFATC_3/NFATC_3比值分别与SHR组相比无明显变化(ρ>0.05)。
     结论:
     1替米沙坦不但能降压、改善SHR左室肥厚,而且也能下调TRPC_1、CaN、NFATC_3表达;氨氯地平能降压,但不能抑制SHR左室肥厚,对TRPC_1、CaN、NFATC_3表达无影响,说明TRPC_1在SHR左室肥厚的发生与发展过程中起重要作用。
     2低剂量环孢素A抑制CaN后,NFATC_3、TRPC_1表达下调,SHR左室肥厚改善,进一步说明TRPC_1可能参与了SHR左室肥厚的发生与发展;
Left ventricular hypertrophy (LVH) is a common complication of hypertensionand an independent risk factor for cardiovascular death and heart failure. Previousstudies have shown that transient receptor potential canonical type1channels (TRPC_1)was involved in the development of LVH in two rat models: transgenic mice andaortic banding rats. The goal of this present study was to investigate whether TRPC_1correlates with LVH in spontaneously hypertensive rats (SHR). Firstly, we studied therelationship between the LVH development and the expression of TRPC_1and itsdownstream signal molecule Calcineurin (CaN) and nuclear factor of activated Tcells-3(NFATC_3) in left ventricule of SHR aged from4weeks to18weeks. Secondly,TRPC_1decreased by Telmisartan and CaN inhibited by cyclosporine were respectivelyapplied to8-week-SHR for10weeks to further test if TRPC_1was a role in the processof LVH by detecting the change in LVH and expression of TRPC_1, CaN and NFATC_3on SHR.
     Part1The dynamic expression of TRPC_1on the left ventricle ofSHR with different week
     Objectives: To investigate whether TRPC_1is involved with development of LVH inSHR by determining the expression of TRPC_1on different week of SHR.
     Methods: Male SHRs were randomly assigned to four groups as experiment groups:4-week-old group,8-week-old group,12-week-old group,18-week-old group(n=8).Male and age matched Wistar-Kyoto rats (WKY) were served as control grouprespectively (n=8). At each time point, rats were measured respectively for systolicblood pressure (SBP), body weight (BW), inter ventricular septum (IVS) and leftventricular posterior wall (LVPW). After the rats were sacrificed, the heart mass (HM), left ventricle mass (LVM) were measured and LVMI were calculatedrespectively. The mRNA transcription and protein expression of TRPC_1, CaN andNFATC_3in LV were determined respectively by real-time PCR, western blot andimmunohistochemistry. The protein expression of p-NFATC_3was examined bywestern blot, and the ratio of p-NFATC_3/NFATC_3was calculated.
     Results:
     1SBP: SBP of SHR was markedly increased with age (ρ<0.05). SBP was similar incomparison to SHR and WKY at4-week-old(ρ>0.05). The significant increase ofSBP was showed in SHR compared with age-matched WKY from8-week to18-weekof age (ρ<0.05).
     2LVH: IVS and LVPW were remarkably increased in SHR with age (ρ<0.05).There was no significant difference in both SHR and WKY at4-week-old. IVS andLVPW in SHR aged from8-week-old were significantly higher than those inage-matched WKY (ρ<0.05).The LVMI in SHR was significantly higher than that inage-matched WKY from8-week to18-week of age (ρ<0.05).
     3Expression of TRPC_1, CaN and NFATC_3: Both the mRNA transcription andprotein expression of TRPC_1, CaN and NFATC_3on left ventricle in SHR weresignificantly upregulated with age (ρ<0.05). The ratio of p-NFATC_3/NFATC_3in SHRfrom8-week to18-week was significantly lower than that in age-matched WKY(ρ<0.05).
     Conclusions:8–week-old SHR shows LVH and it is aggravated with age. During theprogression of LVH in SHR, the expression of TRPC_1and its downstream signalmolecule CaN and NFATC_3are gradually increased in left ventricle. These resultssuggest that TRPC_1probably associates with the development of LVH in SHR.
     Part2The influence of LVH by intervening the expressions ofTRPC_1and CaN in SHR
     Objectives: To study LVH change and the expressions of TRPC_1,CaN and NFATC_3on LV in SHR intervened with Telmisartan and Cyclosporin A respectively for furtherexploring whether TRPC_1participates in the process of LVH in SHR.
     Methods:8-week-old male SHR were randomized to five groups (n=8): SHR group,Telmisartan group (8mg/kg.d, T group), Amlodipine group(10mg/kg.d, A group), lowdose of Cyclosporin A group (1.25mg/kg.d, LC group), and high dose of CyclosporinA group(5mg/kg.d, HC group) respectively.8-week-old male WKY was served ascontrol group(n=8). After10-weeks of administration, all rats were measuredrespectively for SBP, BW and IVS and LVPW. After the rats were sacrificed, the HWand LVW of rats were examined for calculating LVMI. The mRNA transcription andprotein expression of TRPC_1, CaN and NFATC_3in LV were determined by real-timePCR, western blot and immunohistochemistry respectively. The expression ofp-NFATC_3was examined by western blot and the ratio of p-NFATC_3/NFATC_3wascalculated.
     Results:
     1SBP: SHR group showed a significantly higher SBP than WKY group (ρ<0.05).Compared with SHR group, SBP of T group and A group were significantly decreased(ρ<0.05). SBP of LC group was similar to SBP of SHR group (ρ>0.05), while SBP ofHC group was significantly increased compared with SBP of SHR group (225.58±6.92mmHg vs.211.65±8.43mmHg, ρ<0.05).
     2LVH: Both IVS and LVPW in SHR group were notably higher than those inWKY group (ρ<0.05). In comparison to SHR group, IVS and LVPW in T group andLC group were significantly decreased respectively (ρ<0.05), but those in A groupand HC group had no significant change (ρ>0.05).When compared to SHR group,LVMI of T group and LC group were significantly decreased (ρ<0.05), but was notdifference in A group and HC group (ρ>0.05).
     3Expression of TRPC_1, CaN and NFATC_3: Both the mRNA transcription and protein expression of TRPC_1, CaN and NFATC_3in SHR group were significantlyincreased when compared to those in WKY group (ρ<0.05), while the ratio ofp-NFATC_3/NFATC_3in SHR group was remarkably lower than that in WKY group(ρ<0.05). Compared to SHR group, both the mRNA transcription and proteinexpression of TRPC_1, CaN and NFATC_3in T group and LC group were significantlydecreased (ρ<0.05), but the ratio of p-NFATC_3/NFATC_3in T group and LC group wassignificantly increased (ρ<0.05). The mRNA transcription and protein expression ofTRPC_1, CaN and NFATC_3and the ratio of p-NFATC_3/NFATC_3in A group and HCgroup were respectively similar to those in SHR group(ρ>0.05).
     Conclusions:
     1Telmisartan not only reduces SBP, but also ameliorates LVH as well asdownregulates expressions of TRPC_1, CaN and NFATC_3in SHR.Amlodipine has anantihypertensive effect on SBP, but has no effect on LVH, and expressions of TRPC_1,CaN and NFATC_3in SHR. These results imply the involvement of TRPC_1in theprogression of LVH in SHR
     2After CaN is inhibited by low dose of cyclosporin A, LVH is attenuated and theexpression of NFATC_3and TRPC_1on left ventricle in SHR are decreased, whichfurther shows the TRPC_1participation in the development of LVH in SHR.
引文
[1] Lorell BH, Carabello BA. Left ventricular hypertrophy: Pathogenesis, detection, andprognosis[J]. Circulation.2000;102:470-9
    [2] Drazner MH, Rame JE, Marino EK, et al. Increased left ventricular mass is a risk factor forthe development of a depressed left ventricular ejection fraction within five years: Thecardiovascular health study[J]. Journal of the American College of Cardiology.2004;43:2207-15
    [3] Schillaci G, Verdecchia P, Porcellati C, et al. Continuous relation between left ventricularmass and cardiovascular risk in essential hypertension[J]. Hypertension.2000;35:580-6
    [4] Reiter RJ, Manchester LC, Fuentes-Broto L, et al. Cardiac hypertrophy and remodelling:Pathophysiological consequences and protective effects of melatonin[J]. J Hypertens.2010;28Suppl1:S7-12
    [5] Taddei S, Nami R, Bruno RM, et al. Hypertension, left ventricular hypertrophy and chronickidney disease[J]. Heart failure reviews.2011;16:615-20
    [6] Gonzalez A, Lopez B, Ravassa S, et al. Biochemical markers of myocardial remodelling inhypertensive heart disease[J]. Cardiovasc Res.2009;81:509-18
    [7] Salles GF, Fiszman R, Cardoso CR, et al. Relation of left ventricular hypertrophy withsystemic inflammation and endothelial damage in resistant hypertension[J]. Hypertension.2007;50:723-8
    [8] Rohini A, Agrawal N, Koyani CN, et al. Molecular targets and regulators of cardiachypertrophy[J]. Pharmacological research: the official journal of the ItalianPharmacological Society.2010;61:269-80
    [9] Selvetella G, Hirsch E, Notte A, et al. Adaptive and maladaptive hypertrophic pathways:Points of=divergence[J]. Cardiovasc Res.2004;63:373-80
    [10] Piano MR. Cellular and signaling mechanisms of cardiac hypertrophy[J]. The Journal ofcardiovascular nursing.1994;8:1-26
    [11] Glennon PE, Sugden PH, Poole-Wilson PA. Cellular mechanisms of cardiac hypertrophy[J].British heart journal.1995;73:496-9
    [12] Zou Y, Takano H, Akazawa H, et al. Molecular and cellular mechanisms of mechanicalstress-induced cardiac hypertrophy[J]. Endocrine journal.2002;49:1-13
    [13] Watanabe H, Murakami M, Ohba T, et al. The pathological role of transient receptor potentialchannels in heart disease[J]. Circulation journal: official journal of the Japanese CirculationSociety.2009;73:419-27
    [14] Zou Y, Yamazaki T, Nakagawa K, et al. Continuous blockade of l-type ca2+channelssuppresses activation of calcineurin and development of cardiac hypertrophy in spontaneouslyhypertensive rats[J]. Hypertension research: official journal of the Japanese Society ofHypertension.2002;25:117-24
    [15] Hunton DL, Lucchesi PA, Pang Y, et al. Capacitative calcium entry contributes to nuclearfactor of activated t-cells nuclear translocation and hypertrophy in cardiomyocytes[J]. J BiolChem.2002;277:14266-73
    [16] Uehara A, Yasukochi M, Imanaga I, et al. Store-operated ca2+entry uncoupled with ryanodinereceptor and junctional membrane complex in heart muscle cells[J]. Cell calcium.2002;31:89-96
    [17] Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: Dynamics, homeostasis andremodelling[J]. Nature reviews. Molecular cell biology.2003;4:517-29
    [18] Beech DJ, Xu SZ, McHugh D, et al. Trpc1store-operated cationic channel subunit[J]. Cellcalcium.2003;33:433-40
    [19] Ju YK, Chu Y, Chaulet H, et al. Store-operated ca2+influx and expression of trpc genes inmouse sinoatrial node[J]. Circ Res.2007;100:1605-14
    [20] Seth M, Sumbilla C, Mullen SP, et al. Sarco(endo)plasmic reticulum ca2+atpase (serca) genesilencing and remodeling of the ca2+signaling mechanism in cardiac myocytes[J].Proceedings of the National Academy of Sciences of the United States of America.2004;101:16683-8
    [21] Nakayama H, Wilkin BJ, Bodi I, et al. Calcineurin-dependent cardiomyopathy is activated bytrpc in the adult mouse heart[J]. FASEB journal: official publication of the Federation ofAmerican Societies for Experimental Biology.2006;20:1660-70
    [22] Clapham DE. Trp channels as cellular sensors[J]. Nature.2003;426:517-24
    [23] Patel A, Sharif-Naeini R, Folgering JR, et al. Canonical trp channels and mechanotransduction:From physiology to disease states[J]. Pflugers Archiv: European journal of physiology.2010;460:571-81
    [24] Abramowitz J, Birnbaumer L. Physiology and pathophysiology of canonical transient receptorpotential channels[J]. FASEB journal: official publication of the Federation of AmericanSocieties for Experimental Biology.2009;23:297-328
    [25] Nishida M, Kurose H. Roles of trp channels in the development of cardiac hypertrophy[J].Naunyn-Schmiedeberg's archives of pharmacology.2008;378:395-406
    [26] Guinamard R, Bois P. Involvement of transient receptor potential proteins in cardiachypertrophy[J]. Biochimica et biophysica acta.2007;1772:885-94
    [27] Kurdi M, Booz GW. Three4-letter words of hypertension-related cardiac hypertrophy: Trpc,mtor, and hdac[J]. J Mol Cell Cardiol.2011;50:964-71
    [28] Parekh AB, Putney JW, Jr. Store-operated calcium channels[J]. Physiological reviews.2005;85:757-810
    [29] Montell C. Physiology, phylogeny, and functions of the trp superfamily of cation channels[J].Science's STKE: signal transduction knowledge environment.2001;2001:re1
    [30] Seth M, Zhang ZS, Mao L, et al. Trpc1channels are critical for hypertrophic signaling in theheart[J]. Circ Res.2009;105:1023-30
    [31] Bush EW, Hood DB, Papst PJ, et al. Canonical transient receptor potential channels promotecardiomyocyte hypertrophy through activation of calcineurin signaling[J]. J Biol Chem.2006;281:33487-96
    [32] Tavi P, Pikkarainen S, Ronkainen J, et al. Pacing-induced calcineurin activation controlscardiac ca2+signalling and gene expression[J]. J Physiol.2004;554:309-20
    [33] Zhang W. Old and new tools to dissect calcineurin's role in pressure-overload cardiachypertrophy[J]. Cardiovasc Res.2002;53:294-303
    [34] Klee CB, Ren H, Wang X. Regulation of the calmodulin-stimulated protein phosphatase,calcineurin[J]. J Biol Chem.1998;273:13367-70
    [35] Molkentin JD, Lu JR, Antos CL, et al. A calcineurin-dependent transcriptional pathway forcardiac hypertrophy[J]. Cell.1998;93:215-28
    [36] Lim HW, De Windt LJ, Steinberg L, et al. Calcineurin expression, activation, and function incardiac pressure-overload hypertrophy[J]. Circulation.2000;101:2431-7
    [37] Crabtree GR. Generic signals and specific outcomes: Signaling through ca2+, calcineurin, andnf-at[J]. Cell.1999;96:611-4
    [38] Flanagan WM, Corthesy B, Bram RJ, et al. Nuclear association of a t-cell transcription factorblocked by fk-506and cyclosporin a[J]. Nature.1991;352:803-7
    [39] Olson EN, Molkentin JD. Prevention of cardiac hypertrophy by calcineurin inhibition: Hopeor hype?[J]. Circ Res.1999;84:623-32
    [40] Rao A, Luo C, Hogan PG. Transcription factors of the nfat family: Regulation and function[J].Annual review of immunology.1997;15:707-47
    [41] Lopez-Rodriguez C, Aramburu J, Rakeman AS, et al. Nfat5, a constitutively nuclear nfatprotein that does not cooperate with fos and jun[J]. Proceedings of the National Academy ofSciences of the United States of America.1999;96:7214-9
    [42] Wilkins BJ, De Windt LJ, Bueno OF, et al. Targeted disruption of nfatc3, but not nfatc4,reveals an intrinsic defect in calcineurin-mediated cardiac hypertrophic growth[J]. Mol CellBiol.2002;22:7603-13
    [43] Doggrell SA, Brown L. Rat models of hypertension, cardiac hypertrophy and failure[J].Cardiovasc Res.1998;39:89-105
    [44] Trippodo NC, Frohlich ED. Similarities of genetic (spontaneous) hypertension. Man and rat[J].Circ Res.1981;48:309-19
    [45] Borel JF, Feurer C, Magnee C, et al. Effects of the new anti-lymphocytic peptide cyclosporin ain animals[J]. Immunology.1977;32:1017-25
    [46] Liu D, Yang D, He H, et al. Increased transient receptor potential canonical type3channels invasculature from hypertensive rats[J]. Hypertension.2009;53:70-6
    [47] Hill JA, Olson EN. Cardiac plasticity[J]. The New England journal of medicine.2008;358:1370-80
    [48] Williams RS, Rosenberg P. Calcium-dependent gene regulation in myocyte hypertrophy andremodeling[J]. Cold Spring Harbor symposia on quantitative biology.2002;67:339-44
    [49] Waters SB, Diak DM, Zuckermann M, et al. Genetic background influences adaptation tocardiac hypertrophy and ca(2+) handling gene expression[J]. Frontiers in physiology.2013;4:11
    [50] Berna-Erro A, Redondo PC, Rosado JA. Store-operated ca(2+) entry[J]. Advances inexperimental medicine and biology.2012;740:349-82
    [51] Liu FF, Ma ZY, Li DL, et al. Differential expression of trpc channels in the left ventricle ofspontaneously hypertensive rats[J]. Molecular biology reports.2010;37:2645-51
    [52] Eder P, Molkentin JD. Trpc channels as effectors of cardiac hypertrophy[J]. Circ Res.2011;108:265-72
    [53] Gardin JM, Siri FM, Kitsis RN, et al. Echocardiographic assessment of left ventricular massand systolic function in mice[J]. Circ Res.1995;76:907-14
    [54] Gao F, Han ZQ, Zhou X, et al. High salt intake accelerated cardiac remodeling inspontaneously hypertensive rats: Time window of left ventricular functional transition and itsrelation to salt-loading doses[J]. Clinical and experimental hypertension (New York, N.Y.:1993).2011;33:492-9
    [55] Tang XY, Hong HS, Chen LL, et al. Effects of exercise of different intensities on theangiogenesis, infarct healing, and function of the left ventricle in postmyocardial infarctionrats[J]. Coronary artery disease.2011;22:497-506
    [56] Doering CW, Jalil JE, Janicki JS, et al. Collagen network remodelling and diastolic stiffness ofthe rat left ventricle with pressure overload hypertrophy[J]. Cardiovasc Res.1988;22:686-95
    [57] Brilla CG, Matsubara L, Weber KT. Advanced hypertensive heart disease in spontaneouslyhypertensive rats. Lisinopril-mediated regression of myocardial fibrosis[J]. Hypertension.1996;28:269-75
    [58] Pu Q, Schiffrin EL. Effect of ace/nep inhibition on cardiac and vascular collagen instroke-prone spontaneously hypertensive rats[J]. American journal of hypertension.2001;14:1067-72
    [59] Huang H, Wang W, Liu P, et al. Trpc1expression and distribution in rat hearts[J]. Europeanjournal of histochemistry: EJH.2009;53:e26
    [60] Bing OH, Brooks WW, Robinson KG, et al. The spontaneously hypertensive rat as a model ofthe transition from compensated left ventricular hypertrophy to failure[J]. J Mol Cell Cardiol.1995;27:383-96
    [61] Kokubo M, Uemura A, Matsubara T, et al. Noninvasive evaluation of the time course ofchange in cardiac function in spontaneously hypertensive rats by echocardiography[J].Hypertension research: official journal of the Japanese Society of Hypertension.2005;28:601-9
    [62] Laurent D, Allergrini PR, Zierhut W. Different left ventricular remodelling and function in twomodels of pressure overload as assessed in vivo by magnetic resonance imaging[J]. JHypertens.1995;13:693-700
    [63] Brilla CG, Janicki JS, Weber KT. Impaired diastolic function and coronary reserve in genetichypertension. Role of interstitial fibrosis and medial thickening of intramyocardial coronaryarteries[J]. Circ Res.1991;69:107-15
    [64] Ohba T, Watanabe H, Murakami M, et al. Upregulation of trpc1in the development of cardiachypertrophy[J]. J Mol Cell Cardiol.2007;42:498-507
    [65] Kuwahara K, Nakao K. New molecular mechanisms for cardiovasculardisease:Transcriptional pathways and novel therapeutic targets in heart failure[J]. J PharmacolSci.2011;116:337-42
    [66] Molkentin JD. Calcineurin and beyond: Cardiac hypertrophic signaling[J]. Circ Res.2000;87:731-8
    [67] Vega RB, Bassel-Duby R, Olson EN. Control of cardiac growth and function by calcineurinsignaling[J]. J Biol Chem.2003;278:36981-4
    [68] Wilkins BJ, Molkentin JD. Calcium-calcineurin signaling in the regulation of cardiachypertrophy[J]. Biochemical and biophysical research communications.2004;322:1178-91
    [69] Yamazaki T, Yazaki Y. Role of tissue angiotensin ii in myocardial remodelling induced bymechanical stress[J]. Journal of human hypertension.1999;13Suppl1:S43-7; discussionS9-50
    [70] Higuchi S, Ohtsu H, Suzuki H, et al. Angiotensin ii signal transduction through the at1receptor: Novel insights into mechanisms and pathophysiology[J]. Clinical science (London,England:1979).2007;112:417-28
    [71] Akazawa H, Komuro I. Mechanisms underlying angiotensin ii-independent activation ofangiotensin ii type1receptor[J]. Nihon rinsho. Japanese journal of clinical medicine.2012;70:1492-8
    [72] Wagenaar LJ, Voors AA, Buikema H, et al. Angiotensin receptors in the cardiovascularsystem[J]. The Canadian journal of cardiology.2002;18:1331-9
    [73] Cowan BR, Young AA. Left ventricular hypertrophy and renin-angiotensin system blockade[J].Current hypertension reports.2009;11:167-72
    [74] Hoogwerf BJ. Renin-angiotensin system blockade and cardiovascular and renal protection[J].The American journal of cardiology.2010;105:30A-5A
    [75] Destro M, Cagnoni F, Dognini GP, et al. Telmisartan: Just an antihypertensive agent? Aliterature review[J]. Expert opinion on pharmacotherapy.2011;12:2719-35
    [76] Musson RE, Cobbaert CM, Smit NP. Molecular diagnostics of calcineurin-relatedpathologies[J]. Clinical chemistry.2012;58:511-22
    [77] Heineke J, Ritter O. Cardiomyocyte calcineurin signaling in subcellular domains: From thesarcolemma to the nucleus and beyond[J]. J Mol Cell Cardiol.2012;52:62-73
    [78] Berry JM, Le V, Rotter D, et al. Reversibility of adverse, calcineurin-dependent cardiacremodeling[J]. Circ Res.2011;109:407-17
    [79] Yang G, Meguro T, Hong C, et al. Cyclosporine reduces left ventricular mass with chronicaortic banding in mice, which could be due to apoptosis and fibrosis[J]. J Mol Cell Cardiol.2001;33:1505-14
    [80] Cacciapuoti F. Molecular mechanisms of left ventricular hypertrophy (lvh) in systemichypertension (sh)-possible therapeutic perspectives[J]. Journal of the American Society ofHypertension: JASH.2011;5:449-55
    [81] Yusuf S, Teo KK, Pogue J, et al. Telmisartan, ramipril, or both in patients at high risk forvascular events[J]. The New England journal of medicine.2008;358:1547-59
    [82] Rodrigues SF, Dossantos RA, de Oliveira MA, et al. Amlodipine reduces the antimigratoryeffect of diclofenac in spontaneously hypertensive rats[J]. J Cardiovasc Pharmacol.2008;51:492-504
    [83] Dang A, Zheng D, Wang B, et al. The role of the renin-angiotensin and cardiac sympatheticnervous systems in the development of hypertension and left ventricular hypertrophy inspontaneously hypertensive rats[J]. Hypertension research: official journal of the JapaneseSociety of Hypertension.1999;22:217-21
    [84] Takai S, Jin D, Sakaguchi M, et al. Significant target organs for hypertension and cardiachypertrophy by angiotensin-converting enzyme inhibitors[J]. Hypertension research: officialjournal of the Japanese Society of Hypertension.2004;27:213-9
    [85] Touyz RM, Endemann D, He G, et al. Role of at2receptors in angiotensin ii-stimulatedcontraction of small mesenteric arteries in young shr[J]. Hypertension.1999;33:366-72
    [86] Cheng HF, Wang JL, Vinson GP, et al. Young shr express increased type1angiotensin iireceptors in renal proximal tubule[J]. The American journal of physiology.1998;274:F10-7
    [87] Garcia GE. Ang ii receptor antagonists as modulators of macrophages polarization[J].American journal of physiology. Renal physiology.2010;298:F868-9
    [88] Timofeeva N, Snetkova AA, Zadionchenko VS.[angiotensin ii receptor antagonists incardiology: Course to organoprotection][J]. Kardiologiia.2013;53:88-93
    [89] Uemura H, Kubota Y. Cancer and renin-angiotensin system.[J]. Nihon rinsho. Japanesejournal of clinical medicine.2012;70:1530-5
    [90] Chen X, Yang D, Ma S, et al. Increased rhythmicity in hypertensive arterial smooth muscle islinked to transient receptor potential canonical channels[J]. J Cell Mol Med.2010;14:2483-94
    [91] Takano H, Hasegawa H, Narumi H, et al. Effects of valsartan and amlodipine on home bloodpressure and cardiovascular events in japanese hypertensive patients: A subanalysis of thevart[J]. Journal of human hypertension.2012;26:656-63
    [92] Lu JC, Cui W, Zhang HL, et al. Additive beneficial effects of amlodipine and atorvastatin inreversing advanced cardiac hypertrophy in elderly spontaneously hypertensive rats[J]. Clinicaland experimental pharmacology&physiology.2009;36:1110-9
    [93] Tomiyama H, Yamada J, Koji Y, et al. Effect of telmisartan on forearm postischemichyperemia and serum asymmetric dimethylarginine levels[J]. American journal ofhypertension.2007;20:1305-11
    [94] Benndorf RA, Appel D, Maas R, et al. Telmisartan improves endothelial function in patientswith essential hypertension[J]. J Cardiovasc Pharmacol.2007;50:367-71
    [95] Krieger MH, Di Lorenzo A, Teutsch C, et al. Telmisartan regresses left ventricularhypertrophy in caveolin-1-deficient mice[J]. Laboratory investigation; a journal of technicalmethods and pathology.2010;90:1573-81
    [96] Hainsey T, Csiszar A, Sun S, et al. Cyclosporin a does not block exercise-induced cardiachypertrophy[J]. Medicine and science in sports and exercise.2002;34:1249-54
    [97] Zhang W, Kowal RC, Rusnak F, et al. Failure of calcineurin inhibitors to preventpressure-overload left ventricular hypertrophy in rats[J]. Circ Res.1999;84:722-8
    [98] Di Marco GS, Reuter S, Kentrup D, et al. Cardioprotective effect of calcineurin inhibition inan animal model of renal disease[J]. European heart journal.2011;32:1935-45
    [99] Hoorn EJ, Walsh SB, McCormick JA, et al. Pathogenesis of calcineurin inhibitor-inducedhypertension[J]. Journal of nephrology.2012;25:269-75
    [100] MacDonnell SM, Kubo H, Harris DM, et al. Calcineurin inhibition normalizes beta-adrenergicresponsiveness in the spontaneously hypertensive rat[J]. American journal of physiology.Heart and circulatory physiology.2007;293:H3122-9
    [101] Wang C, Li JF, Zhao L, et al. Inhibition of soc/ca2+/nfat pathway is involved in theanti-proliferative effect of sildenafil on pulmonary artery smooth muscle cells[J]. Respiratoryresearch.2009;10:123
    [102] Kim JY, Saffen D. Activation of m1muscarinic acetylcholine receptors stimulates theformation of a multiprotein complex centered on trpc6channels[J]. J Biol Chem.2005;280:32035-47
    [103] Sander M, Lyson T, Thomas GD, et al. Sympathetic neural mechanisms ofcyclosporine-induced hypertension[J]. American journal of hypertension.1996;9:121S-38S
    [104] Taler SJ, Textor SC, Canzanello VJ, et al. Cyclosporin-induced hypertension: Incidence,pathogenesis and management[J]. Drug safety: an international journal of medical toxicologyand drug experience.1999;20:437-49
    [105] McKoy RC, Uretsky BF, Kormos R, et al. Left ventricular hypertrophy incyclosporine-induced systemic hypertension after cardiac transplantation[J]. The Americanjournal of cardiology.1988;62:1140-2
    [106] Alvarez-Arroyo MV, Yague S, Wenger RM, et al. Cyclophilin-mediated pathways in the effectof cyclosporin a on endothelial cells: Role of vascular endothelial growth factor[J]. Circ Res.2002;91:202-9
    [107] Murakami R, Kambe F, Mitsuyama H, et al. Cyclosporin a enhances interleukin-8expressionby inducing activator protein-1in human aortic smooth muscle cells[J]. Arteriosclerosis,thrombosis, and vascular biology.2003;23:2034-40
    [108] Chen HW, Chien CT, Yu SL, et al. Cyclosporine a regulate oxidative stress-induced apoptosisin cardiomyocytes: Mechanisms via ros generation, inos and hsp70[J]. British journal ofpharmacology.2002;137:771-81
    [109] Kiely B, Feldman G, Ryan MP. Modulation of renal epithelial barrier function bymitogen-activated protein kinases (mapks): Mechanism of cyclosporine a-induced increase intransepithelial resistance[J]. Kidney international.2003;63:908-16
    [110] Louhelainen M, Merasto S, Finckenberg P, et al. Lipoic acid supplementation preventscyclosporine-induced hypertension and nephrotoxicity in spontaneously hypertensive rats[J]. JHypertens.2006;24:947-56
    [1] Drazner MH, Rame JE, Marino EK, et al. Increased left ventricular mass is a risk factor forthe development of a depressed left ventricular ejection fraction within five years: Thecardiovascular health study[J]. Journal of the American College of Cardiology.2004;43:2207-15
    [2] Schillaci G, Verdecchia P, Porcellati C, et al. Continuous relation between left ventricularmass and cardiovascular risk in essential hypertension[J]. Hypertension.2000;35:580-6
    [3] Gonzalez A, Lopez B, Ravassa S, et al. Biochemical markers of myocardial remodelling inhypertensive heart disease[J]. Cardiovasc Res.2009;81:509-18
    [4] Lorell BH, Carabello BA. Left ventricular hypertrophy: Pathogenesis, detection, andprognosis[J]. Circulation.2000;102:470-9
    [5] Selvetella G, Hirsch E, Notte A, et al. Adaptive and maladaptive hypertrophic pathways:Points of=divergence[J]. Cardiovasc Res.2004;63:373-80
    [6] McKinsey TA, Kass DA. Small-molecule therapies for cardiac hypertrophy: Moving beneaththe cell surface[J]. Nature reviews. Drug discovery.2007;6:617-35
    [7] Hill JA, Olson EN. Cardiac plasticity[J]. The New England journal of medicine.2008;358:1370-80
    [8] Williams RS, Rosenberg P. Calcium-dependent gene regulation in myocyte hypertrophy andremodeling[J]. Cold Spring Harbor symposia on quantitative biology.2002;67:339-44
    [9] Waters SB, Diak DM, Zuckermann M, et al. Genetic background influences adaptation tocardiac hypertrophy and ca(2+) handling gene expression[J]. Frontiers in physiology.2013;4:11
    [10] Watanabe H, Murakami M, Ohba T, et al. The pathological role of transient receptor potentialchannels in heart disease[J]. Circulation journal: official journal of the Japanese CirculationSociety.2009;73:419-27
    [11] Treinys R, Jurevicius J. L-type ca2+channels in the heart: Structure and regulation[J].Medicina (Kaunas, Lithuania).2008;44:491-9
    [12] Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: Dynamics, homeostasis andremodelling[J]. Nature reviews. Molecular cell biology.2003;4:517-29
    [13] Watanabe H, Murakami M, Ohba T, et al. Trp channel and cardiovascular disease[J].Pharmacology& therapeutics.2008;118:337-51
    [14] Beech DJ, Xu SZ, McHugh D, et al. Trpc1store-operated cationic channel subunit[J]. Cellcalcium.2003;33:433-40
    [15] Patel A, Sharif-Naeini R, Folgering JR, et al. Canonical trp channels and mechanotransduction:From physiology to disease states[J]. Pflugers Archiv: European journal of physiology.2010;460:571-81
    [16] Abramowitz J, Birnbaumer L. Physiology and pathophysiology of canonical transient receptorpotential channels[J]. FASEB journal: official publication of the Federation of AmericanSocieties for Experimental Biology.2009;23:297-328
    [17] Nishida M, Kurose H. Roles of trp channels in the development of cardiac hypertrophy[J].Naunyn-Schmiedeberg's archives of pharmacology.2008;378:395-406
    [18] Guinamard R, Bois P. Involvement of transient receptor potential proteins in cardiachypertrophy[J]. Biochimica et biophysica acta.2007;1772:885-94
    [19] Philipson KD, Nicoll DA. Sodium-calcium exchange: A molecular perspective[J]. Annualreview of physiology.2000;62:111-33
    [20] Trafford AW. Location, location, location: New avenues to determine the function of thecardiac na+-ca2+exchanger?[J]. J Mol Cell Cardiol.2003;35:1321-4
    [21] Yoshiyama M, Nakamura Y, Omura T, et al. Cardioprotective effect of sea0400, a selectiveinhibitor of the na(+)/ca(2+) exchanger, on myocardial ischemia-reperfusion injury in rats[J].J Pharmacol Sci.2004;95:196-202
    [22] Fujioka Y, Hiroe K, Matsuoka S. Regulation kinetics of na+-ca2+exchange current inguinea-pig ventricular myocytes[J]. J Physiol.2000;529:611-23
    [23] Cartwright EJ, Oceandy D, Austin C, et al. Ca2+signalling in cardiovascular disease: The roleof the plasma membrane calcium pumps[J]. Science China. Life sciences.2011;54:691-8
    [24] Ruknudin AM, Lakatta EG. The regulation of the na/ca exchanger and plasmalemmal ca2+atpase by other proteins[J]. Annals of the New York Academy of Sciences.2007;1099:86-102
    [25] Periasamy M, Bhupathy P, Babu GJ. Regulation of sarcoplasmic reticulum ca2+atpase pumpexpression and its relevance to cardiac muscle physiology and pathology[J]. Cardiovasc Res.2008;77:265-73
    [26] Tada M, Toyofuku T. Sr ca(2+)-atpase/phospholamban in cardiomyocyte function[J]. Journalof cardiac failure.1996;2:S77-85
    [27] Mackiewicz U, Lewartowski B. Temperature dependent contribution of ca2+transporters torelaxation in cardiac myocytes: Important role of sarcolemmal ca2+-atpase[J]. Journal ofphysiology and pharmacology: an official journal of the Polish Physiological Society.2006;57:3-15
    [28] Bers DM, Bassani JW, Bassani RA. Na-ca exchange and ca fluxes during contraction andrelaxation in mammalian ventricular muscle[J]. Annals of the New York Academy of Sciences.1996;779:430-42
    [29] Bers DM, Despa S. Cardiac myocytes ca2+and na+regulation in normal and failing hearts[J].J Pharmacol Sci.2006;100:315-22
    [30] Olson ML, Chalmers S, McCarron JG. Mitochondrial organization and ca2+uptake[J].Biochemical Society transactions.2012;40:158-67
    [31] Carafoli E. The fateful encounter of mitochondria with calcium: How did it happen?[J].Biochimica et biophysica acta.2010;1797:595-606
    [32] Pan S, Ryu SY, Sheu SS. Distinctive characteristics and functions of multiple mitochondrialca2+influx mechanisms[J]. Science China. Life sciences.2011;54:763-9
    [33] Tavi P, Pikkarainen S, Ronkainen J, et al. Pacing-induced calcineurin activation controlscardiac ca2+signalling and gene expression[J]. J Physiol.2004;554:309-20
    [34] Zhang W. Old and new tools to dissect calcineurin's role in pressure-overload cardiachypertrophy[J]. Cardiovasc Res.2002;53:294-303
    [35] Klee CB, Ren H, Wang X. Regulation of the calmodulin-stimulated protein phosphatase,calcineurin[J]. J Biol Chem.1998;273:13367-70
    [36] Crabtree GR. Generic signals and specific outcomes: Signaling through ca2+, calcineurin, andnf-at[J]. Cell.1999;96:611-4
    [37] Flanagan WM, Corthesy B, Bram RJ, et al. Nuclear association of a t-cell transcription factorblocked by fk-506and cyclosporin a[J]. Nature.1991;352:803-7
    [38] Wu X, Eder P, Chang B, et al. Trpc channels are necessary mediators of pathologic cardiachypertrophy[J]. Proceedings of the National Academy of Sciences of the United States ofAmerica.2010;107:7000-5
    [39] Ohba T, Watanabe H, Murakami M, et al. Upregulation of trpc1in the development of cardiachypertrophy[J]. J Mol Cell Cardiol.2007;42:498-507
    [40] Seth M, Zhang ZS, Mao L, et al. Trpc1channels are critical for hypertrophic signaling in theheart[J]. Circ Res.2009;105:1023-30
    [41] Yamamoto K, Ohishi M, Katsuya T, et al. Deletion of angiotensin-converting enzyme2accelerates pressure overload-induced cardiac dysfunction by increasing local angiotensin ii[J].Hypertension.2006;47:718-26
    [42] Kudoh S, Komuro I, Mizuno T, et al. Angiotensin ii stimulates c-jun nh2-terminal kinase incultured cardiac myocytes of neonatal rats[J]. Circ Res.1997;80:139-46
    [43] Passier R, Zeng H, Frey N, et al. Cam kinase signaling induces cardiac hypertrophy andactivates the mef2transcription factor in vivo[J]. J Clin Invest.2000;105:1395-406
    [44] Chen QM, Tu VC, Purdon S, et al. Molecular mechanisms of cardiac hypertrophy induced bytoxicants[J]. Cardiovascular toxicology.2001;1:267-83
    [45] Liu X, Shao Q, Dhalla NS. Myosin light chain phosphorylation in cardiac hypertrophy andfailure due to myocardial infarction[J]. J Mol Cell Cardiol.1995;27:2613-21

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700