舰船基座结构连接形式声学设计应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
舰船的隐身性是一项至关重要的性能指标,对潜艇而言尤为重要。潜艇、鱼雷等各种水下航行器的典型舱段结构形式为有限长加筋双层圆柱壳结构。在潜艇结构中,其内部机械设备一般都安装在一定的基座上,壳体内部基座相当于各种连接结构的串联和并联,当设备激励基座面板振动时,振动波就会沿着这些连接结构将振动能量传递至其他结构,从而导致艇体结构发生振动,进而向海洋中辐射噪声。因此研究壳内基座结构对潜艇的减振降噪具有很现实的意义。
     当定常结构发生突变(质量、刚度等),结构阻抗也会随着结构的改变而发生变化,导致结构之间阻抗失配,使得振动波在突变截面处发生发射和透射,通过降低振动波传递效率,阻隔振动波能量向下游结构传递,从而达到减振降噪的目的。本文首先采用波动理论,分析结构突变时波型转换、阻抗失配等现象,分析了几种典型连接形式的组合板结构中(主要包括线性、“L”形、“T”形、“十”形、“(?)”形、“(?)”形等典型连接结构)振动波的传递特性,讨论了不同连接形式结构的反射和透射效率系数,为数值仿真和实验研究提供了理论基础。
     进而采用有限元/边界元(FEM/BEM)耦合法首先分析了低频段时有、无基座对双层圆柱壳振动声辐射的影响,然后根据第二章波动理论,设计高传递损失基座,即将原来的“T”形连接基座改为“(?)”形连接基座,并采用数值方法验证了低频段时的减振降噪效果。
     针对中频段时FEM/BEM和统计能量分析法(SEA)的不足,本文采用FE-SEA混合方法研究了双层圆柱壳中高频段振动声辐射特性,同时验证了所设计的高传递损失基座在中高频段时的减振降噪效果。
     最后根据实艇舱段进行模型实验,将两种基座形式分别置于壳内左右舷,通过实验对比,得到当基座连接形式由“T”形连接改为“(?)”形连接后的典型测点处的减振效果。将实验结果与数值仿真结果进行对比分析,验证数值仿真方法研究的准确性,从而为下一步数值仿真提供指导。
The stealth of ship is an importance critical performance indicator and it is particularly significant in terms of submarines. Structure of typical cabin on submarines, torpedoes and other underwater vehicles are the finite stiffened double cylindrical shell. Inside the submarine structure, mechanical equipment is generally installed in a certain base. And the base structure is equivalent to the series and parallel of variety connections. As the mechanical equipment acting on the base panel, vibration wave energy will follow the connection structure transmission to other structures, leading to vibration of the hull structure, and then radiating noise to the ocean. Therefore, the investigation of the base in the shell structure has a very practical significance to the submarine noise and vibration reduction.
     When the stationary structure mutation (mass, stiffness, etc.), structural changes will result in resistance changes, leading to impedance mismatch between the structure, making the vibration wave reflect or transmission in the mutant cross-section. The purpose of reducing vibration and noise is achieved by reducing the wave propagation efficiency and holding up the energy of vibration wave passes downstream structural. Firstly, based on wave theory, the phenomenon of wave-type conversion and impedance mismatch was analyzed when the structural broken. Vibration wave propagation characteristics in combination of several typical joint board structure (typical connection structure including linear, "L "-shaped, "T"-shaped, "+"-shaped, "(?) "-shaped, "(?)"-shaped,) were studied. Efficiency of reflection and transmission coefficients in different forms of the structure connecting was discussed, which provided a theoretical basis for the numerical simulation and experimental study.
     Firstly the finite element/boundary element (FEM/BEM) coupling method was used to analyzed the effect of vibration and sound radiation of the base in double cylindrical shell in low frequency. Based on wave theory in Chapter II, the high transmission loss base was designed by replacing the "T"-shaped connection base to "(?)"-shaped connection base. Vibration and noise reduction effect in low-frequency was proved by the numerical method.
     Due to the deficiency of FEM/BEM and statistical energy analysis (SEA), sound radiation characteristics of the double cylindrical shell in the band were solved by the hybrid FE-SEA method, verifying the high frequency vibration and noise reduction effect of the high transmission loss base that designed.
     Finally, model experimental was carried and the two kinds of base form were respectively placed on two side of shell. Contrasting with experiment, damping effect at the typical measuring point can be obtained when respectively using "T"-shaped connection and "(?)"-shaped. The experimental results and numerical simulation results were compared to verify the accuracy of numerical simulation methods, and it can provide guidance for the next step numerical simulation.
引文
[1]王英斌,对某潜艇舱室空气噪声的治理.舰船科学技术,1994(4):11-14
    [2]王英斌,潜艇住室吸隔声结构研究.舰船科学技术,1992(2):21-25
    [3]杜功焕,朱哲民,龚秀芬.声学基础.上海科技出版社,1981.
    [4]范玉岭,王敏庆,复合板隔声性能分析.噪声与振动控制,2007(2):90-93
    [5]陈端石,赵玫,周海亭.动力机械振动与噪声学.上海交通大学出版社,1996
    [6]康玉成,建筑隔声设计:空气隔声技术.中国建筑工业出版社,2004.
    [7]冯瑀正,轻结构隔声原理与应用.科学出版社,1987.
    [8]E.E.Ungar and C.W.Dietrich, High-frequency vibration isolation.Journal of Sound and Vibration,1966,4(2):224-241.
    [9]Andrews and Francis J., A primer on vibration isolation.Sound and Vibration.2002, 36(1):42-46.
    [10]J.I.Soliman and M.G.Hallman, Vibration isolation between non-rigid machines and non-rigid foundations.Journal of Sound and Vibration,1968,8(2):329-351.
    [11]D.Sciulli and D.J.Inman, Isolation design for a flexible system.Journal of Sound and Vibration,1998,216(2):251-267.
    [12]C.J.Wu and R.G.White, Reduction of vibrational power in periodically supported beam by use of a neutralizer. Journal of Sound and Vibration,1995,181(1):99-114.
    [13]Y.Krishna, B.S.Sarma and U.Shrinvasa, Active vibration isolation using magnetostrictive actuator.The 2002 International Symposium on Active Controof Sound and Vibration.2002:1063-1074.
    [14]严济宽,机械振动隔离技术.上海科学技术出版社,1988.
    [15]严济宽,隔振降噪技术的新进展.噪声与振动控制,1991(5):11-16.
    [16]姚耀中,林立,潜艇机械噪声控制技术综述.舰船科学技术,2007,29(1):21-26.
    [17]伏同先,阻尼技术及其在舰艇减振降噪中的应用.舰船工程研究,1991(1):43-50.
    [18]Moorhouse A.T.and Gibbs B.M., Structure-borne sound power emission from resiliently mounted fans:Case studies and diagnosis.Journal of Sound and Vibration, 1995,186(1):143-161.
    [19]Rayleigh J., The theory of sound.NewYork:Dover Publication,1945
    [20]Lamb, H., On waves in elastic plate, Proc.Royal Soc.London,1917,114:A93
    [21]L.Cremer, M.Heckl and E.E.Ungar.Structure-borne Sound.Second edition. Berlin:Springer-Verlag,1988.
    [22]Pan X, Hansen C H. Active control of vibratory power transmission along a semi-infinite plate. J.Sound.Vib.1995,184(4):585-610P
    [23]诺顿.工程噪声和振动分析基础.北京:航空工业出版社,1993:48-56页
    [24]舒歌群,郝志勇.结构振动控制中的弹性波主动控制技术.振动与冲击.2000,19(2):28-31页
    [25]阿.斯.尼基福罗夫.船体结构声学设计.谢信,王轲译.北京:国防工业出版社,1998:91-96页
    [26]Eric E.Ungar, Transmission of plate flexural waves through reinforcing beams, dynamic stress concentrations.Journal of the Acoustical Society of America,1961, 33(5):633-639.
    [27]Nicole J. Kessissoglou. Active control of the plate energy transmission in a semi-infinite ribbed plate. J. Acoust.Soc.Am..2000,107(1):324-331P
    [28]Nicole J. Kessissoglou and J.Pan. An Analytical Investigation of the Active Attenuation of the Plate Flexural Wave Transmission through a Reinforcing Beam. J.Acoust.Soc.Am..1997,102:3530-3541P
    [29]王敏庆,盛美萍,孙进才等.筋受力激励下加筋板结构振动功率流研究.西北工业大学学报.1998,16(2):237-240页
    [30]王敏庆,盛美萍,孙进才等.板受力激励下加筋板结构振动功率流.声学学报.1997,22(4):323-328页
    [31]Bondark J E.Vibration of truss structures. J.Acoust.Soc.Am.1997,120(4):2167-2175P
    [32]Keane A J. Passive vibration control via unusual geometrics:experiments on model aerospace structures. Journal of Sound and Vibration.1996,190(4):713-719P
    [33]J.M.Chuschieri, Structural power-flow analysis using a mobility approach of an L-shaped plate. Journal of the Acoustical Society of America,1990,87(3):1159-1165.
    [34]李天匀,张小铭.有不连续材料层的组合板结构振动功率流研究.声学学报.1997,22(3):274-281页
    [35]R.S.Langley, K.H.Heron, Elastic wave transmission through plate/beam junctions.Journal of Sound and Vibration,1990,143(2):241-253.
    [36]Grice R.M, Pinnington R J. A method for the vibration analysis of built-up structures, Part I:Introduction and analysis of the plate-stiffened beam. Journal of Sound and Vibration.2000,230(4):825-849P
    [37]车驰东.动力设备结构声传递的理论分析及阻波技术的研究.上海交通大学博士学位论文,2008.
    [38]邹明松,吴文伟,谢基榕.流固耦合T型接头结构声传递研究..
    [39]Harari A. Wave propagation in cylindrical shells with finite regions of structural discontinuity. JASA.1977,62:1196-1205P
    [40]Fuller C R. The effect of wall discontinuities on the propagation of flexural waves in cylindrical shells. JSV.1981,75(2):207-228P
    [41]徐幕冰,张小铭,张维衡.圆柱壳中不连续管壁对振动功率流传播的影响.振动与冲击.1997,16(3):50-54页
    [42]Harari A. Wave propagation in a cylindrical shell with joint discontinuity. Shock and Vib.. Bulletin,1978,48:53-61P
    [43]Mead D J, Bardell N S. Free vibration of a thin cylindrical shell with periodic circumferential stiffeners. Journal of Sound and Vibration.1987,115(3):499-520P
    [44]李龙元.环向加筋圆柱壳自由振动的摄动解.应用数学与力学.1987,8(3):277-286页
    [45]Finnveden S.Spectral finite element analysis of the vibration of straight fluid-filled pipes with flanges. Journal of Sound and Vibration.1997,199(1):125-154P
    [46]陈正翔,金咸定.加肋圆柱壳结构噪声的能量流传播.船舶力学.2000,4(4):57-61页
    [47]张小铭,张维衡.加肋圆柱壳体的振动功率流.中国造船.1993,(1):95-104页
    [48]贺小型.潜艇结构.北京:国防工业出版社,1991
    [49]Yoshikawa S. Fluid-structure coupling by the entrained fluid in submerged concentric double-shell vibration. J. Acoust. Soc. Jpn.(E),1993,14(2):99-111
    [50]Raheb M El, Wagner P. Acoustic radiation from a shell with internal structures. J. Acoust. Soc. Am.,1989,85(6):2452-2464
    [51]Adnan Akay. Scattering of sound from concentric cylindrical shells. J. Acoust. Soc. Am.,1991,89(4):1572-1578
    [52]Adnan Akay, Sedat Sener, Guillermo C Gaunaurd. Acoustic scattering from fluid-filled, concentric, submerged cylindrical elastic shells. J. Acoust. Soc. Am., 1992,94(6):3277-3294
    [53]谢官模。 环肋圆柱壳在流场中的动力响应和声辐射[D].武汉:华中理工大学,1994.
    [54]Choi S-H, Igusa T, Achenbach J D. Acoustic radiation from a finite-length shell with substructures subjected to an impulsive load. Wave Motion,1995,22(3): 259-277
    [55]陈越澎.加筋柱壳的声学设计方法研究.[D].华中科技大学博士学位论文,1999
    [56]陈美霞.有限长加筋双层圆柱壳声辐射性能分析[D].华中科技大学博士学位论文,2003.
    [57]Lee J-H, Kim J. Analysis and measurement of sound transmission through a double-walled cylindrical shell. J. Sound.Vib.,2002,251(4):631-649
    [58]商德江,何祚镛.加肋双层圆柱壳振动声辐射数值计算分析[J].声学学报,2001.26(3):193-201页
    [59]刘涛,汤渭霖,何世平.数值/解析混合方法计算含复杂结构的有限长圆柱壳体声辐射[J].船舶力学,2003.8(7):99-104页.
    [60]何晨.圆柱壳体全频段振动声辐射特性研究[D].华中科技大学硕士学位论文,2006.
    [61]曹志远.板壳振动理论.中国铁道出版社,1989.
    [62]黄克智,夏之熙.板壳理论.清华大学出版社,1987.
    [63]R.D.Mindlin, Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates.Journal of Applied Mechanics,1951:31-38.
    [64]Shorter P J, Langley R S. Vibro-acoustic analysis of complex systems [J]. Journal of Sound and Vibration,2005,288 (3):669-699
    [65]Shorter P J, Langley R S. On the reciprocity relationship between direct field radiation and diffuse reverberant loading [J]. Journal of the Acoustical Society of America, 2005,117(1):85-95
    [66]姚德源,王其政.统计能量分析原理及其应用.北京:北京理工大学出版社,1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700