磁流变阻尼器的结构和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁流变阻尼器是一种新型的智能化机械动作器,在许多领域都有良好的应用前景。因此,研制出性能优良的磁流变阻尼器具有很重要的意义。本文以此为目的,期望可以通过改变阻尼器的结构达到提高其性能的目的,对此进行了相关的研究。具体工作如下:
     1、基于Bingham模型,应用流体力学理论,建立了描述剪切阀式磁流变阻尼器性能的数学表达式,分析了磁流变阻尼器的各个结构参数对磁流变阻尼器性能的影响情况。
     2、对间隙结构进行精细化设计。设计出了一种新型的带凸台的间隙结构。然后应用有限元分析方法,对设计出来的带有新型间隙结构的阻尼器进行磁场分析和流场分析,分析其性能。通过与原阻尼器进行对比,发现所设计出的带凸台的间隙结构可以显著提高阻尼器的性能。
     3、应用有限元分析方法,在一定活塞速度和电流的情况下,分别研究了凸台间隙结构的三个参数对磁流变阻尼器性能的影响,通过分析比对,找出了三个参数的最优组合。本章所得出的结论有很好的实用性。
     4、对传统的用于流场分析的Bingham模型进行一定的改进,考虑了间隙结构中磁场、流场的各向异性,在双向应力作用下对磁流变阻尼器进行有限元分析,探讨和建立了一种相对简单实用又具有足够精度的计算模型和方法,同时简单介绍了如何在ANSYS平台上实现该模型。
MRF damper is a new type of intelligential mechanical action controller, which has a good application prospect in many fields. It has very important significance to develop good performance of MRF damper. For this purpose, some relevant researches are made to change the structure of the damper to improve the performance. Concrete content as follows:
     1. Based on Bingham model and the theory of fluid mechanics, a mathematical expression is set up to describe the performance of the shear valve type MRF damper. This paper analyzes each structure parameters of the MRF damper how to influence its performance.
     2、Concentrated on the elaborate designing, a new type of Clearance structure equipping boss is designed The finite element analysis method is applied to analyze magnetic field and flow field of the MRF damper with a new type of structure. Compared the performance to the original damper, the designed clearance structure equipping boss can improve the performance of the damper.
     3、Under a certain piston speed and electricity current situation, finite element analysis method is used to study the three parameters of clearance structure equipping boss how to influence the performance of MRF damper. Through the comparative analysis, the most optimal combination of the three parameters is found out. This conclusion this chapter provided in the structure of MRF damper designs has a commendable practical applicability.
     4、Considering the anisotropism of magnetic field and the flow field in interstitial structure, the traditional Bingham model using in the flow field analysis has been improved. Through the method of finite-element analysis, the structure of the MRF damper is analyzed under the function of two dimensional stresses. This paper probes and sets up a relatively simple and precise calculation model and method that can be implemented in ANSYS platform.
引文
[1]张光磊,杜彦良.智能材料与结构系统[M].北京:北京大学出版社,2010
    [2]James C. Ppynor. Innovative Designs for Magneto-Rheological Dampers. Thesis submitted to the faculty of Virginia Polytechnic Insitute and State University in partial fulfillment of the requirement for the degree of Master of Science In Mechanical Engineering,2001
    [3]王鸿云,郑惠强,李泳群.磁流变液的研究与应用[J].机械设计,2008,25(5):1-5
    [4]周云,谭平.磁流变阻尼控制理论与技术[M].北京:科学出版社,2007
    [5]邹明松.磁流变阻尼器流体力学分析及动力学仿真[D].南京理工大学硕士学位论文,2007
    [6]蒋建东.磁流变传动技术及器件的研究[D].重庆大学博士学位论文,2004
    [7]S. J. Mcmanus, K. A. St. Clair, P. E. Boileau, J. Boutin, and S. Rakheja. Evaluation of Vibration and Shock Attenuation Performance of a Suspension Seat with a Semi-Active Magneto-Rheological Fluid Damper. Journal of Sound and Vibration. 2002(253):313-327
    [8]张红辉等.磁流变阻尼器技术及其在军用装备系统中的应用[J].兵器材料科学与工程,2006,29(4):65-68
    [9]张宏辉.磁偏置内旁通式磁流变阻尼器研究.重庆大学博士学位论文,2006
    [10]石秀东.磁流变减振系统关键技术研究.南京理工大学博士学位论文,2006
    [11]Lou W J, Ni Y Q, Ko J M. Model Damping and Stepping-switch Control of Stay Cables with Magneto-Rheological Fluid Dampers[A]. Smart Structures and Marterial: Smart System for Bridges, Structures and Highways[C], Proceedings of SPIE, 2001,4300
    [12]Ni Y Q, Y E Duan, er al. Damping Identification of MR-damped Bridge Cables from In-situ Monitoring under Wind-rain-excited Condition[A]. Proceedings of SPIE. The International Society for Optical Engineering[C],2002,4696
    [13]欧进萍.结构振动控制—主动、半主动和智能控制[M].北京:科学出版社,2003
    [14]Fernando D. Goncalves, Mehdi Ahmadian. A Study on MR Fluids Subjected to High Shear and High Vilocities. Smart Structure and Marterials 2005:Damping and Isolation. SPIE Vol.5760(2005)
    [15]James A Norris, Mehdi Ahmadian. Behavior of MRF Subjected to Impact and Shock Loading. IMECE'03
    [16]Goncalves F. D, Ahmadian M. Behavior of MRF at high velocities and high shear rates. In:Lu Kunquan, Shen Rong and Liu Jixing. Proc. Of the Ninth International Conference-Electrorheological fluida and MR suspentions. Singapore:World Science, 2005,412-418
    [17]Ahmadian M, Appleton R. J, Norris J. A. An analytical study of battery using magnetorheological dampers[J]. Shock and Vibration,2002,9(1):129-142
    [18]Ahmadian M, Appleton R. J, Norris J. A. Designing magnetorheological dampers in a fire out of battery pecoil system. IEEE Transcations on Magnetic.2003(39):21-25
    [19]Umit Dogrue, Gordanninejad F, Eurensel C. A magnetorheological fluid damper for high-mobility multi-purpose wheeled vehicle(HMMWV)[C]. Proc of SPIE. Bellingham:SPIE,2004,195-203
    [20]Umit Dogrue, Gordanninejad F, Evrensel C. A new magnetorheological fluid damper for high-mobility multi-purpose wheeled vehicle(HMMWV)[C]. Proc of SPIE. Bellingham:SPIE,2003,198-206
    [21]汪建晓,孟光.磁流变阻尼器用于振动控制的理论及实验研究[J].振动与冲击,2001,20(2)
    [22]廖昌荣,陈伟民.磁流变材料与磁流变阻尼器的潜在工程应用[J].机械工程材料,2001,25(1)
    [23]郭大蕾,胡海岩.基于磁流变阻尼器的车辆悬架半主动控制研究—建模与直接自适应控制[J].振动工程学报,Vol.15 No.1 Mar.2002:60-64
    [24]周丽,张志成.基于磁流变阻尼器的结构振动优化控制[J].振动工程学报,Vol.16No.1 Mar.2003:109-113
    [25]李延成.冲击载荷下磁流变缓冲器半主动控制研究.南京理工大学博士学位论文,2007
    [26]李延成,钱林方.基础激励作用下磁流变减振系统的非线性特性[J].功能材料,2006,37(6):986-988
    [27]E. John Finnemore, Joseph B. Franzini.流体力学及工程应用[M].机械工业出版社
    [28]沈崇堂,刘鹤年.非牛顿流体力学及应用.高等教育出版社,1989
    [29]邢海军,申永军.磁流变阻尼器阻尼力计算[J].机械设计,2008,25(9),7-9
    [30]廖昌荣等.汽车磁流变减震器阻尼力计算方法[J].中国公路学报,2006,19(1),133-136
    [31]磁流变阻尼器的Bingham模型及Simulink仿真分析[J].科技信息,2008,17:27-32
    [32]龚曙光.ANSYS基础应用及范例分析[M].机械工业出版社
    [33]李景湧.有限元法[M].北京邮电大学出版社
    [34]孙宁等.基于ANSYS的磁流变阻尼器设计技术研究[J].机械制造,2006,
    22(2):15-16
    [35]孙明礼,胡仁喜,崔海容.电磁学有限元分析实例指导教程[M].机械工业出版社
    [36]郑玲,李以农等.活塞式磁流变阻尼器磁场有限元分析[J].农业机械学报,2007,38(4),142-145
    [37]司鹄,李晓红.磁流变液的流体动力学理论[J].功能材料,2006,5(37),727-728
    [38]许洋,党沙沙,胡仁喜等.流场分析实例指导教程[M].机械工业出版社
    [39]赖大坤,王代华.基于有限元方法的磁流变阻尼器性能的仿真研究[J].功能材料,2006,6(37),999-1001
    [40]Lai D K, Wang D H. An integrated relative displacement sensor for magetorheplogical damper[C]. Hong Kong:Proceeding of 2005 IEEE International Conference on Information Acquisition,2005,227-232
    [41]柳舟通.磁流变阻尼器的设计与研究.武汉理工大学硕士学位论文,2002
    [42]侯保林.基于磁场有限元分析的磁流变缓冲器结构设计[J].弹道学报,2007,19(3),80-84
    [43]http://www.Sciei.Com.ANSYS二次开发手册
    [44]AI Borovkov, DV Shevchenko, OA Zakirov. Special Software Development to Customize ANSYS for Specific Applications, ANSYS-China Conference, 2004,Session 2
    [45]ANSYS Guide to User Programmable Features, ANSYS Inc,2001
    [46]孔戈.基于ANSYS二次开发的地下结构动力反应仿真分析.中国地震局工程力学研究所硕士学位论文,2003
    [47]任亮.基于ANSYS二次开发的结构疲劳寿命与破坏概率可视化技术.南京航空航天大学硕士学位论文
    [48]李鹏.钢筋混凝土板的弹塑性有限元分析.西安建筑科技大学硕士学位论文
    [49]褚振兴,宁生科,马保吉.基于ANSYS二次开发技术的研究[J].机械工程师,2008,8,37-38
    [50]章本照.流体力学中的有限元方法[M].北京:机械工业出版社,1986
    [51]匙彦斌,田淑清等.FORTRAN77与结构化程序设计[M].天津:天津大学出版社,1993
    [52]陈文芳.非牛顿流体力学[M].北京:科学出版社,1982

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700