荧光纳米材料的合成制备、性质表征和应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在生物医药等领域中,荧光标记技术已经成为人们在研究生物大分子的构型、生物分子之间的相互作用和纳米载药系统中纳米载体进入细胞的机制过程中必不可少的研究工具。它已经成为人们观察生物领域的第三只“眼”。合成性能卓越的荧光标记材料是促进荧光标记技术发展和进步的关键。荧光标记材料通常包括有机染料、半导体量子点、复合荧光纳米粒子和贵金属纳米簇。后三者由于其尺寸在纳米的级别上,被称为荧光纳米标记材料。荧光纳米标记材料具有优良的光学性质,被研究者所青睐,成为新一代的荧光标记材料。由于复合荧光纳米粒子和贵金属纳米簇具有良好的生物相容性和抗光漂白的能力,因此成为人们广泛研究的荧光纳米材料之一。对于复合荧光纳米粒子来说,纳米基质和染料分子复合的方式、复合的浓度、复合的机制以及复合后形成荧光纳米粒子的结构都能影响其发光性质。弄清这些因素是如何影响复合荧光纳米粒子的发光性质,对于指导人们合成性能优良的荧光标记材料具有非常重要的意义。贵金属纳米簇由于具有优良的光稳定性、较大的斯托克位移和良好的生物相容性等优点,使其在生物领域中有很大的应用前景。在水溶液中,银纳米簇显示出比金纳米簇更强的荧光发射效率。但是,由于银纳米簇化学活性高,比表面大和表面活化能高,在水溶液中容易发生聚集,所以选择合适的模板剂或保护剂是成功合成银纳米簇的关键。利用新型的,功能化的模板剂或保护剂合成银纳米簇,对银纳米簇的性能和潜在的应用领域都有很大的影响。本论文主要讨论染料复合的荧光粒子和贵金属纳米簇的合成制备以及应用的研究,主要研究内容总结如下:
     1,染料掺杂的PMMA聚合物纳米粒子的制备合成,发光性质和其应用研究
     利用包埋和粘附两种复合方式,实现了染料分子Ru(bpy)_3Cl_2和PMMA(聚甲基丙烯酸甲酯)纳米粒子的复合,合成了复合型荧光纳米粒子。利用荧光寿命法探究了粘附和包埋方式形成的复合型荧光纳米粒子的结构,结果显示它们都具有核壳结构。核壳结构的具体的成分比例如下:对于包埋型复合荧光纳米粒子,40%的染料分子位于纳米球的表面,60%的染料分子位于纳米球核内部;对于粘附型复合荧光纳米粒子,16%的染料分子位于纳米球的核内,84%的染料分子位于纳米球的表面。和PMMA纳米基质复合后,染料的发光效率有所提高;在复合了同等浓度的染料分子后,包埋型的荧光纳米粒子的发光效率高于粘附型的;而且包埋型的纳米粒子抗外界不良环境的能力强于粘附型的。选用不同的引发剂可以合成带不同电性的PMMA纳米球。我们发现带正电的Ru(bpy)3Cl2只能和带负电的PMMA纳米球复合,而不能和带正电的纳米球复合,这说明染料和纳米基质之间的相互作用力主要为静电吸引力。
     对于这种电性可调的纳米基质来说,可选择的与其复合的染料分子的范围大大拓展。我们选用具有绿光发射性质的带负电的荧光素钠和带正电的R6G,黄光发射性质的带正电的RB分别和带不同电性的PMMA纳米球复合。同样,这些带电荷的染料和纳米基质复合主要的驱动力为静电吸引作用力。我们对染料和纳米基质复合的方式和复合的浓度进行了优化,合成出了多色的高发光亮度的复合型荧光纳米粒子。这种PMMA荧光纳米粒子不经过任何的生物修饰即可进入到小白鼠的血癌细胞中,点亮细胞。
     2,采用羧酸化的具有核壳结构的聚合物纳米粒子为模板剂,采用原位生长的方法制备银纳米簇
     采用无皂种子聚合的方法合成了具有核壳结构的聚合物纳米粒子。这些纳米粒子的核分别由PMMA(聚甲基丙烯酸甲酯),PS(聚苯乙烯)和SiO_2(二氧化硅)构成,壳的成分都由PMAA(聚甲基丙烯酸)组成。用这些羧酸化的聚合物纳米粒子为模板剂,在AgNO_3存在的情况下,采用光化学还原的方法合成了具有荧光发射性质的银纳米簇。反应液的pH,羧酸根和AgNO_3的比例在银纳米簇合成过程中起了重要作用。获得的银纳米簇的发光效率在6-12%之间,银纳米簇的组成较为宽泛,包括Ag_2和Ag3,还有少量Ag_4, Ag_5和Ag_6。用上述模板剂采用原位生成的方法合成银纳米簇,通过一步反应就实现了银纳米簇和聚合物纳米粒子的复合。这种复合,有利于提升银纳米簇的稳定性,,银纳米簇在存放了一年后仍能很好的保持原来的荧光发射性质;还有利于扩展银纳米簇的应用范围。我们把合成的银纳米簇复合纳米粒子应用到细胞成像领域中,它可以很好的点亮细胞。
     3,采用羧酸化的环糊精为模板剂合成了银纳米簇
     合成了不同羧酸根取代的—环糊精,并以它们为模板剂合成银纳米簇。实验证明:羧酸根取代度越大,越有利于银纳米簇的形成。当取代度小于4时,合成的银纳米簇很快发生聚集,所以只有银纳米粒子生成;反应液的pH和反应物质之间的比例对银纳米簇的合成和性质影响也很大。我们对这些反应条件进行了优化。
     利用小分子模板剂合成的银纳米簇虽然量子产率较低,只有2%,但是由于模板剂体积较小,不影响银纳米簇本身的性质。我们用环糊精合成的银纳米簇做抑菌试剂,发现银纳米簇的抑菌效果比银离子和经典银溶胶的效果都好,这可能是由于其比表面较大,表面活化能高所造成的。
     4,采用修饰的蚕丝为模板剂原位生长银纳米簇
     合成了PAA(聚甲基丙烯酸)修饰的蚕丝,并以此为模板剂,成功地合成了银纳米簇。我们发展了一种新型的合成银纳米簇的模板剂。它不仅实现了原位生长银纳米簇的目的,而且通过一步反应就实现了银纳米簇和蚕丝的结合,使蚕丝具有了荧光发射的性质,是合成荧光蚕丝的一种新方法。在中国,近3000年来,蚕丝由于其优良的性质,比如良好的吸潮性,透气,保温和优异的机械性能,一直被作为高档纺织品原料。此外,在生物医药等领域,如细胞培养支架,人造骨基质和药物控释,蚕丝也有广泛的应用。但是它一种蛋白纤维,容易滋生细菌和其他微生物,导致纤维损坏和皮肤敏感。人们对蚕丝纤维的抗菌能力比较关注。利用聚丙烯酸(PAA)改性的蚕丝,原位生长银纳米簇,我们获得了一种即具有荧光发射性质又具有抗菌活性的新型蚕丝纤维。这种方法也适用于修饰大多数天然纤维和人造纤维。与绿色荧光蛋白掺杂的蚕丝相比,这是一种容易处理,成本低,耗时少荧光丝纤维的制备方法。而且制备的荧光蚕丝有较好的抗菌活性。
In the fields of biology and medicine, the fluorescence labeling technique hasbeen the essential tool for studying on the configuration of biological macromolecules,the interaction between biological molecules and the action mechanism of nanocarrierinto the cell in the systems of nano-drug delivery. It has been the third “eyes” forresearcher to observe biological phenomena. The synthesis of fluorescent materialspossessing excellent properties is crucial for promoting the development and progressof fluorescence labeling. Generally, the luminescent materials for biological labelinginclude organic dyes, semiconductor quantum dots, composite fluorescentnanoparticles and noble metal nanoclusters. The latter three, owing to their size innano-level, are well known as the novel luminescent nanomaterials. Owing to theexcellent photostability, the luminescent nanomaterials attract many researchers andbecome the next generation of luminescent makers. Here, we mainly discuss thepreparation and application of the dye doped polymer nanoparticles and noble metalnanoclusters. Composite strategies, concentration and mechanism among nano-matrices, dye molecules and the structure of prepared luminescent nanoparticles havegreat impact on the luminescent properties of composite luminescent nanoparticles. Itis significant for us to figure out how the above factors affect the luminescentproperties of composite luminescent nanoparticles. And it will helpful for people toprepare composite luminescent nanoparticles for more excellent properties. Noblemetal nanoclusters have great applicable prospect in the biological fields owing totheir predominant photostability, larger Stoke shift and good biocompatibility. Silvernanoclusters present stronger fluorescence than Au nanoclusters in aqueous solution.Due to the chemical instability and the high surface energy of silver nanoclusters, theytended to interact with each other and had a natural tendency to aggregate, forminglarger nanoparticles. Therefore, a proper stabilizing scaffold or template is thusindispensable. The choices of novel, functional template or stabilizing scaffold havegreat impact on the properties and the optional application areas of silvernanoclusters. According to the excellent luminescent properties and application prospects of the Ag nanoclusters embedded composite luminescent nanoparticles, themain research contents are summarized as follows:
     1, The studies on the preparation of dye doped PMMA nanoparticles and theirluminescent properties and applications.
     A dye, Ru(bpy)3Cl2, was combined with nano-matrices PMMA (polymethylmethacrylate) by two strategies as the embedding (Em-PMMA nanopartcles) and theadsorbing (Ad-PMMA nanoparticles) approaches to obtain the novel compositeluminescent nanoparticles. The fluorescence lifetime of two kinds of compositeparticles can tell us that both them have a core-shell structure. For the Em-PMMAnanopartcles,40%of dye molecules lied in the surface of nanoparticle and60%ofdye molecules located in the inner of nanoparticles; For Ad-PMMA nanoparticles,16%of dye molecules lied in the inner of nanoparticles and84%of dye molecules onthe surface of nanoparticles. The quantum yields of dye molecules increased after theycombining with PMMA nanoparticles. The luminescent intensity of the Em-PMMAnanopartcles was higher than that of Ad-PMMA nanoparticles when containing thesame amount of dye molecules. The resisting ability for outside adverse environmentshowed the Em-PMMA nanopartcles was much stronger than the Ad-PMMAnanoparticles. The surface potentials of PMMA nanoparticles can be adjusted bychoosing different initiators. We found that the positively charged Ru(bpy)3Cl2can beintegrated with the negatively charged PMMA nanoparticles while they can not becombined with the positively charged, which suggested that it was the electrostaticattraction that drove the combination of dye molecules and nano-matrices. For thenano-matrices of adjustable surface potentials, the options of dye molecules which canbe combined with nano-matrices have been expanded. The negatively chargedfluorescein sodium and negatively charged rhodamine6G were combined withPMMA nanoparticles with different surface potentials. Similarly, the mechanism fordye molecules encapsulating in the PMMA nano-matricesm was the electrostaticattraction. The composite strategies and the concentration of dye molecules wereoptimized. Finallymulticolored and high brightness dye@PMMA nanocompositeswere prepared. And these multicolored polymer nanoparticles can easily stain bloodcancer cells without further surface modification.
     2, In situ synthesis of silver nanoclusters templated by the carboxylated polymernanoparticles with the core-shell structure.
     The method of soapless seeded emulsion polymerization was applied for synthesizing the core-shell polymer nanoparticles. The core of these polymernanoparticles were PMMA (polymethyl methacrylate), PS (polystyrene) and SiO2(silicon dioxide) respectively and all of the composition of shell was made of PMAA(polymethacrylic acid). The water-soluble fluorescent Ag nanoclusters were preparedby the method of photochemical reduction using the template of these carboxylatedpolymer nanoparticles. The pH values of reaction solution and the ratios of carboxylgroups and AgNO3were proved to be important for the synthesis process of silvernanoclusters that. The quantum yield of Ag nanoclusters was6-12%. There was awide distribution of the number of Ag atoms consisting of Ag2-6. When using thecore-shell carboxylated polymer nanoparticles as the templates for in situ synthesis ofAg nanoclusters, the composition of Ag nanoclusters and polymer nanoparticles canbe realized in one-step reaction, which is helpful to extend the application ranges ofAg nanoclusters. And the stability of Ag nanoclusters was enhanced when combiningwith polymer nanoparticles. The Ag nanoclusters can maintain the originalfluorescence intensity even experiencing one year storage. Owing to the protecting ofpolymer nanoparticles, the ability of resisting outside adverse environment wasimproved. The prepared Ag nanoclusters@polymer nanoparticles had successfullybeen applied for bioimaging.
     3, Synthesis and characterization of Ag nanoclusters templated bycarboxymethyl-β-cyclodextrin (CM-β-CD)
     The CM-β-CD molecules with different degree of substitution of carboxylicgroups were synthesized and they were applied as the template for preparing Agnanoclusters. The experiment showed that the more degree of substitution ofcarboxylic groups, the better for formation of Ag nanoclusters. When the degree ofsubstitution of carboxylic groups on per β-cyclodextrin molecule was smaller than4,the prepared Ag nanoclusters was very instability, tending to aggregate and led to theformation of Ag nanoparticles. It played an important role during the synthesisprocess of silver nanoclusters that the pH of reaction solution and the ratio of carboxylgroups and AgNO3and these reaction conditions were optimized for obtaining higherbrightness. Although the quantum yield of Ag nanoclusters templated by smallmolecules was low, just2%, the natural properties of Ag nanoclusters were notaffected by CM-β-CD. The Ag nanoclusters templated by CM-β-CD was used as anew antibacterial reagent and found that the antibacterial ability of Ag nanoclusters was stronger than Ag ions and typical Ag nanoparticles owing to the high surfaceenergy of Ag nanoclusters.
     4, In situ synthesis of silver nanoclusters on modified silk via ultravioletlight-induced reduction
     The silk modified by PAA was used as a template to prepare Ag nanoclusterssuccessfully. We developed a novel template for synthesizing Ag nanoclusters. It notonly realized the in situ synthesis of Ag nanoclusters but also finished the combinationof Ag nanoclusters and silk fibres and the completion of function of silk. This is a newsynthesis way for fluorescent silk. Since in China, silk has been used as a luxurytextile material over3000years owing to their excellent properties such as moistureabsorption, oxygen permeability, heat retention and outstanding mechanical properties.In addition, in many biomedical fields such as cell culture scaffolds, artificial bonematrices and controlled drug release, the silkworm silk has been proved to be asuitable candidate. However, this protein fiber has the potential to be a hospitable hostfor the generation and propagation of microorganisms, resulting in fiber damages andskin irritations. So the antimicrobial ability of silk fibers has been concerned. By thein situ growth of Ag nanoclusters on silk fibers modified by the polymer polyacrylicacid (PAA), we obtained a novel silk fibre with luminescence and antibacterialactivity. This method is also applicable for most natural and artificial fibres.Comparing with green fluorescent protein doped silk fibre, this is a easily handled,low-cost and less time-consuming method for preparing fluorescent silk fiber. Theproduced Ag nanoclusters@silk fibres were expected to exhibit good antibacterialproperty.
引文
[1] YALOW R S, BERSON S A. Assay of plasma insulin in human subjects byimmunological methods [J]. Nature,1959,184(1648-1649.
    [2] WANG E K. Analytical Chemistry in21Century [J]. Beijing: Science Press,1999,
    [3] LUPPA P B, SOKOLL L J, CHAN D W. Immunosensors—principles andapplications to clinical chemistry [J]. Clinica Chimica Acta,2001,314(1–2):1-26.
    [4] GAO H. The Front of Analytical Chemistry [J]. Beijing: Science Press,1991,
    [5] WANG H Z, WANG H Y, LIANG R Q, et al. Detection of tumor marker CA125in ovarian carcinoma using quantum dots [J]. Acta Biochem Biophs Sin,2004,36(681-686.
    [6] SANTRA S, DUTTA D, WALTER G A, et al. fluorescence nanoparticle probesfor cancer imaging [J]. TechnolCaneerResTreat,20054(593-602.
    [7]赵承军,唐军民.量子点在生物医学中的应用[J].解剖学报,2006,37(4):484一486.
    [8]邹明强,杨蕊,李锦丰.量子点的光学特征及其在生命科学中的应用[J].分析测试学报,2005,24(6):133-137.
    [9] COSTA-FERN NDEZ J M, PEREIRO R, SANZ-MEDEL A. The use ofluminescent quantum dots for optical sensing [J]. TrAC Trends in AnalyticalChemistry,2006,25(3):207-218.
    [10]陈良冬,李雁,袁宏银.量子点在肿瘤研究中的应用[J].癌症,2006,25(5):651一656.
    [11] MURRAY C B, NORRIS D J, BAWENDI M G. Synthesis and characterizationof nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductornanocrystallites [J]. Journal of the American Chemical Society,1993,115(19):8706-8715.
    [12] ZHANG H, CUI Z, WANG Y, et al. From Water-Soluble CdTe Nanocrystals toFluorescent Nanocrystal–Polymer Transparent Composites UsingPolymerizable Surfactants [J]. Advanced Materials,2003,15(10):777-780.
    [13] ZHANG H, WANG L, XIONG H, et al. Hydrothermal Synthesis forHigh-Quality CdTe Nanocrystals [J]. Advanced Materials,2003,15(20):1712-1715.
    [14] AN B-K, KWON S-K, JUNG S-D, et al. Enhanced Emission and Its Switchingin Fluorescent Organic Nanoparticles [J]. Journal of the American ChemicalSociety,2002,124(48):14410-14415.
    [15] WU C, SZYMANSKI C, MCNEILL J. Preparation and Encapsulation of HighlyFluorescent Conjugated Polymer Nanoparticles [J]. Langmuir,2006,22(7):2956-2960.
    [16] BAIER M C, HUBER J, MECKING S. Fluorescent Conjugated PolymerNanoparticles by Polymerization in Miniemulsion [J]. Journal of the AmericanChemical Society,2009,131(40):14267-14273.
    [17] INGOLD K U. Inhibition of the Autoxidation of Organic Substances in theLiquid Phase [J]. Chemical Reviews,1961,61(6):563-589.
    [18] PELLACH M, GOLDSHTEIN J, ZIV-POLAT O, et al. Functionalised,photostable, fluorescent polystyrene nanoparticles of narrow size-distribution[J]. Journal of Photochemistry and Photobiology A: Chemistry,2012,228(1):60-67.
    [19] GAO H, ZHAO Y, FU S, et al. Preparation of a novel polymeric fluorescentnanoparticle [J]. Colloid&Polymer Science,2002,280(7):653-660.
    [20] TOKATLIAN T, SHRUM C T, KADOYA W M, et al. Protease degradabletethers for controlled and cell-mediated release of nanoparticles in2-and3-dimensions [J]. Biomaterials,2010,31(31):8072-8080.
    [21] HOLZAPFEL V, MUSYANOVYCH A, LANDFESTER K, et al. Preparation ofFluorescent Carboxyl and Amino Functionalized Polystyrene Particles byMiniemulsion Polymerization as Markers for Cells [J]. MacromolecularChemistry and Physics,2005,206(24):2440-2449.
    [22] ALLARD E, LARPENT C. Core-shell type dually fluorescent polymernanoparticles for ratiometric pH-sensing [J]. Journal of Polymer Science Part A:Polymer Chemistry,2008,46(18):6206-6213.
    [23] QIAN H S, LI Z Q, ZHANG Y. A Facile Synthesis of Multicolor PolystyreneMicrospheres Encapsulating Upconversion Fluorescent Nanoparticles4th Kuala Lumpur International Conference on Biomedical Engineering2008
    [M]//ABU OSMAN N A, IBRAHIM F, WAN ABAS W A B, et al.; SpringerBerlin Heidelberg.2008:73-76.
    [24] BRADLEY M, ASHOKKUMAR M, GRIESER F. Sonochemical Production ofFluorescent and Phosphorescent Latex Particles [J]. Journal of the AmericanChemical Society,2002,125(2):525-529.
    [25] ZHU H, MCSHANE M J. Loading of Hydrophobic Materials into PolymerParticles: Implications for Fluorescent Nanosensors and Drug Delivery [J].Journal of the American Chemical Society,2005,127(39):13448-13449.
    [26] WANG X, XU S, XU W. Luminescent properties of dye-PMMA compositenanospheres [J]. Physical Chemistry Chemical Physics,2011,13(4):
    [27] WANG X, XU S, LIANG C, et al. Enriching PMMA nanospheres withadjustable charges as novel templates for multicolored dye@PMMAnanocomposites [J]. Nanotechnology,2011,22(27):275608.
    [28] CHEN J, ZENG F, WU S, et al. A facile approach for cupric ion detection inaqueous media using polyethyleneimine/PMMA core–shell fluorescentnanoparticles [J]. Nanotechnology,2009,20(36):365502.
    [29] ST BER W, FINK A, BOHN E. Controlled growth of monodisperse silicaspheres in the micron size range [J]. Journal of Colloid and Interface Science,1968,26(1):62-69.
    [30] VAN BLAADEREN A, VRIJ A. Synthesis and characterization of colloidaldispersions of fluorescent, monodisperse silica spheres [J]. Langmuir,1992,8(12):2921-2931.
    [31] ZHAO X, BAGWE R P, TAN W. Development of Organic-Dye-Doped SilicaNanoparticles in a Reverse Microemulsion [J]. Advanced Materials,2004,16(2):173-176.
    [32] WANG L, WANG K, SANTRA S, et al. Watching Silica Nanoparticles Glow inthe Biological World [J]. Analytical Chemistry,2006,78(3):646-654.
    [33] DERFUS A M, CHAN W C W, BHATIA S N. Probing the Cytotoxicity ofSemiconductor Quantum Dots [J]. Nano Letters,2003,4(1):11-18.
    [34] SELVAN S T, TAN T T, YING J Y. Robust, Non-Cytotoxic, Silica-Coated CdSeQuantum Dots with Efficient Photoluminescence [J]. Advanced Materials,2005,17(13):1620-1625.
    [35] WANG C, MA Q, DOU W, et al. Synthesis of aqueous CdTe quantum dotsembedded silica nanoparticles and their applications as fluorescence probes [J].Talanta,2009,77(4):1358-1364.
    [36] WANG L, TAN W. Multicolor FRET Silica Nanoparticles by Single WavelengthExcitation [J]. Nano Letters,2005,6(1):84-88.
    [37] LESSARD-VIGER M, RIOUX M, RAINVILLE L, et al. FRET Enhancementin Multilayer Core Shell Nanoparticles [J]. Nano Letters,2009,9(8):3066-3071.
    [38] YANG W, ZHANG C G, QU H Y, et al. Novel fluorescent silica nanoparticleprobe for ultrasensitive immunoassays [J]. Analytica Chimica Acta,2004,503(2):163-169.
    [39] MA D, KELL A J, TAN S, et al. Photophysical Properties of Dye-Doped SilicaNanoparticles Bearing Different Types of Dye Silica Interactions [J]. TheJournal of Physical Chemistry C,2009,113(36):15974-15981.
    [40] LARSON D R, OW H, VISHWASRAO H D, et al. Silica NanoparticleArchitecture Determines Radiative Properties of Encapsulated Fluorophores [J].Chemistry of Materials,2008,20(8):2677-2684.
    [41] XIA Y, XIONG Y, LIM B, et al. Shape-Controlled Synthesis of MetalNanocrystals: Simple Chemistry Meets Complex Physics?[J]. AngewandteChemie International Edition,2009,48(1):60-103.
    [42] EL-SAYED M A. Small Is Different: Shape-, Size-, andComposition-Dependent Properties of Some Colloidal SemiconductorNanocrystals [J]. Accounts of Chemical Research,2004,37(5):326-333.
    [43] PARK J, JOO J, KWON S G, et al. Synthesis of Monodisperse SphericalNanocrystals [J]. Angewandte Chemie International Edition,2007,46(25):4630-4660.
    [44] HODES G. When Small Is Different: Some Recent Advances in Concepts andApplications of Nanoscale Phenomena [J]. Advanced Materials,2007,19(5):639-655.
    [45] XU H, SUSLICK K S. Water-Soluble Fluorescent Silver Nanoclusters [J].Advanced Materials,2010,22(10):1078-1082.
    [46] KREIBIG U. Electronic Properties of Small Silver Particles Optical-Constantand Their Temperature-Dependence [J]. J Phy F-Met Phys,1974,4(999-1014.
    [47] SCHMID G, MEYER-ZAIKA W, PUGIN R, et al. Naked Au55Clusters:Dramatic Effect of a Thiol-Terminated Dendrimer [J]. Chemistry–A EuropeanJournal,2000,6(9):1693-1697.
    [48] SCHMID G, BAUMLE M, GEERKENS M, et al. Current and futureapplications of nanoclusters [J]. Chemical Society Reviews,1999,28(3):
    [49] D EZ I, RAS R. Advanced Fluorescence Reporters in Chemistry and Biology II,[J]. Springer,,2010,307-332.
    [50] LIN C, LEE C, HSIEH J, et al. Synthesis of Fluorescent Metallic Nanoclusterstoward Biomedical Application: Recent Progress andPresent Challenges [J]. J Med Biol Eng,2009,29(276-283.
    [51] GUO W, YUAN J, WANG E. Oligonucleotide-stabilized Ag nanoclusters asnovel fluorescence probes for the highly selective and sensitive detection of theHg2+ion [J]. Chemical Communications,2009,23):3395.
    [52] LEE T-H, GONZALEZ J I, ZHENG J, et al. Single-Molecule Optoelectronics[J]. Accounts of Chemical Research,2004,38(7):534-541.
    [53] VOSCH T, ANTOKU Y, HSIANG J-C, et al. Strongly emissive individualDNA-encapsulated Ag nanoclusters as single-molecule fluorophores [J].Proceedings of the National Academy of Sciences,2007,104(31):12616-12621.
    [54] YU J, CHOI S, RICHARDS C I, et al. Live Cell Surface Labeling withFluorescent Ag Nanocluster Conjugates [J]. Photochemistry and Photobiology,2008,84(6):1435-1439.
    [55] ZHU M, QIAN H, JIN R. Thiolate-Protected Au20Clusters with a LargeEnergy Gap of2.1eV [J]. Journal of the American Chemical Society,2009,131(21):7220-7221.
    [56] ZHU M, LANNI E, GARG N, et al. Kinetically Controlled, High-YieldSynthesis of Au25Clusters [J]. Journal of the American Chemical Society,2008,130(4):1138-1139.
    [57] QIAN H, ZHU M, ANDERSEN U N, et al. Facile, Large-Scale Synthesis ofDodecanethiol-Stabilized Au38Clusters [J]. The Journal of PhysicalChemistry A,2009,113(16):4281-4284.
    [58] MUHAMMED M A H, VERMA P K, PAL S K, et al. Bright, NIR-EmittingAu23from Au25: Characterization and Applications Including Biolabeling [J].Chemistry–A European Journal,2009,15(39):10110-10120.
    [59] ADHIKARI B, BANERJEE A. Short-Peptide-Based Hydrogel: A Template forthe In Situ Synthesis of Fluorescent Silver Nanoclusters by Using Sunlight [J].Chemistry–A European Journal,2010,16(46):13698-13705.
    [60] DIEZ I, RAS R H A. Fluorescent silver nanoclusters [J]. Nanoscale,2011,3(5):1963.
    [61] OZIN G A, HUBER H. Cryophotoclustering techniques for synthesizing verysmall, naked silver clusters Agn of known size (where n=2-5). The molecularmetal cluster-bulk metal particle interface [J]. Inorganic Chemistry,1978,17(1):155-163.
    [62] OZIN G A, MITCHELL S A. Ligand-Free Metal Clusters [J]. AngewandteChemie International Edition in English,1983,22(9):674-694.
    [63] HARBICH W, FEDRIGO S, MEYER F, et al. Deposition of mass selectedsilver clusters in rare gas matrices [J]. The Journal of Chemical Physics,1990,93(12):8535-8543.
    [64] WATANABE Y, NAMIKAWA G, ONUKI T, et al. Photosensitivity in phosphateglass doped with Ag[sup+] upon exposure to near-ultraviolet femtosecond laserpulses [J]. Applied Physics Letters,2001,78(15):2125-2127.
    [65] BELLEC M, ROYON A, BOURHIS K, et al.3D Patterning at the Nanoscale ofFluorescent Emitters in Glass [J]. The Journal of Physical Chemistry C,2010,114(37):15584-15588.
    [66] EICHELBAUM M, RADEMANN K, HOELL A, et al. Photoluminescence ofatomic gold and silver particles in soda-lime silicate glasses [J].Nanotechnology,2008,19(13):135701.
    [67] TIKHOMIROV V K, RODR GUEZ V D, KUZNETSOV A, et al. Preparationand luminescence of bulk oxyfluoride glasses doped with Ag nanoclusters [J].Opt Express,2010,18(21):22032-22040.
    [68] ROYON A, BOURHIS K, BELLEC M, et al. Silver Clusters Embedded inGlass as a Perennial High Capacity Optical Recording Medium [J]. AdvancedMaterials,2010,22(46):5282-5286.
    [69] SUN T, SEFF K. Silver Clusters and Chemistry in Zeolites [J]. ChemicalReviews,1994,94(4):857-870.
    [70] DE CREMER G, SELS B F, HOTTA J-I, et al. Optical Encoding of SilverZeolite Microcarriers [J]. Advanced Materials,2010,22(9):957-960.
    [71] OZIN G A, HUGUES F, MATTAR S M, et al. Low nuclearity silver clusters infaujasite-type zeolites: optical spectroscopy, photochemistry and relationship tothe photodimerization of alkanes [J]. The Journal of Physical Chemistry,1983,87(18):3445-3450.
    [72] DE REMER G, ANTOKU Y, ROEFFAERS M B J, et al. Photoactivation ofSilver-Exchanged Zeolite A [J]. Angewandte Chemie International Edition,2008,47(15):2813-2816.
    [73] DE CREMER G, COUTI O-GONZALEZ E, ROEFFAERS M B J, et al.Characterization of Fluorescence in Heat-Treated Silver-Exchanged Zeolites [J].Journal of the American Chemical Society,2009,131(8):3049-3056.
    [74] OZIN G A, HUGUES F. Silver atoms and small silver clusters stabilized inzeolite Y: optical spectroscopy [J]. The Journal of Physical Chemistry,1983,87(1):94-97.
    [75] ZHENG J, DICKSON R M. Individual Water-Soluble Dendrimer-EncapsulatedSilver Nanodot Fluorescence [J]. Journal of the American Chemical Society,2002,124(47):13982-13983.
    [76] ZHANG J, XU S, KUMACHEVA E. Photogeneration of Fluorescent SilverNanoclusters in Polymer Microgels [J]. Advanced Materials,2005,17(19):2336-2340.
    [77] SHEN Z, DUAN H, FREY H. Water-Soluble Fluorescent Ag NanoclustersObtained from Multiarm Star Poly(acrylic acid) as “Molecular Hydrogel”Templates [J]. Advanced Materials,2007,19(3):349-352.
    [78] CATHCART N, KITAEV V. Silver Nanoclusters: Single-Stage ScaleableSynthesis of Monodisperse Species and Their Chirooptical Properties [J]. TheJournal of Physical Chemistry C,2010,114(38):16010-16017.
    [79] ADHIKARI B, BANERJEE A. Facile Synthesis of Water-Soluble FluorescentSilver Nanoclusters and HgII Sensing [J]. Chemistry of Materials,2010,22(15):4364-4371.
    [80] UDAYA BHASKARA RAO T, PRADEEP T. Luminescent Ag7and Ag8Clusters by Interfacial Synthesis [J]. Angewandte Chemie International Edition,2010,49(23):3925-3929.
    [81] RAO T U B, NATARAJU B, PRADEEP T. Ag9Quantum Cluster through aSolid-State Route [J]. Journal of the American Chemical Society,2010,132(46):16304-16307.
    [82] O’NEILL P R, VELAZQUEZ L R, DUNN D G, et al. Hairpins with Poly-CLoops Stabilize Four Types of Fluorescent Agn:DNA [J]. The Journal ofPhysical Chemistry C,2009,113(11):4229-4233.
    [83] GWINN E G, O'NEILL P, GUERRERO A J, et al. Sequence-DependentFluorescence of DNA-Hosted Silver Nanoclusters [J]. Advanced Materials,2008,20(2):279-283.
    [84] RICHARDS C I, CHOI S, HSIANG J-C, et al. Oligonucleotide-Stabilized AgNanocluster Fluorophores [J]. Journal of the American Chemical Society,2008,130(15):5038-5039.
    [85] PETTY J T, ZHENG J, HUD N V, et al. DNA-Templated Ag NanoclusterFormation [J]. Journal of the American Chemical Society,2004,126(16):5207-5212.
    [86] RICHARDS C I, HSIANG J-C, SENAPATI D, et al. Optically ModulatedFluorophores for Selective Fluorescence Signal Recovery [J]. Journal of theAmerican Chemical Society,2009,131(13):4619-4621.
    [87] PATEL S A, RICHARDS C I, HSIANG J-C, et al. Water-Soluble AgNanoclusters Exhibit Strong Two-Photon-Induced Fluorescence [J]. Journal ofthe American Chemical Society,2008,130(35):11602-11603.
    [88] SENGUPTA B, RITCHIE C M, BUCKMAN J G, et al. Base-DirectedFormation of Fluorescent Silver Clusters [J]. The Journal of Physical ChemistryC,2008,112(48):18776-18782.
    [89] SOTO-VERDUGO V, METIU H, GWINN E. The properties of small Agclusters bound to DNA bases [J]. The Journal of Chemical Physics,2010,132(19):195102.
    [90] RITCHIE C M, JOHNSEN K R, KISER J R, et al. Ag Nanocluster FormationUsing a Cytosine Oligonucleotide Template [J]. The Journal of PhysicalChemistry C,2006,111(1):175-181.
    [91] SHARMA J, YEH H-C, YOO H, et al. A complementary palette of fluorescentsilver nanoclusters [J]. Chemical Communications,2010,46(19):
    [92] ANTOKU Y, HOTTA J-I, MIZUNO H, et al. Transfection of living HeLa cellswith fluorescent poly-cytosine encapsulated Ag nanoclusters [J]. Photochemical&Photobiological Sciences,2010,9(5):
    [93] YU J, CHOI S, DICKSON R M. Shuttle-Based Fluorogenic Silver-ClusterBiolabels [J]. Angewandte Chemie International Edition,2009,48(2):318-320.
    [94] YU J, PATEL S A, DICKSON R M. In Vitro and Intracellular Production ofPeptide-Encapsulated Fluorescent Silver Nanoclusters [J]. Angewandte ChemieInternational Edition,2007,46(12):2028-2030.
    [95] NARAYANAN S S, PAL S K. Structural and Functional Characterization ofLuminescent Silver Protein Nanobioconjugates [J]. The Journal of PhysicalChemistry C,2008,112(13):4874-4879.
    [96] MAKARAVA N, PARFENOV A, BASKAKOV I V. Water-Soluble HybridNanoclusters with Extra Bright and Photostable Emissions: A New Tool forBiological Imaging [J]. Biophysical journal,2005,89(1):572-580.
    [97] PEYSER-CAPADONA L, ZHENG J, GONZ LEZ J I, et al. Nanoparticle-FreeSingle Molecule Anti-Stokes Raman Spectroscopy [J]. Physical Review Letters,2005,94(5):058301.
    [98] BALLOU B, LAGERHOLM B C, ERNST L A, et al. Noninvasive Imaging ofQuantum Dots in Mice [J]. Bioconjugate Chemistry,2003,15(1):79-86.
    [99] LEWIN M, CARLESSO N, TUNG C-H, et al. Tat peptide-derivatized magneticnanoparticles allow in vivo tracking and recovery of progenitor cells [J]. NatBiotech,2000,18(4):410-414.
    [100] SANTRA S, MALHOTRA A. Fluorescent nanoparticle probes for imaging ofcancer [J]. Wiley Interdisciplinary Reviews: Nanomedicine andNanobiotechnology,2011,3(5):501-510.
    [101] GOREN D, HOROWITZ A T, ZALIPSKY S, et al. Targeting of stealthliposomes to erbB-2(Her/2) receptor: in vitro and in vivo studies [J]. Br JCancer,1996,74(11):1749-1756.
    [102] TAN W B, JIANG S, ZHANG Y. Quantum-dot based nanoparticles for targetedsilencing of HER2/neu gene via RNA interference [J]. Biomaterials,2007,28(8):1565-1571.
    [103] LIDKE D S, NAGY P, HEINTZMANN R, et al. Quantum dot ligands providenew insights into erbB/HER receptor-mediated signal transduction [J]. NatBiotech,2004,22(2):198-203.
    [104] RUAN G, AGRAWAL A, MARCUS A I, et al. Imaging and Tracking of TatPeptide-Conjugated Quantum Dots in Living Cells: New Insights intoNanoparticle Uptake, Intracellular Transport, and Vesicle Shedding [J]. Journalof the American Chemical Society,2007,129(47):14759-14766.
    [105] CIRSTOIU-HAPCA A, BOSSY-NOBS L, BUCHEGGER F, et al. Differentialtumor cell targeting of anti-HER2(Herceptin) and anti-CD20(Mabthera)coupled nanoparticles [J]. International Journal of Pharmaceutics,2007,331(2):190-196.
    [106] WARTLICK H, MICHAELIS K, BALTHASAR S, et al. Highly SpecificHER2-mediated Cellular Uptake of Antibody-modified Nanoparticles inTumour Cells [J]. Journal of Drug Targeting,2004,12(7):461-471.
    [107] LIU C-L, HO M-L, CHEN Y-C, et al. Thiol-Functionalized Gold Nanodots:Two-Photon Absorption Property and Imaging In Vitro [J]. The Journal ofPhysical Chemistry C,2009,113(50):21082-21089.
    [108] POLAVARAPU L, MANNA M, XU Q-H. Biocompatible glutathione cappedgold clusters as one-and two-photon excitation fluorescence contrast agents forlive cells imaging [J]. Nanoscale,2011,3(2):
    [109] SHANG L, DORLICH R M, BRANDHOLT S, et al. Facile preparation ofwater-soluble fluorescent gold nanoclusters for cellular imaging applications [J].Nanoscale,2011,3(5):
    [110] WANG Y, LI J, JIN J, et al. Strategy for Molecular Beacon Binding Readout:Separating Molecular Recognition Element and Signal Reporter [J]. AnalyticalChemistry,2009,81(23):9703-9709.
    [111] GUO W, YUAN J, DONG Q, et al. Highly Sequence-Dependent Formation ofFluorescent Silver Nanoclusters in Hybridized DNA Duplexes for SingleNucleotide Mutation Identification [J]. Journal of the American ChemicalSociety,2009,132(3):932-934.
    [112] HU M, HE Y, SONG S, et al. DNA-bridged bioconjugation of fluorescentquantum dots for highly sensitive microfluidic protein chips [J]. ChemicalCommunications,2010,46(33):
    [113] HU M, YAN J, HE Y, et al. Ultrasensitive, Multiplexed Detection of CancerBiomarkers Directly in Serum by Using a Quantum Dot-Based MicrofluidicProtein Chip [J]. ACS Nano,2009,4(1):488-494.
    [114] SHARMA J, YEH H-C, YOO H, et al. Silver nanocluster aptamers: in situgeneration of intrinsically fluorescent recognition ligands for protein detection[J]. Chemical Communications,2011,47(8):
    [115] HUN X, ZHANG Z. Functionalized fluorescent core-shell nanoparticles used asa fluorescent labels in fluoroimmunoassay for IL-6[J]. Biosensors andBioelectronics,2007,22(11):2743-2748.
    [116] ZHANG K, MEI Q, GUAN G, et al. Ligand Replacement-Induced FluorescenceSwitch of Quantum Dots for Ultrasensitive Detection ofOrganophosphorothioate Pesticides [J]. Analytical Chemistry,2010,82(22):9579-9586.
    [117] KOKKO L, SANDBERG K, L VGREN T, et al. Europium(III) chelate-dyednanoparticles as donors in a homogeneous proximity-based immunoassay forestradiol [J]. Analytica Chimica Acta,2004,503(2):155-162.
    [118] LI H, HAN C. Sonochemical Synthesis of Cyclodextrin-Coated Quantum Dotsfor Optical Detection of Pollutant Phenols in Water [J]. Chemistry of Materials,2008,20(19):6053-6059.
    [119] TU R, LIU B, WANG Z, et al. Amine-Capped ZnS Mn2+Nanocrystals forFluorescence Detection of Trace TNT Explosive [J]. Analytical Chemistry,2008,80(9):3458-3465.
    [120] FENG J C, LI Y, YANG M J. Conjugated polymer-grafted silica nanoparticlesfor the sensitive detection of TNT [J]. Sens Actuators, B,2010, B145(1):
    [121] LIU Y-S, SUN Y, VERNIER P T, et al. pH-Sensitive Photoluminescence ofCdSe/ZnSe/ZnS Quantum Dots in Human Ovarian Cancer Cells [J]. The Journalof Physical Chemistry C,2007,111(7):2872-2878.
    [122] YU D, WANG Z, LIU Y, et al. Quantum dot-based pH probe for quick study ofenzyme reaction kinetics [J]. Enzyme and Microbial Technology,2007,41(1–2):127-132.
    [123] WANG Y-Q, YE C, ZHU Z-H, et al. Cadmium telluride quantum dots aspH-sensitive probes for tiopronin determination [J]. Analytica Chimica Acta,2008,610(1):50-56.
    [124] WANG X, GUO X. Ultrasensitive Pb2+detection based on fluorescenceresonance energy transfer (FRET) between quantum dots and gold nanoparticles[J]. Analyst,2009,134(7):
    [125] MOORE D E, PATEL K. Q-CdS photoluminescence activation on Zn2+andCd2+salt introduction [J]. Langmuir,2001,17(8):2541-2544.
    [126] MOHAMED ALI E, ZHENG Y, YU H-H, et al. Ultrasensitive Pb2+Detectionby Glutathione-Capped Quantum Dots [J]. Analytical Chemistry,2007,79(24):9452-9458.
    [127] LIANG G-X, LIU H-Y, ZHANG J-R, et al. Ultrasensitive Cu2+sensing bynear-infrared-emitting CdSeTe alloyed quantum dots [J]. Talanta,2010,80(5):2172-2176.
    [128] DUAN J, SONG L, ZHAN J. One-pot synthesis of highly luminescent CdTequantum dots by microwave irradiation reduction and theirHg<sup>2+</sup>-sensitive properties [J]. Nano Research,2009,2(1):61-68.
    [129] WANG J-H, WANG H-Q, ZHANG H-L, et al. Purification of denatured bovineserum albumin coated CdTe quantum dots for sensitive detection of silver(I)ions [J]. Analytical and Bioanalytical Chemistry,2007,388(4):969-974.
    [130] SHANG L, DONG S. Silver nanocluster-based fluorescent sensors for sensitivedetection of Cu(ii)[J]. Journal of Materials Chemistry,2008,18(39):
    [131] BERGERON B V, KELLY C A, MEYER G J. Thin Film Actinometers forTransient Absorption Spectroscopy: Applications to Dye-Sensitized SolarCells [J]. Langmuir,2003,19(20):8389-8394.
    [132] KURIKI K, KOIKE Y, OKAMOTO Y. Plastic Optical Fiber Lasers andAmplifiers Containing Lanthanide Complexes [J]. Chemical Reviews,2002,102(6):2347-2356.
    [133] TSE A S, WU Z, ASHER S A. Synthesis of Dyed Monodisperse Poly(methylmethacrylate) Colloids for the Preparation of Submicron PeriodicLight-Absorbing Arrays [J]. Macromolecules,1995,28(19):6533-6538.
    [134] JIANG Y G, FAN R W, PENG H, et al. Tunable solid-state lasers based onPMMA doped with pyrromethene dyes [J]. Laser Physics Letters,2009,6(3):212-215.
    [135] GRIMSDALE A C, LEOK CHAN K, MARTIN R E, et al. Synthesis ofLight-Emitting Conjugated Polymers for Applications in ElectroluminescentDevices [J]. Chemical Reviews,2009,109(3):897-1091.
    [136] AHN J H, BERTONI C, DUNN S, et al. White organic light-emitting devicesincorporating nanoparticles of II–VI semiconductors [J]. Nanotechnology,2007,18(33):335202.
    [137] ZYDOWICZ N, NZIMBA-GANYANAD E. PMMA microcapsules containingwater-soluble dyes obtained by double emulsion/solvent evaporation technique[J]. Polymer Bulletin,2002,47(5):457-463.
    [138] PIMPHA N, RATTANONCHAI U, SURASSMO S, et al. Preparation ofPMMA/acid-modified chitosan core-shell nanoparticles and their potential asgene carriers [J]. Colloid&Polymer Science,2008,286(8):907-916.
    [139] M LLER M, ZENTEL R, MAKA T, et al. Dye-Containing Polymer Beads asPhotonic Crystals [J]. Chemistry of Materials,2000,12(8):2508-2512.
    [140] CAMPBELL A I, BARTLETT P. Fluorescent Hard-Sphere Polymer Colloids forConfocal Microscopy [J]. Journal of Colloid and Interface Science,2002,256(2):325-330.
    [141] HU H, LARSON R G. Preparation of Fluorescent Particles with Long Excitationand Emission Wavelengths Dispersible in Organic Solvents [J]. Langmuir,2004,20(18):7436-7443.
    [142] BOSMA G, PATHMAMANOHARAN C, DE HOOG E H A, et al. Preparationof Monodisperse, Fluorescent PMMA–Latex Colloids by DispersionPolymerization [J]. Journal of Colloid and Interface Science,2002,245(2):292-300.
    [143] JARDINE R S, BARTLETT P. Synthesis of non-aqueous fluorescenthard-sphere polymer colloids [J]. Colloids and Surfaces A: Physicochemical andEngineering Aspects,2002,211(2–3):127-132.
    [144] DULLENS R P A, CLAESSON E M, KEGEL W K. Preparation and Propertiesof Cross-Linked Fluorescent Poly(methyl methacrylate) Latex Colloids [J].Langmuir,2003,20(3):658-664.
    [145] WITTMERSHAUS B P, SKIBICKI J J, MCLAFFERTY J B, et al. SpectralProperties of Single BODIPY Dyes in Polystyrene Microspheres and inSolutions [J]. Journal of Fluorescence,2001,11(2):119-128.
    [146] THOMPSON D W, FLEMING C N, MYRON B D, et al. Rigid MediumStabilization of Metal-to-Ligand Charge Transfer Excited States [J]. TheJournal of Physical Chemistry B,2007,111(24):6930-6941.
    [147] FLEMING C N, DATTELBAUM D M, THOMPSON D W, et al. Excited StateIntervalence Transfer in a Rigid Polymeric Film [J]. Journal of the AmericanChemical Society,2007,129(31):9622-9630.
    [148] NAGAO D, ANZAI N, KOBAYASHI Y, et al. Preparation of highlymonodisperse poly(methyl methacrylate) particles incorporating fluorescentrhodamine6G for colloidal crystals [J]. Journal of Colloid and Interface Science,2006,298(1):232-237.
    [149] LUNA-XAVIER J L, BOURGEAT-LAMI E, GUYOT A. The role of initiationin the synthesis of silica/poly(methyl methacrylate) nanocomposite latexparticles through emulsion polymerization [J]. Colloid&Polymer Science,2001,279(10):947-958.
    [150] RAMPAZZO E, BONACCHI S, MONTALTI M, et al. Self-OrganizingCore Shell Nanostructures: Spontaneous Accumulation of Dye in the Core ofDoped Silica Nanoparticles [J]. Journal of the American Chemical Society,2007,129(46):14251-14256.
    [151] ROSSI L M, SHI L, QUINA F H, et al. St ber Synthesis of MonodispersedLuminescent Silica Nanoparticles for Bioanalytical Assays [J]. Langmuir,2005,21(10):4277-4280.
    [152] GUO Z, SHEN Y, WANG M, et al. Electrochemistry and ElectrogeneratedChemiluminescence of SiO2Nanoparticles/Tris(2,2‘-bipyridyl)ruthenium(ΙΙ)Multilayer Films on Indium Tin Oxide Electrodes [J]. Analytical Chemistry,2003,76(1):184-191.
    [153] QIAN L, YANG X R. One-Step Synthesis ofRu(2,2′-Bipyridine)3Cl2-Immobilized Silica Nanoparticles for Use inElectrogenerated Chemiluminescence Detection [J]. Advanced FunctionalMaterials,2007,17(8):1353-1358.
    [154] YUN W, DONG P, XU Y, et al. Selective immobilization oftris(2,2′-bipyridyl)ruthenium (II) onto array electrode for solid-stateelectrochemiluminescene sensor fabrication [J]. Sensors and Actuators B:Chemical,2009,141(1):244-248.
    [155] SANTRA S, LIESENFELD B, BERTOLINO C, et al. Fluorescence lifetimemeasurements to determine the core–shell nanostructure of FITC-doped silicananoparticles: An optical approach to evaluate nanoparticle photostability [J].Journal of Luminescence,2006,117(1):75-82.
    [156] MATSUI K, MOMOSE F. Luminescence Properties ofTris(2,2‘-bipyridine)ruthenium(II) in Sol Gel Systems of SiO2[J]. Chemistryof Materials,1997,9(11):2588-2591.
    [157] ALTAMIRANO M, SENZ A, GSPONER H E. Luminescence quenching oftris(2,2′-bipyridine)ruthenium(II) by2,6-dimethylphenol and4-bromo-2,6-dimethylphenol in sol–gel-processed silicate thin films [J]. Journalof Colloid and Interface Science,2004,270(2):364-370.
    [158] SHIROISHI H, SADOHARA H, ASAKURA T, et al. Characteristics ofphotoluminescence from ruthenium polypyridyl complexes incorporated intosilk [J]. Journal of Photochemistry and Photobiology A: Chemistry,2001,143(2–3):147-151.
    [159]CASPAR J V, MEYER T J. Photochemistry of tris(2,2'-bipyridine)ruthenium(2+)ion (Ru(bpy)32+). Solvent effects [J]. Journal of the American ChemicalSociety,1983,105(17):5583-5590.
    [160] LEES A J. The Luminescence Rigidochromic Effect Exhibited byOrganometallic Complexes: Rationale and Applications [J]. Comments onInorganic Chemistry,1995,17(6):319-346.
    [161] KOTCH T G, LEES A J, FUERNISS S J, et al. Luminescent organometalliccomplexes as visible probes in the isothermal curing of epoxy resins [J].Chemistry of Materials,1992,4(3):675-683.
    [162] ZHOU X, ZHOU J. Improving the Signal Sensitivity and Photostability of DNAHybridizations on Microarrays by Using Dye-Doped Core Shell SilicaNanoparticles [J]. Analytical Chemistry,2004,76(18):5302-5312.
    [163] WANG F, TAN W B, ZHANG Y, et al. Luminescent nanomaterials forbiological labelling [J]. Nanotechnology,2006,17(1): R1.
    [164] BURNS A A, VIDER J, OW H, et al. Fluorescent Silica Nanoparticles withEfficient Urinary Excretion for Nanomedicine [J]. Nano Letters,2008,9(1):442-448.
    [165] YAO G, WANG L, WU Y, et al. FloDots: luminescent nanoparticles [J].Analytical and Bioanalytical Chemistry,2006,385(3):518-524.
    [166] WANG L, YANG C, TAN W. Dual-Luminophore-Doped Silica Nanoparticlesfor Multiplexed Signaling [J]. Nano Letters,2004,5(1):37-43.
    [167] SANTRA S, ZHANG P, WANG K, et al. Conjugation of Biomolecules withLuminophore-Doped Silica Nanoparticles for Photostable Biomarkers [J].Analytical Chemistry,2001,73(20):4988-4993.
    [168] JIN Y, LOHSTRETER S, PIERCE D T, et al. Silica Nanoparticles withContinuously Tunable Sizes: Synthesis and Size Effects on Cellular ContrastImaging [J]. Chemistry of Materials,2008,20(13):4411-4419.
    [169] LOPEZ ARBELOA F, LOPEZ ARBELOA T, TAPIA ESTEVEZ M J, et al.Photophysics of rhodamines: molecular structure and solvent effects [J]. TheJournal of Physical Chemistry,1991,95(6):2203-2208.
    [170] RAMETTE R W, SANDELL E B. Rhodamine B Equilibria [J]. Journal of theAmerican Chemical Society,1956,78(19):4872-4878.
    [171] DOUGHTY M J. pH dependent spectral properties of sodium fluoresceinophthalmic solutions revisited [J]. Ophthalmic and Physiological Optics,2010,30(2):167-174.
    [172] MUTO J. Dimeric properties of Rhodamine B in glycerol, ethylene glycol, andacetic acid [J]. The Journal of Physical Chemistry,1976,80(12):1342-1346.
    [173] CASEY K G, QUITEVIS E L. Effect of solvent polarity on nonradiativeprocesses in xanthene dyes: Rhodamine B in normal alcohols [J]. The Journal ofPhysical Chemistry,1988,92(23):6590-6594.
    [174] PAARDEKOOPER M, BRUUNE A W D, STEVENINCK J V, et al.INTRACELLULAR DAMAGE IN YEAST CELLS CAUSED BYPHOTODYNAMIC TREATMENT WITH TOLUIDINE BLUE [J].Photochemistry and Photobiology,1995,61(1):84-89.
    [175] SCHMID G. Large clusters and colloids. Metals in the embryonic state [J].Chemical Reviews,1992,92(8):1709-1727.
    [176] ZHENG J, NICOVICH P R, DICKSON R M. Highly Fluorescent Noble-MetalQuantum Dots [J]. Annual Review of Physical Chemistry,2007,58(1):409-431.
    [177] TEMPLETON A C, WUELFING W P, MURRAY R W. Monolayer-ProtectedCluster Molecules [J]. Accounts of Chemical Research,1999,33(1):27-36.
    [178] LESNIAK W, BIELINSKA A U, SUN K, et al. Silver/DendrimerNanocomposites as Biomarkers: Fabrication, Characterization, in VitroToxicity, and Intracellular Detection [J]. Nano Letters,2005,5(11):2123-2130.
    [179] XU H, SUSLICK K S. Sonochemical Synthesis of Highly Fluorescent AgNanoclusters [J]. ACS Nano,2010,4(6):3209-3214.
    [180] HENGLEIN A, GIERSIG M. Formation of Colloidal Silver Nanoparticles:Capping Action of Citrate [J]. The Journal of Physical Chemistry B,1999,103(44):9533-9539.
    [181] SHANG L, DONG S. Facile preparation of water-soluble fluorescent silvernanoclusters using a polyelectrolyte template [J]. Chemical Communications,2008,9):
    [182] KONRADI R, R HE J. Interaction of Poly(methacrylic acid) Brushes withMetal Ions: Swelling Properties [J]. Macromolecules,2005,38(10):4345-4354.
    [183] LI G, LIU G, KANG E T, et al. pH-Responsive Hollow Polymeric Microspheresand Concentric Hollow Silica Microspheres from Silica Polymer Core ShellMicrospheres [J]. Langmuir,2008,24(16):9050-9055.
    [184] LEE C-F, YOUNG T-H, HUANG Y-H, et al. Synthesis and properties ofpolymer latex with carboxylic acid functional groups for immunological studies[J]. Polymer,2000,41(24):8565-8571.
    [185] SHCHUKIN D G, RADTCHENKO I L, SUKHORUKOV G B. PhotoinducedReduction of Silver inside Microscale Polyelectrolyte Capsules [J].ChemPhysChem,2003,4(10):1101-1103.
    [186] D EZ I, PUSA M, KULMALA S, et al. Color Tunability andElectrochemiluminescence of Silver Nanoclusters [J]. Angewandte ChemieInternational Edition,2009,48(12):2122-2125.
    [187] RISSE T, SHAIKHUTDINOV S, NILIUS N, et al. Gold Supported on ThinOxide Films: From Single Atoms to Nanoparticles [J]. Accounts of ChemicalResearch,2008,41(8):949-956.
    [188] PEYSER L A, VINSON A E, BARTKO A P, et al. Photoactivated Fluorescencefrom Individual Silver Nanoclusters [J]. Science,2001,291(5501):103-106.
    [189] WILCOXON J P, MARTIN J E, PARSAPOUR F, et al. Photoluminescencefrom nanosize gold clusters [J]. The Journal of Chemical Physics,1998,108(21):9137-9143.
    [190] PEYSER L A, LEE T-H, DICKSON R M. Mechanism of Agn NanoclusterPhotoproduction from Silver Oxide Films [J]. The Journal of PhysicalChemistry B,2002,106(32):7725-7728.
    [191] ZHENG J, ZHANG C, DICKSON R M. Highly Fluorescent, Water-Soluble,Size-Tunable Gold Quantum Dots [J]. Physical Review Letters,2004,93(7):077402.
    [192] WU Z, SUHAN J, JIN R. One-pot synthesis of atomically monodisperse,thiol-functionalized Au25nanoclusters [J]. Journal of Materials Chemistry,2009,19(5):
    [193] FEDRIGO S, HARBICH W, BUTTET J. Optical response of Ag[sub2], Ag[sub3], Au[sub2], and Au[sub3] in argon matrices [J]. The Journal of ChemicalPhysics,1993,99(8):5712-5717.
    [194] LOMBARDI J R, DAVIS B. Periodic Properties of Force Constants of SmallTransition-Metal and Lanthanide Clusters [J]. Chemical Reviews,2002,102(6):2431-2460.
    [195] WANG X, XU S, XU W. Synthesis of highly stable fluorescent Ag nanocluster@polymer nanoparticles in aqueous solution [J]. Nanoscale,2011,3(11):
    [196] LIU J, ONG W, KAIFER A E, et al. A “Macrocyclic Effect” on the Formation ofCapped Silver Nanoparticles in DMF [J]. Langmuir,2002,18(16):5981-5983.
    [197] FURUSAKI E, UENO Y, SAKAIRI N, et al. Facile preparation and inclusionability of a chitosan derivative bearing carboxymethyl-β-cyclodextrin [J].Carbohydrate Polymers,1996,29(1):29-34.
    [198] LEE P C, MEISEL D. Adsorption and surface-enhanced Raman of dyes onsilver and gold sols [J]. The Journal of Physical Chemistry,1982,86(17):3391-3395.
    [199] XILIANG G, YU Y, GUOYAN Z, et al. Study on inclusion interaction ofpiroxicam with β-cyclodextrin derivatives [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2003,59(14):3379-3386.
    [200] STAMPLECOSKIE K G, SCAIANO J C. Kinetics of the Formation of SilverDimers: Early Stages in the Formation of Silver Nanoparticles [J]. Journal of theAmerican Chemical Society,2011,133(11):3913-3920.
    [201] NG C H B, YANG J, FAN W Y. Synthesis and Self-Assembly ofOne-Dimensional Sub-10nm Ag Nanoparticles with Cyclodextrin [J]. TheJournal of Physical Chemistry C,2008,112(11):4141-4145.
    [202] SHANG L, DONG S, NIENHAUS G U. Ultra-small fluorescent metalnanoclusters: Synthesis and biological applications [J]. Nano Today,2011,6(4):401-418.
    [203] TSUNOYAMA H, TSUKUDA T. Magic Numbers of Gold Clusters Stabilizedby PVP [J]. Journal of the American Chemical Society,2009,131(51):18216-18217.
    [204] MAOQUAN C, GUOJIE L. Fluorescent Silkworm Silk Prepared viaIncorporation of Green, Yellow, Red, and Near-Infrared Fluorescent QuantumDots [J]. Nanotechnology, IEEE Transactions on,2008,7(3):308-315.
    [205] TANG B, WANG J, XU S, et al. Application of anisotropic silver nanoparticles:Multifunctionalization of wool fabric [J]. Journal of Colloid and InterfaceScience,2011,356(2):513-518.
    [206] DAS D, MUKHERJEE A, BHATTACHARYA P, et al. Finishing of silk byacrylic acid in the presence of sodium citrate and potassium per sulphate ascatalysts under thermal treatment [J]. Journal of Applied Polymer Science,2011,121(2):770-776.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700