黏类小麦雄性不育—恢复系统的分子细胞遗传及CMS基因(rfv1-Rfv1)的定向导入和杂种优势利用新途径研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦像玉米、水稻等作物一样具有明显的杂种优势,有效利用小麦杂种优势是提高其产量的一条重要途径。目前,主要是利用小麦雄性不育来实现杂种优势,而小麦雄性不育又分为遗传型雄性不育(核不育,核质互作雄性不育,光温敏不育)和生理型雄性不育(化杀剂诱导不育等)。
     大量研究表明每种途径都有其明显的优势和需要克服的缺点,相对来讲,核质互作型小麦雄性不育和化杀途径是两条较有生产潜力的途径。黏类(黏型、偏型和二角型等一些易保持、易恢复小麦雄性不育系的总称)小麦细胞质雄性不育系其最大特性是细胞质雄性不育系育性基因单一,不育性彻底,易恢复性高;但与CHA(化杀诱导雄性不育)途径相比,黏类小麦雄性不育系又因受限于不育系和恢复系制约配制强优势组合的几率较低。本研究以黏类小麦雄性不育系为材料,在对其育性进行分子细胞遗传研究的基础上,旨在探索原有黏类小麦雄性不育系的局限性,拓宽其新的不育-恢复基因源,然后将CHA途径的优点与黏类小麦雄性不育三系途径相结合,充分发挥这两种途径的优点,以建拓出一套杂交小麦杂种优势利用的新途径,为三系杂交小麦能早日进入生产应用提供理论依据和技术支撑。
     研究获得下述重要结果:
     1.黏类1BL/1RS小麦雄性不育系杂种F1中期Ⅰ部分染色体配对异常和后期Ⅰ染色体变异是由于核质互作的结果;中期Ⅰ单价体细胞频率和后期Ⅰ染色体变异率呈显著正相关;K、Ven、B型异源细胞质对杂种F1育性恢复性无显著相关性;中、后期染色体变异率与杂种F1育性恢复性呈负相关,中、后期染色体变异有降低杂种F1育性的作用。
     2.采用MINQUE(1)统计方法、加性-显性(AD)及其与环境互作的遗传模型,对黏类小麦雄性不育系和恢复系杂交F1结实性状进行遗传分析,结果表明(1)黏类小麦雄性不育系育性恢复性主要以加性效应为主,其次是显性效应;(2)不育系(V)-90-110、(Ven)-90-110、(K)-224、(V)-224在四个结实性状上,具有正向显著或极显著加性效应;亲本5253、02-7-215、00-6-247、M8003具有使不育系恢复度提高的加性效应;(3)双亲加性效应高的组合多表现出其显性效应比较差;(4)国际法恢复度高的组合(K-224×5253),究其原因是双亲国际法恢复度的加性效应高;(5)黏类小麦雄性不育系杂交结实率的高低与环境互作相对较小,育性恢复性在年份间表现比较稳定。
     3.对几类不同来源的黏类非1BL/1RS小麦雄性不育基因载体进行了筛选与鉴定,并对其育性特异性进行了研究。结果表明:(1)通过根尖体细胞随体鉴定和APAGE电泳筛选出SP4,莫迦小麦两种黏类小麦雄性不育载体,其为非1BL/1RS类型,其它不育载体均属于1BL/1RS类型;(2)选择不同来源的不育基因载体培育成的新型黏型、偏型不育类型进行育性恢复性测定发现,非1BL/1RS类型SP4、莫迦两种不育载体的小麦雄性不育系育性恢复性有一定差异,且育性恢复度相对较低,莫迦不育类型育性恢复性要高于SP4类型,在实际应用上应加以重视;(3)供试黏类非1BL/1RS小麦雄性不育系其不育性是在整个配子发育过程中连续产生的。
     4.采用SDS-PAGE和A-PAGE对黏类小麦雄性不育新种质材料及回交转育后代的特定染色体进行了鉴定,结果表明:(1)SDS-PAGE分析鉴定出小偃22、SP4、西农2611、莫迦不具有43和40kD谱带,为非1BL/1RS核型;(2)A-PAGE技术对部分亲本材料鉴定小偃22、SP4、西农2611、莫迦则不含GldlB3位点,为非1BL/1RS核型,其余为1BL/1RS核型;(3)A-PAGE技术对部分采用1BL/1RS易位系转育不育系后的保持系后代材料进行鉴定,显示出大部分转育后代含有GldlB3醇溶蛋白标记位点,为1BL/1RS易位系;
     5.对杂交小麦化杀强优势组合西杂一号、西杂五号亲本遗传背景进行鉴定,发现西杂一号两个亲本均为1BL/1RS类型,西杂五号两个亲本均为非1BL/1RS类型,针对不同核型,专门设计了1BL/1RS类型和非1BL/1RS类型化杀强优势组合定向转化三系强优势组合各自保持系、不育系及恢复系转育体系与程序。
     6.按照设计好的转育程序图,将西杂一号的母本西农Fp1定向转育为具有SP4、莫迦小麦1Brfv1的新保持系,并同时进行不育系的转育;将西杂一号的父本Mp1转育为具有R5253、R5383的1BRfv1的恢复系。在此过程中,建立了利用多重PCR技术,同时结合传统的根尖随体鉴定技术对1BL/1RS易位纯合体和易位杂合体鉴定的技术体系。
     7.按照设计好的转育程序图,将西杂五号的母本西农Fp2定向转育为具有SP4、莫迦小麦1Brfv1的新保持系,在转育过程中,建立了SDS-PAGE和A-PAGE鉴定目标基因所在染色体的方法技术体系。SDS-PAGE鉴定结果发现SP4高分子量谷蛋白亚基6+8可作为小麦雄性不育基因rfv1基因的示踪特征亚基,为小麦雄性不育基因rfv1定向转移到非1BL/1RS易位系提供了可靠的转育与检测依据。A-PAGE分析结果发现,在ω-醇溶蛋白区也发现莫迦和SP4不同于西农Fp2的特异蛋白条带,可作为小麦雄性不育基因rfv1定向转移到非1BL/1RS易位系的示踪蛋白条带。
     8.经过多年回交转育,现已获得杂交小麦西杂一号、西杂五号母本同型黏类小麦非1BL/1RS雄性不育系的保持系,其不育系正在转育中,获得杂交小麦西杂一号、西杂五号父本同型黏类小麦非1BL/1RS雄性不育系的恢复系。
Wheat (Triticum aestivumL.) has obvious heterosis like other crops, such as maize andrice. Heterosis utilization can improve quality and yield of wheat by a large amount. NowWheat heterosis utilization is realized by means of male sterility, which includes hereditablemale sterility (such as CMS, NMS and PMS)and physiological male sterility (such as CHAS).Each of male sterility has their own merits and demerits.
     CHAS and CMS had become the main ways to produce the hybrid wheat in recent years.Nian-type is the generic terms of cytomplas male sterile line with the ctyoplasms ofAegilops.kotschyi, Ae. variabilis, Ae. ventricoca, and Ae. Bicornis. CMS of NIAN-type hasthe permanent merits of easy restoring, single male sterile and restoring gene, and thedemerits of obtaining hybrid componention hardly compared to CHAS. The parents-lines ofCHAS was selected easily and freely. Either two cultivars can be combined to produce thehybrid wheat.The CMS of NIAN-type were utilized to carrying out the fundmental research,applied research in this research. The aims were to explore the faults of old CMS, screen thenew sterile-restoring genes, and create a new way of hybrid whear utilization by means ofcombining the CMS and CHAS. The results were as follows:
     1. MⅠand AⅠin meiosis of hybrids F1of3alloplasmic wheat male sterile lines weresystematically observed and investigated, the relationships between FCU, FCLB and thefertility restoration of hybrids F1were analyzed. The results were as follows:(1)Thechromosomes synapsis at MⅠand variation at AⅠof hybrids F1were caused bynucleo-cytoplasmic interaction.(2) FCU at MⅠwas highly positively correlated to the FCLBat AⅠ.(3) The fertility restoration of hybrids F1had no correlation with Ae.kotschyi,Ae.ventricosa or Ae.bicornis cytoplasms.(4) Fertility restoration of the hybrids F1wasnegatively correlated to the FCU and the FCLB, the chromosomes variation at MⅠandAⅠdecreased the fertility restoration of F1hybrids.
     2. Some seed set characters of genetic variances, such as seed set in both sides、seedset in the middle of F1spikelets from sterile lines and restoring lines of Nian group(withAe.kotschyi, Ae.variabilis, Ae.ventricosa and Ae.bicornis cytoplasms) in wheat for twoyears are analyzed by the genetic model of additive-dominance (AD) and their interactions with environments by MINQUE(1) approaches. Additive effects was themain behavior to the fertility restoration performance of male sterile lines of Nian groupin wheat, and the next was the dominance effects. The seed set characters of somecombinations from sterile lines (V)-90-110,(Ven)-90-110,(K)-224,(V)-224hadpositively significant or the most significant additive effects, the parents5253,02-7-215,00-6-247, M8003had the additive effects of making the restoring degree increased. Ingeneral, the combinations with higher additive effects of two parents were lower indominance effects. The restoring degree of international method was high, because theadditive effects of the restoring degree of international method of two parents were high.There was small interaction between the environment and the rate of seed set of malesterile lines of Nian type in wheat, fertility restoration performance was more stablebetween years.
     3. specific fertility characteristic and screen the sterile gene carrier of non-1BL/1RSwheat male sterile lines of nian type from different sources were studied in this paper, in orderto breeding the new excellent non-1BL/1RS wheat male sterile lines of Nian type andpromote the hybrid wheat. Results as follows:(1) Two kinds of wheats SP4(T.spelta varduhamelianum) and T.macha var subletschchumicum carry the sterile gene of non-1BL/1RSwheat male sterile lines of Nian type by the body cell identification and A-PAGE. The othermaterials carry the one of1BL/1RS wheat male sterile lines of Nian type.(2) The fertilityrestoration performance of the two male sterile lines with Aegilops kotschyi, Ae.ventricosacytoplasms and SP4, T.macha nucleus were investigated. There is difference between the twomale steriles, and there is a smaller fertility degree. Averagely, the fertility degree of the twomale sterile lines with T.macha nucleus is higer than SP4’s. So T.macha should be thoughtmore in the application.(3)The sterility develop is in the whole developping process of thegamete. The cytology morphology of SP4, T.macha in the cytoplasms with Ae.bicornis isdifferent from the cytoplasms with Aegilops kotschyi, Ae.ventricosa, and the rates ofbourgeon is higer in the cytoplasms with Ae.bicornis.
     4. In order to study the specific function of PAGE in breeding male sterility germplasmof NIAN type in wheat directionally, SDS-PAGE and A-PAGE were adopted to indentify thespecific chromosome from sterile germplasm and their backcross offspring, the result were asfollows:(1) There were43kD and40kD band in906, Xiaoyan22, XC-2and Xinong186bymeans of SDS-PAGE. They are1BL/1RS translocations.(2) The prolamine protein markerloci GldlB3was founded in906,05-S-9-10,XC-2, Xinong1376, Xinong186, which showsthis materials are1BL/1RS translocations. It was not founded in were P1, P2and Xinong2611,Xiaoyan22, which shows they are non-1BL/1RS translocations.(3) Based on the results above, offsprings of maintainer transducted were identificated by A-PAGE. It shows that most ofoffsprings are1BL/1RS translocations, because of having the prolamine protein marker lociGldlB3.(4) Both SDS-PAGE and A-PAGE can be used in indentifing1BL/1RS translocationsand non-1BL/1RS translocations in Male sterility of Nian Type on wheat, But the resolutionof A-PAGE is more higer than SDS-PAGE.
     5. The parents of XZ-1belonged to1BL/1RS translocations, and that of XZ-5belongedto non-1BL/1RS translocations based on identification. In order to transduct non-1BL/1RSmale sterile and restoring genes of Nian type directional and quickly, we designed someprocedures for trsducting the maintainer, sterility and restorer against these two types ofparents.
     6. According to the procedures designed, the female parent of hybrid wheat XZ-1wasused as receptor and recurrent parent, and crossed and backcross with SP4, Macharespectively to breed maintainer and sterile lines of male sterility. Similarly, the male parentof hybrid wheat XZ-1was used as receptor and recurrent parent, and crossed and backcrosswith restoring lines R5253、R5383respectively to breed new restorer lines of male sterility. Inthis process, we established a technology system of indentifing1BL/1RS homozygote andheterozygote of translocation.
     7. According to the procedures designed, the female parent Xinong Fp2of hybrid wheatXZ-5was used as receptor and recurrent parent, and crossed and backcross with SP4, Macharespectively to breed maintainer and sterile lines of male sterility. In this process, weestablished a technology system of indentifing target chromosome by means of SDS-PAGEand A-PAGE. The results of SDS-PAGE showed that protein subunit6+8in HMW could beused as the marker to trace the male sterile gene rfv1, and there is the character band of SP4and Macha in D region of LMW. The results of A-PAGE showed that there was a characterprotein band in ω zone between SP4Macha and Xinong Fp2, which can be used as the tracerof the male sterile gene rfv1.
     8. After cross and backcross of many generations, we have got the new maintainers ofnon-1BL/1RS male sterile lines with the background of female parents of hybrid wheat XZ-1,XZ-5, and the male sterile lines was breeding now. We have got the new restorer ofnon-1BL/1RS male sterile lines with the background of male parents of hybrid wheat XZ-1,XZ-5.
引文
白普一,型核质互作雄性不育小麦育性恢复的遗传,北京农业大学学报,1985,11(4)87-103
    柴守诚,刘大钧.普通小麦雄性不育及杂种小麦研究简评.江苏农业科学,1995,1:18-20
    柴守诚,等.化学杂交剂在杂种小麦生产中的作用.甘肃农业大学学报,1992,27:(4)288-293
    柴守诚,员海燕,等.普通小麦1BL-1RS K、V型雄性不育体系育性恢复的研究.西北植物学报1999,19(4):654-658.
    曹栎,张改生,牛娜,张瑜,位芳.黏类小麦雄性不育基因rfv1定向导入的研究.麦类作物报,2008,28(1):21-24
    陈贤丰,梁承邺.水稻不育花药中H2O2的积累与膜脂过氧化的加剧[J].植物生理学报,1991,17(1):44-48
    陈万义.化学杂交剂的进展[J].农药,1999,389(1):1-6.
    崔党群,群体密度对T型杂种小麦主要性状及杂种优势的影响的研究.北京农业大学学报,1985,11(4):155-168
    陈庆富张庆勤.黔型小麦雄性不育系及恢复系的改良.种子.1994年01
    陈庆富;周永红;彭正松;蒋华仁;中国特有小麦中杂种黄化基因Chl和提型胞质育性恢复基因的分布研究,广西植物,199818(4):325—330
    山东潍昌地区农业科学研究所.潍型小麦雄性不育系研究现状.遗传育种学会讨论文集,科学技术出版社,1993,106-109
    邓景扬,高忠丽.小麦显性雄性不育基因的发现与利用─太谷核不育小麦鉴定总结.作物学报,1980,(2):84-89
    杜伟莉.偏、黏、易、非1BL/1RS小麦不育系育性基因定位及育性恢复性能的研究.硕士论文,2002,6
    傅大雄;阮仁武,KM型核质互作光、温敏雄性不育的发现与两系法杂交小麦的拓建,西南农业学报,1993年01期
    高庆荣,刘保申,等. k,v型杂种小麦优势的研究.华北农学报,1997,12(2):17-22
    高庆荣,孙兰珍,等,k,v,A型杂种小麦细胞质效应的比较研究.麦类作物,1998,18(7):1-4
    关荣霞,郭小丽,刘冬成,曹双河,张爱民.小麦T型细胞质雄性不育恢复基因Rf6的ISSR标记分析.中国农业科学,2002,35(11):1297-.1301
    官春云,李木旬,王国槐.化学杂交剂诱导油菜雄性不育机理的研究.Ⅰ.杀雄剂Ⅰ号对甘蓝型油菜花药绒毡层和花粉粒形成的影响[J].作物学报,1997,23(5):513-518郭嘉诚.四川两系法小麦杂种优势利用研究获得重大突破.种子,1993(3):60
    郭艳萍,张改生等.小麦黏类CMS育性恢复基因的SSR分子标记与定位.核农学报,2009,23(5):729-736.
    何蓓如.一种选育适应中国黄淮麦区的小麦温敏不育系的方法[P].中国专利:ZL00105488.0,2000
    何觉民,戴君惕,邹庆斌等.生态遗传雄性不育理论与两系杂交植物[C].杂种小麦研究进展.北京:农业出版社,1990,191-199.
    何觉民,等.两系杂交小麦理论与实践.湖南科学技术出版社,1993
    胡东维,姚亚琴,等.几种小麦胞质不育花粉形态研究.华南农业大学学报,1992(增刊):49-50
    黄庆榴,唐锡华,茅剑蕾.温度对温敏核雄性不育水稻花药育性与花药蛋白的影响[J].植物生理学报,1996,22(1):69-73.
    黄寿松,等.蓝粒小麦雄不育一保持系选育初报.西北植物学报,1988,8(3):162-166
    黄寿松,王鹏科,等.小麦核型一蓝标型雄性不育,保持系的研究与利用[C],杂种小麦研究进展.北京:农业出版社,1990,191-194
    黄铁城主编.杂种小麦研究[C].北京:北京农业大学出版社,1990
    黄铁城,张爱民.杂种小麦研究[J].北京农业大学学报,1985,(114):215-227.
    黄铁城,张爱民主编《杂种小麦研究进展》[M].农业出版社,1993.
    黄铁城,刘录样.小麦化学杂交育种的理论与实践.《杂种小麦研究》[M].北京:北京农业大学出版社,1990,84-109.
    黄占景,等.小麦T型细胞质雄性不育系与相应保持系线粒体DNA的RAPD分析.遗传,1997,19(4):8-11
    梁荣奇,等.杂种小麦籽粒蛋白含量和面团流变性在不同世代中的表现.全国小麦育种学术讨论会摘要文集,2000,20(5):33
    村井正之,刘曙东等,具有山羊草细胞质小麦的光敏性胞质雄性不育系的研究,国外农学:麦类作物,1994,4:7-10
    郎明林,卢少源,赵家发,等.适合我国小麦醇溶蛋白“指纹图谱”绘制的改良APAGE分子标记技术[J].河北农业大学学报,1998,21(4):1-4.
    李懋学,张赞平.作物染色体及其研究技术.北京:中国农业出版社,1996,98~102.
    李传友,孙兰珍.K、V型小麦同核异质雄性不育系及保持系花药内游离氨基酸的比较分析[J].山东农业大学学报,1995,26(1):57-61
    李传友,孙兰珍.植物细胞质雄性不育的分子机理.山东农业大学学报,1996,27(1):111-117
    李传友,王斌.小麦K型及V型细胞质雄性不育线粒体DNA的比较分析.植物生理学报,1998,24(2):153-158
    李红霞.黏型小麦雄性不育系育性相关基因的遗传分析与表达谱研究.博士论文,2008,西北农林科技大学。
    李竞雄,周洪生主编.作物雄性不育及杂种优势研究进展I.国家攀登计划“粮棉
    油雄性不育杂种优势基础研究”[C].北京:中国农业出版社,1996.
    李继耕.细胞质雄性不育性的分子机理.遗传,1992,4(2):37-40
    李继耕.叶绿体遗传与细胞质雄性不育.中国农业科学,1983,1:49-52
    李家祥,李继耕.叶绿体内囊体膜多肽与细胞质雄性不育性.遗传学报,1986,13(6):430-436
    李艳红.将新的人工雄性不育基因导入小麦栽培品种的研究初报[J].农业生物技术学报,1999,7(3):255—258
    李有春.小麦提型不育系和杂交种种子生活力遗传改良初探,遗传,1995,17(6):12-16
    李英贤,张爱民.植物雄性不育激素调控的研究进展,中国农学通报,1995,11(3):25-28
    刘保申,孙兰珍,等. K型杂交小麦恢复基因的遗传研究.华北农学报,1999,14(2):1-5
    刘保申,孙其信. K型小麦细胞质雄性不育系育性恢复基因的SSR分子标记分析.中国农业学科学,2002,35(4)354-358
    刘保申,孙其信,高庆荣,等.K型小麦细胞质雄性不育系育性恢复基因的SSR分子标记分析[J].中国农业科学,2002,35(4):354~358
    刘春光,侯宁,等.普通小麦D2型CMS系统恢复基因的遗传分析.遗传学报,2002,29(7),638-645
    刘东涛,张改生,刘宏伟,王军卫,王小利.小麦雄性不育的育性基因定位研究进展.麦类作物学报,1999,19(4)6-11
    刘宏伟,等.新型化学杂交剂GENESI诱导小麦雄性不育的初步研究.西北植物学报,1998,18(2):218-222
    刘宏伟,张改生,刘秉华.化学杂交剂GENESIS诱导小麦雄性不育的细胞形态学观察[J].西北植物学报,2004,24(12):2282-2285.
    刘宏伟,等.新型化学杂交剂GENESI诱导小麦雄性不育的初步研究.西北植物学报,1998,18(2):218-222刘录样,黄铁城.作物化学杂交育种的实践与展望[J].中国农业科学,1990,23(2):1-9.
    刘署东,等. K型小麦雄性不育系育性恢复的遗传分析.西北农业学报,1992,11(4):27-30
    刘曙东,宋喜悦.单芒山羊草与黏果山羊草胞质雄性不育系细胞质效应比较。西北农业学报1999,8(3):48-52
    刘曙东,何蓓如,王忠明,等. K型小麦雄性不育体系育性恢复的遗传分析[J].西北农业学报,1992,1(4):27-30
    刘忠松.不育花药的生理生化研究进展与展望[J].植物生理学通迅,1987,2:16-21.
    刘仲齐;饶世达;肖子泉;薛章仪;亲本类型对提型恢复系选育效率的影响,西南农业学报,1996,9(1)19-24
    刘正斌,高庆荣,王瑞霞,等.多重PCR技术在植物生物学研究中的应用.分子植物育种,2005,3(2):251-258.
    刘一农,李继耕.叶绿体DNA与细胞质雄性不育性.1983,10(2):114-122
    刘祚昌,李继耕,罗会馨等.二磷酸核酮糖羧化酶与细胞质雄性不育性的研究.遗传学报,1983,10(1):36-42
    刘植义,等,小麦化学杂交育种的研究与利用.杂种小麦研究进展,农业出版社,1993,138-144
    凌杏元,等.植物细胞质雄性不育分子机理研究进展.植物学通讯,2000,17(4):319-332
    卢良峰.小麦K型(Ae.kotschi)雄性不育性育性恢复的遗传分析.中国农学通报,2008,24(9):69-71
    卢良峰,朱凤荣.K型小麦保持系及恢复系筛选研究.河南农业科学,2004,10:3-6
    马三梅等.几类1BL/1RS小麦雄性不育系育性恢复性的再研究.HYBRID WHEAT.A New crop going tofamer.Proc. of1st Int.Workshop on Hybrid Wheat,China Agricultural University Press,1998,18(1):1-8.
    孟祥红,王建波,利容千.光敏胞质不育小麦花药发育过程中酶的定位研究[J].作物学报,2000,26(6):851-856
    牛娜,等.黏类非1BL/1RS小麦雄性不育系恢复性遗传规律的研究.西北植物学报.2003,23(4):608-614
    牛娜,张改生,张瑜等.黏类非1BL/1RS小麦CMS基因定向选择及其育性特性的研究[J].西北植物学报,2008,28(6)
    邵景侠.二角型小麦雄性不育系育性基因定位及育性恢复性能的研究.硕士论文,2002,6
    乔利仙,等.几类异质小麦雄性不育系育性恢复性的细胞遗传学研究.遗传学报,2001,28(7):647-654
    荣德福,李少华,郭拥军,等.两极光温敏感型小麦雄性不育系337S的选育[J].湖北农业科学,2001(5):13–16
    司智海,刘植义.小麦T型细胞质雄性不育系及其保持系线粒体多肽的电泳比较研究.遗传学报,1991,18(1):44-50,
    石明松.对光照长度敏感的隐性雄性核不育水稻的发现和初步研究[J].中国农业科学,1985,2:44-48.
    石明松,邓景扬.湖北光敏感核不育水稻的发现、鉴定及其利用[J].遗传学报,1986,13:107-112.
    邵游,唐锡华.光敏核不育水稻存在B丁型等位不育基因及其遗传关系的研究[J].作物学报,1996,22(3):335-339.
    邵景侠.二角型小麦雄性不育系育性基因定位及育性恢复性能的研究.硕士论文,2002,6
    邵景峡,张改生,等.二角型小麦雄性不育系育性恢复性的研究.西北植物学报.2002,22
    孙宗修,程式华.杂交水稻--从三系、两系到一系[M].北京:中国农业科技出版社,1994.4:879-887
    谭昌华,余国东,杨沛丰,张宗华,潘鹰,郑坚;重庆温光型核不育小麦的不育性研究初报[J];西南农业学报;1992年04期
    腾晓月,陈雪晖.T型雄性不育小麦种子蛋白的电泳分析[J].中国农业大学学报,1996,1(1)11-15.
    腾晓月,陈雪晖.小麦T型细胞质雄性不育系和保持系蛋白质的比较研究[J].作物学报,1996,22(3):264-270.
    王鹏科,田增荣.利用杀配子基因建立小麦核不育杂种优势利用体系[J].麦类作物学报,2000,22(专辑):62-64
    王强,刘小宁,等.五种小麦雄性不育系的初步研究.麦类作物学报,2002,22(4):58-62
    王小利,等.几类异质1B/1R易位型小麦雄性不育系细胞学特征的研究.西北植物学报,1999,19(4):654-658
    王小利,张改生等,黏类小麦不育系育性恢复性的细胞遗传学研究.西北植物学报,1999,19(6):37-42.
    王小利,张改生等.黏型小麦雄性不育系减数分裂特征及育性恢复研究.西北植物学报,2001,21(5):832-838.
    王小利,张改生,陈新宏,刘宏伟,王军卫.APAGE技术在小麦细胞质雄性不育系选育中的应用研究遗传学报,2003,30(5):465~468
    王晓军,冯国华,刘东涛,王静,等.黄淮麦区部分小麦品种(系)1BL/1RS易位的分子检测.麦类作物学报,2008,28(3):381-386.
    王熹,阙瑞芬,蒋志荣等.己烯及配子诱杀荆对水稻花粉不育的辑导[J].植物生理学报,1981,7(1):11-17.
    王永军,张改生,孙苏阳,李海军.遗传型与生理型雄性不育小麦花药和旗叶蛋白质的比较研究.麦类作物学报。2007.27(6):965-968
    吴敏生,刘大钧.小麦线粒体atpA基因,18S+5SrRNA基因与细胞质雄性不育的关系研究初报.第三界全国青年作物遗传育种学术会议论文集.158-162
    夏涛,刘纪麟.玉米细胞质雄性不育性与组织抗氰呼吸关系的研究[J].中国农业科学,1988,21(5):39-43.
    夏涛,刘纪麟.玉米细胞质雄性不育性与乙烯的关系[J].华北农学报,1996,11(3):68-72
    谢迎秋,孙兰珍.小麦K、V型胞质雄性不育育性恢复的细胞学研究.西北植物学报,1998,18(1):1-8.
    谢迎秋,孙兰珍,王海峰.小麦K、V型胞质雄性不育系F2群体育性分离多态性[J].华北农学报,1999,14(1):1-5.
    肖建国,蒋爱湘,冯桂苓等.化学杂交剂“津澳淋”诱导小麦雄性不育机理研究.华北农学报,1996,11(4):7-11
    薛尔,等.小麦细胞质雄性不育与不同核基因组及染色体的关系.遗传学报,199522(6):445-454
    徐国平,T型杂种小麦育性的基因型环境互作的分解分类研究。北京农业大学学报,1985,11(4):143-154
    徐乃瑜,刘江东.光周期敏感细胞质雄性不育小麦的初步研究.小麦育种通讯,1994,(1),11-13
    徐乃瑜,等.不同细胞质对小麦花药游离氨基酸含量影响的初步研究.武汉大学学报,1984(2):76-84
    吴郁文,等.异源细胞质小麦育种技术.中国科学,C辑,生命科学,1998,28(1):57-64
    吴吉祥,朱军.不同环境下作物基因型值和杂种优势的分析方法[J].浙江大学学报,1994,(6):587-592.
    闫先喜,梁作勤,田纪春. SC2053诱导小麦雄性不育形态学和细胞学观察[J].华北农学报,1996,11(1):19-24
    姚亚琴,张改生.K型小麦雄性不育系及其保持系花药小孢子不同发育时期ATP酶活性变化[J],中国农业科学,2000,33(3):97-99.
    姚亚琴,张改生,刘宏伟等.K型和T型小麦雄性不育花粉粒形态与细胞学定位[J].中国农业科学,2002,35(2):123-126.
    姚亚琴,张改生.K型小麦不育系花药壁细胞色素氧化酶的分布[J].西北农业大报,1997,10,15(5):1-3.
    杨晓云.不结球白菜Pol胞质雄性不育花粉发育及温度对其育性影响的研究[D].南京:南京农业大学(博士学位论文),1996
    杨天章,Maan.S.S. Ae.ovata细胞质小麦核质杂种优势.西北农业大学学报,1985,(3):1-10
    杨天章,刘庆发等.K型小麦雄性不育系应用问题研究I I.恢复性和杂种优势问题,陕西农业科学,1990,(3):2-4
    叶绍文.小麦雄性不育在高原地区的发现.遗传学报,1979,6(1):32
    叶绍文,容珊. VE型小麦雄性不育系的研究.遗传学报,1980,(1):23-25
    叶纨芝,曹家树.植物雄性不育的分子机理.植物生理学通讯,2000,36(2):176-181
    赵寅槐,邹明烈.大拇指矮Rht3基因在杂种小麦选育中的应用.麦类文摘,1993,13(4):10
    詹克慧,孙笑梅。小麦Ae.ovata胞质不育系恢复基因的遗传研究,华北农学报,1999(14)3:1-4
    张萃,王宏英,沈银柱,赵保存,朱正歌,黄占景.用微卫星标记定位小麦T型CMS的恢复基因.遗传学报,2003,30(5):459.464
    赵凤梧,李慧敏,李洪武;利用化学杀雄剂EK和ES诱导普通小麦雄性不育[J];华北农学报;1993年S1期
    赵昌平,王新,张风廷,等.杂种小麦的利用现状与光温敏二系法[J].北京农业科学,1999,17(2):3-5
    赵玉锦,童哲,陈化君等.内源植物激素与光敏核不育水稻农垦58S育性的关系[J].植物学报,1996,38(12):936-941.
    张爱民,李英贤,黄铁城.化学杂交剂诱导的雄性不育花药组织内源激素的变化[J].农业生物技术学报,1997,5(1):64-71
    张爱民,黄铁城.小麦杂种优势利用途径与研究进展[J].作物杂志,1997,(5),16-201
    张改生,等.偏型,黏型和易型小麦雄性不育系的初步研究[J].作物学报,1989,15(1):1-10
    张改生.单型小麦雄性不育系的育成及育性恢复性能的研究初撤.陕西农业科学、1991(51):4~7
    张改生.黏、易型1B/1R小麦雄性不育系产生单倍体的遗传机理及育性恢复性能的研究[J].遗传学报,1992,19(3):266-277
    张改生.小麦新型易恢复不育细胞质源的建拓与研究.1993,博士论文,南京农业大学
    张改生,等.偏、黏、易型非1B/1R小麦雄性不育系的研究初报.西北农业学报,1994,3(4):7-12
    张改生,赵惠燕,等.几类异质1BL/1RS小麦雄性不育系育性稳定性与育性恢复性的研究.中国农业科学,1996,29(5):41-45
    张改生,刘宏伟,王军卫,等.我国杂种小麦走向生产的关键策略[J].科技导报,1997(10):27-28
    张改生,马三梅等.几类异质1BL/1RS小麦雄性不育系诱导孤雌生殖性的研究.西北植物学报,1999,19(6):1-9.
    张立平,何中虎,陆美琴,等.用Glu-B3、Gli-B1和SEC-1b复合引物PCR检测普通小麦1BL/1RS易位系.中国农业科学,2003,36(12):1566-1570.
    张明永,梁承邺,段俊等.CMS水稻不同器官的膜脂过氧化水平[J].作物学报,1997,23(5):603-606
    张晓科,张改生,王军卫.小麦细胞质雄性不育机理的研究进展.麦类作物,1997,17(2):4-6
    张晓梅,陈万义.一种可能对小麦育种有重要贡献的CHA[J].农药,1999,38(10):16-18
    张瑜.黏类小麦雄性不育—恢复系统CMS基因定向转化的研究.《硕士论文》2009.5
    周金生,杨木军,等.温光型小麦两用不育系与小麦杂种优势利用.云南农业科技,1997,(6):3-6
    朱列层,等.单芒与黏果山羊草细胞质小麦雄性不育系比较Ⅱ.恢保关系及单倍体发生频率,西北农业大学学报,1998,26(5)21-24
    朱玉贤,李毅编著.现代分子生物学.北京:高等教育出版社,1997.460—466
    朱军.作物杂种后代基因型值和杂种优势的预测方法[J].生物数学学报,1993,8(1):32-44.
    朱军,季道藩,许馥华.作物品种间杂种优势遗传分析的新方法[J].遗传,1993,20(3):183-191.
    朱军.广义遗传模型与数量遗传分析新方法[J].浙江农业大学学报,1994,20(6):551-559.
    朱军.遗传模型分析方法[M].北京:中国农业出版社.1997.
    朱展望,张改生,牛娜。小麦花粉的离体萌发研究。麦类作物学报,2007,27(1)12-15
    全国小麦k,v型不育系开发利用研究协作组,全国“小麦k,v型雄性不育系开发利用研究”研讨会小结(油印本),1991
    小麦雄性不育杂种优势利用研究取得新进展.农林科学实验,1974,(4):1-4
    小麦雄性不育杂种优势研究有显著进展.农林科学实验,1976,(15):1-4
    山东农学院农学系植物与植物生理教研组,乙烯利诱导小麦(Triticum aestivum L.)雄性不育的细胞形态学观察[J].植物学报,1997,19(1):28-33
    Allwood E G, Anthony R G, A P, Relchelt S, Drobak B K, Doonan J H, Weeds A G, Hussey P J.Regulation of the pollen-specific actin-depolymerizing factor LIADF1. Plant Cell,2002,14:2915-2927
    Awrence G J, Sheperd KW. Inheritance of glutenin protein subunits of wheat [J]. Theor AppI Genet.1981,60:333-337.
    Bevan M., Bancroft L. Bent E., etc. Analysis of1.9Mb of contiguous sequence from chromosome4ofArabidopsis thaliana [J]. Nature.1998.391(29):485-488
    Begu D, Graves P. V., Domec C. RNA editing of wheat mitochondria ATP sythase subunit9: Direct proteinand cDNA sequencing. Plant Cell.2:1283-1290
    Block M, Debroawer D. et al. The dvevelopment of nuclear male sterility system in wheat, Expression ofthe barns gene under the control of tappet specific promoters [J] Their App. Genet.1997,95:125-131
    Chen Z.J., Liang G.H., kofoid K.D.. Chloroplast DNA polymorphism in fertile and male-sterile cytoplasmof sorghum (sorghum bicolor(L.) Moench). Theor Appl Gene,1993,80:727-731
    Chen J-L(陈举林). Kernel abortion in maize. Seed Sci&Technol (种子科技),1996,(4):23-24(inChinese)
    Cox T S. Genetic improvement in milling and baking quality of hard red wheat cultivars [J]. Corp Sci,1989,29(3):626-631.
    Danyluk J, Kane N A, Breton G, Limin A E, Flower B. TaVRT-1, a putative transcription factor associatedwith vegetative to reproductive transition in cereals. Plant Physiol,2003,132:1849-1860
    Diatchenko L, Lau Y F, Campbell A P, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K,Gurskaya N, Sverdlov E D, Siebert P D. Suppression subtractive hybridization: a method forgenerating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad SciUSA,1996,93:6025-6030
    Driscoll, C. J.. Nuclear male sterility system in seed production of hybrid varieties [J]. CRC CriticalReviews in Plant Science,1986,3:227-256
    Driscoll, C.J., New approaches to wheat breeding. In: Wheat Science today and tomorrow. Pub. Cambridgeuniversity Press, Cambridge,1981, PP97-106
    Durfee T, Roe J, Sessions R, Inouye C, Serikawa K, Feldmann K, Weigel D, Zambryski P. TheF-box-containing protein UFO and AGAMOUS participate in antagonistic pathways governing earlypetal development in Arabidopsis. Proc Natl Acad Sci USA,2003,100:8571-8576
    Eujayl I, Sorrells M E, Baum M, etal.Isolation of EST-derived microsatellite markers for genotyping theA and B genomes of wheat[J]. Theor Appl Genet,2002,104:399-407
    Fran ckowinak,J.D.,Maan, S.S. and Williams, N.D.. A proposal for hybrid wheat utilizing Aegilopssquarrosa L. cytoplasm [J]. Crop Sciene,1976,16(5):725-728
    Fukasawa, H., Studies on restoration and substitution of nucleus in Aegilotricum, I. Appearance ofmale-sterile chlrum in substitution crosses. Cytologia,1953,18:167-175
    Fukasawa H. On the free amino acids in anthers of male sterile wheat and maizse[J].Jpn JGenet.1953,29:135-137.
    Froidmont D de. A co-dominant marker for the1BL/1RS wheat-rye translocation via multiplex PCR [J].Journal of Cereal Science.1998,27:229-232.
    Hama E, Takumi S, Ogihara Y, Murai K. Pistillody is caused by alterations to the class-B MADS-box geneexpression pattern in alloplasmic wheats. Planta,2004,218:712-720
    Hu M-H (胡美华), Chen Z-J (陈竹君), Wang B-L(汪炳良). Comparison on some biochemical charactersin cytoplasmic male sterile line and maintainer line for tuber mustard. J Zhejiang Agric Univ (浙江农业大学学报),1998,24(1):57-58(in Chinese)
    Johnson,R.R.and Brown,C.M.1976.Chemical control of pollination in wheat and oats.Crop Science16:584-587
    Johnson,R.R.and Brown,C.M.1978.Use of DPX3778to produce hybrid wheat seed.Crop Science18:1026-1028
    Kadowki K., Suzuki T., Kazama S. A.. Chimeric gene containing the5' portion of atp6is associccted withcytoplasmic male sterility of rice Mol Gen Genet,1990,224:10-16
    Kaul. Male sterility in high Plants. Berlin: Springer~Verlag,1988.2-5.
    Kane N A, Danyluk J, Tardif G, Ouellet F, Laliberté J-F, Limin A E, Fowler D B, Sarhan F. TaVRT-2, amember of the StMADS-11clade of flowering repressors, is regulated by vernalization andphotoperiod in wheat. Plant Physiol,2005,138:2354-2363
    Kihara, H.. Substitution of nucleus and its effects on geeome manifestation. Cytologia,195176:177-193
    Kihara H. Discovery of DD analyser, one of the ancestors of T. vulgare. Agric Hort (Tokyo),1954,19:889–890
    Kobayashi, M. and K. Tsunewaki. Haploid induction and its genetic mechanism in alloplasm commonwheat. J. Hered.1980,71:9-14
    Koji Mukai&koichiro Tsunewaki. Photoperiod-sentitive cytoplasmic male sterility in wheat with Aegilopscrassa cytoplasm. Euphytica,1993,67:41-48
    Kojima T,Tsujimoto H and Ogilihara Y High-resolution RFLP mapping of the fertility restoration (RF3)gene against Triticum timopheevi cytoplasm located on chromosome1BSof common wheat. Genesand Genetics System1997,72:353-359
    Kosambi D D. The estimation of map distances from recombination values[J]. Ann Eugen,1994,12:172-181
    Kramer T H. A comparison of soft red winter wheat F2population, their F1hybrids and parents [J]. ProdAgr,1990,3(3):363-367.
    Lee, M., E.B.Godshalk, K, R. Lamkoly, W.W. Woodman. Asociation of restriction fragment lengthpolymorphisms among maize inbreeds with agronomic performance of their cross, Crop Sci.1989,29:1067-1071
    Li M X,Zhang Z X. Crop chromosome engineering and technology.Beijing:China AgriculturePress,1996,98~102.Lupton F.G.H.著.小麦育种的理论基础.北京农业大学遗传育种研究室译,北京:北京农业大学出版社,1988
    Maan S S,Lucken K A and Bravo J M genetic analysis of male sterile fertility restoration inwheat.1.Chromosomal location of Rf genes. Crop Sci1984,21(1):17-20
    Ma Z Q, Roder M S, Sorrells M E. Frequencies and sequence characteristics of di2, tri2, andtetra2nucleotide microsatellites in wheat[J].Genome,1996,39:123-130crae,D.H.1985.Advances inchemical hybridization.Plant Breeding Reviews3:169-191
    Miller R G. The jackknife-a review. Biomtrika,1974,64:1-15.
    Mukai, Y. and K. Tsunewaki. Genetic diversity of the cytoplasm in Tritium and Aegilops. IV. Distributionof the cytoplasm inducing variegation in common wheat. Theor. Appl. Genet.1976,48(1):9-16
    Mukai, Y. and K. Tsunewaki. Basic studies on hybrid wheat breeding. VIII. A new male sterility-fertilityrestoration system in common wheat utilizing the cytoplasms of Aegilops kotschyi and Ae. Variables.Theor. Appl. Genet.1979,54(4):153-160
    Mukai, Y. Interactions of Aegilops kotschyi, Ae. variabilis cytoplasms with homologous group. I.Chromosomes in common wheat. In Proc.6th wheat Genetics Sym.1983,517-527
    Mukai, Y., Endo, T.R. Physical mapping of a fertility-restoring gene against Aegilops kotschyi cytoplasm inWheat. Japan. J. Genet.1992,7:199-207
    Murai k,Tsunewaki.Genetic analysis on the fertileity restoration by tricticum assetivum CV.Jpn,J.Gent1994,69:195-202
    Murai K, Takumi S, Koga H, Ogihara Y. Pistillody, homeotic transformation of stamens into pistil-likestructures, caused by nuclear-cytoplasm interaction in wheat. Plant J,2002,29:169-181
    Mulder N J, Apweiler R,et al. The InterPro Database:2003brings increased coverage and new features.Nucl Acids Res,2003,31:315-318
    Musgrave ME, Antanovics J, Siedow J N. Is male-sterility in plants related to lack of cyanide-resistantrespiration in tissues?[J]. Plant SCI,1986,44:7-11167.
    Nonaka. S., Toriyama, K. and Tsunewaki, K.. Effect of a svtype cytoplasm and a1BL-1RS Chromosomeon Agronomic Traits of Wheat Cultivars, Tritium aestivum. Breeding Science,1994,44:295-299
    Ouellet F, Carpentier E, Cope M, Monroy A F, Sharhan F. Regulation of A wheat actin-depolymerizingfactor during cold acclimation. Plant Physiol,2001,125:360-368
    Panayotov. I. et al. Male fertility restoration against various alien cytoplasms. I. Comparison between therestoration abilities of three groups of lines. Wheat Inf. Serv.1986,63:7-10
    Panayotov, I. Et al. Chromosome location of Rf genes for Aegilops mutica and Triticum timopheevicytoplasms. In: Proc.7th Int. Wheat Genet. Symp.1988,609-613
    Panayotov, I. New cytoplasmic male sterility sources in common wheat: Their genetically and breedingconsideration. Theor. Appl. Genet.1980,56:153-160
    Panayotov. I. et al. Male fertility restoration against various alien cytoplasms. I. Comparison between therestoration abilities of three groups of lines. Wheat Inf. Serv.1986,63:7-10
    Raybum, A. L. and D. W. Mornhingweg. Inheritance of a1B/1R wheat-rye translocation in wheat. Crop.Sci.1988,28(4):709-711
    Roder M S, Korzun V, Wendehake K,etal. A microsatellite map of wheat[J].Genetics,1998,149:2007-2023
    Rossetto M, McNally J, Henry R J. Evaluating the potential of SSR flanking regions for examiningrelationships in Vitaceae[J]. Theor Appl Genet,2002,104:61-66
    Rodriguez-López M, Baroja-Fernández E, Zandueta-Criado A, Pozueta-Romero J. Adenosine diphosphateglucose pyrophosphatase: A plastidial phosphodiesterase that prevents starch biosynthesis. Proc NatlAcad Sci USA,2000,18;97:8705-8710
    Sage G C M. The inheritance of fertility restoration in male-sterile wheat carrying cytoplasm derived fromTriticum timopheevi.Theoretical and Applied Genetics,1972,42,233-243
    Sourdille P, Singh S, Cadalen T, etal. Microsatellite-based deletion bin system for the establishment ofgenetic-physical map relationships in wheat (Triticum aestivum L.)[J]. Funct Integr Genomics,2004,4:12-25
    Samach A, Klenz J, Kohalmi S, Risseeuw E, Haughn G, Crosby W. The unusual floral organs gene ofArabidopsis thaliana is an F-box protein required for normal patterning and growth in the floralmeristem. Plant J,1999,20:433-445
    Shun Q-P(孙清萍), Wang L(汪丽), Yi P(易平). Expression analysis of MADS-box gene family onuni-nucleate and bi-nucleate stage anthers on HL-CMS system. Wuhan Bot Res (武汉植物学研究),2002,20(5):325-328
    Song S-S(宋素胜), Xie D-X(谢道昕). The ubiquitin-proteosome pathway and plant development. ChinBull Bot (植物学通报),2006,23(5):564-577
    Spetsov, P., et al. Increasing genetic variability on common wheat by utilization of aliencytoplasms-cytoplasmic effects on performance and interplant variability of the F1and F2generationsof the cross, Triticum cv. Chinese spring×cv. Norin61. Japan. J. Breed.1987,37:29-39
    Specialty in Plant Genetics and Breeding of Department of Biology,(北京大学生物系植物遗传育种专业).A Cytological0bservations on anther and pollen developments of male sterile and male fertilelines of whcat[J].Acta Bot.Sin.(植物学报),1976,18(2):111-119.
    Stevens R, Goble C, Baker P, Brass A. A classification of tasks in bioinformatics. Bioinformatics,2001,17:180-188
    Tsunewaki, K.. Genetic diversity of the cytoplasm in Triticum and Aegilops. Japan Society for thepromotion of science. Tokyo. Japan,1980
    Tsunewaki, K., et al. Basic studies on hybrid wheat breeding. V1. Production of male sterile lines ofcommon wheat cultivars. Japan. J. Breed.1976,26:25-31
    Tsunewaki, K., et al. On the descent of the cytoplasms of polyploid species in Tritium and Aegilops. In:Proc.5th Int. wheat Genet. Symp.1978,261-272
    Tsunewak,.k..Cytoplasm variation in Triticum and Aegilops.In Proc.7thInt. Wheat Genet, symp.1988,53-62
    Tsunewak,.k.Endo T.R.and Mukai Y.Further discovery of alien cytoplasms inducing haploids and twins incommon wheat. Theoretical and Appted Genetics1994,45:104-109
    Tsunewaki,K.et al. Genetic diversity of the cytoplasm in Triticum and aegilops.V. classification of23cytoplasm into eight plasma types. Jap, J.Genet.1976,51:175-191
    Tsunewaki K (1982) Monosomic analysis on the fertility restoration by Triticum aestivum cv 'ChineseSpring' againstAegilops ovata cytoplasm. Jpn J Genet57:517-525。
    Tsunewaki, K.Genome-interaction in wheat [J]. Jpn.J.Genet.1993.68:1-3
    Van Campenhout S, Vander Stappen J, Sagi L, Volckaert G. Locus specific primers for LMW glutenin geneson each of the group1chromosomes of hexaploid wheat. Theoretical and Applied Genetics.1995.91:313-319.
    Varshney R K, Thiel T, Stein N, etal.Graner A1In silico analysis on frequency and distribution ofmicrosatellites in ESTs of some cereal species[J]. Cell Mol Biol Lett,2002,7:537-546
    Wang L, Ma J, Zhou R, Wang X, Jia J.Molecular tagging of the yellow rust resistance gene Yr10incommon wheat, P.I.178383(Triticum aestivum L.)[J].Euphytica,2002,124:71-73.
    Wilson, J.A. and W. M. Ross. Male-sterility interaction of Tritucum aestivum nucleus and Triticumtimpheevi cytoplasm. wheat Inf. Serv.1962.14:29-31
    Wilson J A. Problems in hybrid wheat breeding. Euphytica(suppl.)1968,1:13-33
    Yan L-F(阎隆飞), Liu G-Q(刘国琴), Xiao X-G(肖兴国). Pollenactin and crop male sterility. Chin SciBull(科学通报),1999,44(23):2471-2475
    Yonezawa, K., et al. Increasing genetic variability in common wheat by utilizing alien cytoplasms effects offour Aegilops cytoplasms on the genetic variability of F3generation of cross, Norin26×Norin61.Japan. J. Breed.1986,36:262-273
    Zhu J. Mixed model approaches for estimating genetic variances and covariances. Journal ofBiomathematics,19927(1):1-11
    Zhu J. Weir B. S. Diallel analysis for sex-linked and maternal effects. Theoretical and Applied Genetics,1996,92(1):1-9.
    Zhu Y(朱昀), Zhao B-C(赵宝存), Ge C-R(葛荣朝), Shen Y-Z(沈银柱), Huang Z-J(黄占景). mRNAdifferential display of T-type CMS lines and their maintainers in wheat and the genes relating tofertility. Acta Agron Sin (作物学报),2005,31(3):398-400

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700