基于代谢组学技术的糖尿病特征代谢物及维医证型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     本文采用1H-NMR、UPLC/TOF-MS作为代谢组学研究的检测手段,以糖尿病患者和正常人的尿液为研究对象,分析了糖尿病患者尿液的特征代谢谱;进一步采用HPLC和GC法的代谢靶标技术定量测定尿液及血清中氨基酸、脂肪酸类代谢物。采用模式识别方法对与糖尿病相关的代谢物质进行全面的研究,从西医诊断到维医辨证分型等不同层面阐述与糖尿病代谢相关的差异物质,为全面理解糖尿病在发病机制上的差异和联系提供了一个新视角和实验基础。
     方法:
     1.利用基于NMR的代谢组学方法研究维吾尔族2型糖尿病尿液代谢特征,建立稳定的NMR尿液一维氢谱,分析2型糖尿病人及正常人尿液特征代谢物。根据维医分型将糖尿病患者分为不同体液证型,进一步利用建立的方法寻找不同证型间的差异标志物。
     2.采用超高效液相色谱-四级杆串联飞行时间质谱(UPLC Q-TOFMS)技术分析糖尿病及正常人尿液的代谢谱,结合多元数据分析寻找糖尿病和正常人的差异物质。根据精确分子量、按照差异代谢物的种类在谱库中进行检索,对其进行系统的鉴定并与NMR结果进行比较。
     3.建立高效液相色谱(HPLC)分析生物样品中游离氨基酸的代谢靶标分析技术,以维吾尔族糖尿病及正常人血清/尿液为研究对象,测定氨基酸代谢谱,结合多元统计分析评估氨基酸代谢谱对糖尿病发病的影响。进一步将该方法应用于糖尿病小鼠模型中,充分研究糖尿病小鼠的氨基酸代谢变化。
     4.建立气相色谱(GC)技术检测血清中游离脂肪酸的技术平台,优化了GC色谱的最优条件。用该法分析2型糖尿病患者和正常健康者血清的7种游离脂肪酸,结合多元统计分析寻找脂肪酸代谢谱的差异,对脂肪酸代谢异常进行系统评价。
     结果:
     1.建立了1H-NMR的尿液代谢组学方法,糖尿病患者和正常人经代谢组学方法得到很好的区分,并找到了相对应的多个糖尿病标志物。DM组的大部分代谢物浓度较正常人低。结合两组样品的NMR谱图的不同轮廓,与正常人相比,DM患者尿液中的葡萄糖、马尿酸、甜菜碱、牛磺酸等升高;亮氨酸、异亮氨基酸、肌酸酐、柠檬酸、二甲胺等含量较正常人低。根据维吾尔医分型将患者分为不同异常体液证型,进一步利用NMR技术对不同证型糖尿病及健康人尿液进行代谢组学研究,发现三种异常体液糖尿病患者尿液差异物质相似,异常粘液质患者尿液中的代谢差异与其他两类都有显著差异,成为各个异常体液中代谢变化最为显著的体液类型。
     2.建立了UPLC-Q/TOF-MS的尿液代谢组学研究方法,糖尿病患者尿液中的糖、脂、氨基酸等代谢通路都发生了紊乱,在糖类代谢物中,钠葡萄糖醛酸含量明显高于正常对照组,在脂肪酸类物质中,与正常对照组相比,20-羧基花生四烯酸,棕榈酸在糖尿病患者尿液中比在正常人中高。氨基酸类代谢物中,酪氨酸、N-β-丙氨酰-L组氨酸、色氨酸含量较正常人低,戊二酸、烟酰甘氨酸、天冬氨酸、苯丙氨酸等含量升高。这些代谢物均是与体内糖、脂代谢相关的调节物质,进一步说明了糖尿病患者发生了相关代谢紊乱。1H-NMR技术所得到的标记物和UPLC-Q/TOF得到的标记物大部分不同,但是分组聚类结果类似。
     3.以反相色谱柱和梯度洗脱对生物样品氨基酸进行HPLC分离。通过色谱条件的优化及对方法学考察,说明选择的衍生化方法重复性好、稳定性高。另外,通过正交偏最小二乘判别分析(OPLS-DA)对HPLC得到的氨基酸数据进行分析。研究发现,HPLC分析得到的血清及尿液氨基酸代谢谱能明显表征出糖尿病患者和正常人的代谢表型差异,有效的区分糖尿病患者和健康对照组的氨基酸代谢轮廓。在糖尿病血清氨基酸代谢靶标分析中,糖尿病患者血清氨基酸代谢谱中对分组贡献最大的是天冬氨酸、谷氨酸、苏氨酸、丝氨酸,而在单维统计分析发现天冬氨酸和苯丙氨酸代谢异常最为明显,较正常人明显升高,而较正常人显著下降的氨基酸有丙氨酸、甘氨酸和赖氨酸。在尿液的代谢谱比较时发现多元分析中得到丝氨酸、苏氨酸、牛磺酸对组间贡献较大,而单维统计分析发现尿液中牛磺酸、精氨酸、丝氨酸和组氨酸较正常人显著下降,谷氨酸显著升高。两种方法处理得到的结果可以互为补充。在糖尿病动物模型氨基酸谱的研究中发现所有氨基酸在单维统计分析中均无差异,而在多元统计分析中,通过PLS-DA负载图可见,精氨酸、苯丙氨酸、赖氨酸、牛磺酸对组间贡献较大,这些氨基酸可能承载着小鼠成模后药理过程中代谢途径变化的重要信息。本研究说明HPLC靶标分析技术可以作为高效和简单的技术平台用于糖尿病的代谢轮廓研究,是一种潜在的早期诊断手段。
     4.建立了以硫酸/甲醇为甲酯化试剂测定血清中FFA的GC分析方法,同时优化了GC色谱的最优条件。利用多元统计分析结合模式识别方式,结合PCA和OPLS-DA对数据进行模式识别对两组人群进行了有效区分,发现肉豆蔻酸在糖尿病患者血清中升高,而油酸在糖尿病患者中特异性下调,提示这两种物质可能分别为潜在特异性标志物,为区分糖尿病和体内脂肪酸失衡的关系提供了重要的实验依据。
     结论:
     1H-NMR技术和UPLC-Q/TOF技术作为常用的代谢组学分析工具,在标记物发现中有一定的互补性。通过对正常人和糖尿病患者尿液的代谢谱研究,发现代谢组学具有很好的疾病诊断作用,进一步将其应用到维医不同证型糖尿病的特异代谢物寻找中,获得了区分不同证型糖尿病的特征代谢物;运用HPLC及GC的代谢靶标分析技术对血清/尿液中的氨基酸、脂肪酸进行定量分析,结合模式识别发现具有良好的聚类效果。代谢组学作为现代生命科学的一个新的分支,对研究糖尿病的潜在标志物研究具有重要价值。
Objective:
     Metabonomics is a new method of studying dynamic change of endogenousmetabolite in biosystem and has been increasingly used as an effective tool for diseasediagnosis to elucidate significant changes in metabolism, also an ideal tool for studyingtraditional medicine theories.In our study, With the help of the recent advent oftechnologies for quantitative and comprehensive metabolites analyses, which provides amore sensitive and specific diagnosis than single biomarker approaches, and revealdistinct differences in metabolism between diseased individuals and healthy ones in anovel systems-level.
     Methods:
     1.In the present study, NMR was used in the urine metabolomics study, verifyingthe high performance of the system in separating endogenous metabolites and its abilityas a nearly diagnostic method for uygur medicine.
     2.Through studying the metabolic variations in urine of type2diabetes mellituspatients and healthy volunteers with UPLC-TOF-MS, more disease information could begain to help finding the common and specific biomarkers among the diseases, which gavenew eyes on the understanding of the mechanism of the diseases.Here, T2DM andmetabonomics were investigated by comparing small molecules in urine samples fromT2DM patients and healthy controls, the potential biomarkers of DM were found.
     3.A robust and sensitive liquid chromatography spectrometry (HPLC) method wasdeveloped and optimized for quantification of various amino acids in serum and urine.Then the data was imported through the analysis by principal component analysis (PCA),and the least squares discriminant analysis (PLS-DA). The analytical serum amino acidsplatform can applied to investigate the effect of diabetes on amino acids in serum, urineand diabetes rats, Then, results shows the classification accuracy were good.
     4.To investigate the serum free fatty acid variation in diabetic patients and heathyvolunteers. the human serum were methylesterifiled by H2SO4/CH3OH, extracted byn-hexane, FID detector,7kinds of fatty acids can be separated completely with a goodlinear and chemometric resolution method were used to discriminated diabetes patientsand controls.
     Results:
     1.The application of NMR detection has been investigated for the production ofglobal metabolite profiles from human urine, Chemomatrics was performed to detect theperturbation metabolites as many as possible. Furthermore, the potential biomarkers werescreened out, which might be the target components in the future pathogenesis research,as well as predicted model was builded up using PLS-DA. The metabonomics basedNMR and OPLS can prove the difference in differentiated traditional Uygur Medicinesyndrome with diabetes, Eatabilished the approach with NMR for metabonomic study,some specific urine endogenous metabolites changes in the metabolic composition ofurine samples from diabetes, there are Elevated glucose,hippuric acid, betaine, taurine,etc.; leucine, isoleucine, creatinine, citric acid, dimethylamine, and other content is lowerthan normal control.
     2.A UPLC Q-TOF MS system was employed to distinguish the urine global profilesof38type2diabetes mellitus patients and32heatlty volunteers. PCA and PLS-DA wasused for group differentiation and potential biomarkers selection. As shown in the scoresplot, the distinct clustering among diabetes mellitus patients and health controls wasobserved. In carbohydrate metabolites, sodium glucuronic acid content was significantlyhigher than the normal control group, compared with the normal control group, thesubstance of the fatty acids were higher than control group,20-carboxy-arachidonic acid,palmitic acid in the urine of patients with diabetes were higher than in normal subjects.Metabolites of amino acids such as tyrosine, N-beta-alanyl-L histidine, tryptophancontent is lower than normal, glutaric acid, nicotinoyloxy glycine, aspartic acid, phenylalanine, etc. content were increased than normal people. These metabolites areassociated with in glucose and lipid regulating substances.This study indicatedthepotential of metabolomic strategies for explanation of the mechanism of diseases anddetection of specifical biomarkers.
     3.The HPLC based serum and urine amino acid metabolomics approach was alsoused to investigate the pathophysiological variation among type2diabetes mellituspatients compared to health control. The derivatization condition was optimized. Patternrecognition was carried out with PCA and PLS-DA.Then, the serum of type2diabetesrats were analysis by this method.In diabetes, the amino acid metabolism includingaspartate,glutamic, serine, threonine were found as the most obvious changed aminoacid.although aspartic acid and phenylalanine were significantly higher than normal by ttest, a significant decline in the amino acid are alanine, glycine and lysine. Metaboliteprofiles in the urine was analysised in a multivariate analysis and the result shows thatserine, threonine, taurine were most contributed to inter-group, one-dimensionalstatistical analysis found that the urine taurine, arginine, serine and histidine significantlylower than normal, and glutamic acid were increased significantly. Are two ways to dealwith the results obtained can be complementary.
     4.The GC based serum metabolomics approach was also used to investigate thepathophysiological variation among type2diabetes mellitus patients compared to healthcontrol. The derivatization condition was optimized. Pattern recognition was carried outwith PCA and OPLS-DA were used to analysis All fatty acids were suceessfullyidentified and quantified, and stable plasma FFA metabolie Profiling of both the controlsand TZDM patients. The results found elevated Myristicacid in the serum of withdiabetes patients, while oleic acid in diabetic patients specifically down regulatedcompared with healthy people, which suggested that these two substances were potentialspecific markers to distinguish between diabetes and control and fatty acid metabolic canprovide important experimental basis for diagonosis.
     Conclusion:
     The NMR separation of urine samples was performed and UPLC-TOF-MSmetabolomics study can clearly classify the diabetes groups and control group. Themetabolites gotton from NMR were different from those from UPLC/MS, but thedifferent metabolites maily including amino acid, glucose, and organic acid. Comparedwith healthy controls, the glycolysis metabolism, and amino acid metabolism of diabetes mellitus patients were disordered to some degree.It indicated that both common andspecific metabolic pathways of diabetes mellitus were disordered. The relationshipbetween the two methods could b efurther studied according to the results of the presenttest.The HPLC and GC based serum and urine metabolomics approach was also used toinvestigate the pathophysiological variation among type2diabetes mellitus patients. Thederivatization condition was optimized. Pattern recognition was carried out with PCA andPLS-DA to get the similar results. This study would provide important significance fordiagnosis and evaluation of the therapeutic efficacy for diabctie mellitus.
引文
[1] Rathmann W., Giani G. Global prevalence of diabetes:estimates for the year2000and projections for2030[J]. Diabetes Care,2004,27(10):2568-2569,2569.
    [2] Shaw J. E., Sicree R. A., Zimmet P. Z. Global estimates of the prevalence ofdiabetes for2010and2030[J]. Diabetes Res Clin Pract,2010,87(1):4-14.
    [3] Zhao X., Zhu X., Zhang H. S. et al. Prevalence of diabetes and predictions of itsrisks using anthropometric measures in southwest rural areas of China[J]. BMCPublic Health,2012,12(1):821.
    [4]. Wen YY, Prevalence of Diabetes among Men and Women in China[J]
    [5] Tao Y., Mao X., Xie Z. et al. The prevalence of type2diabetes and hypertension inUygur and Kazak populations[J]. Cardiovasc Toxicol,2008,8(4):155-159.
    [6] Teleman A. A. Molecular mechanisms of metabolic regulation by insulin inDrosophila[J]. Biochem J,2010,425(1):13-26.
    [7] Neumiller J. J., To S. National Diabetes Month2012. Updated treatment guidelinesor type2diabete[J]. Diabetes Self Manag,2012,29(6):10,12,15.
    [8] Celik E., Yilmaz E., Celik O. et al. Maternal and fetal adropin levels in gestationaldiabetes mellitus[J]. J Perinat Med,2013:1-6.
    [9] Whalen K., Sando KR Pharmd Cde. Linagliptin(Tradjenta)for the Treatment ofDiabetes Mellitus[J]. Am Fam Physician,2012,86(12):1144-1148.
    [10] Zhang J., Yan L., Chen W. et al. Metabonomics research of diabetic nephropathyand type2diabetes mellitus based on UPLC-oaTOF-MS system[J]. Anal ChimActa,2009,650(1):16-22.
    [11] Huo T., Cai S., Lu X. et al. Metabonomic study of biochemical changes in the serumof type2diabetes mellitus patients after the treatment of metforminhydrochloride[J]. J Pharm Biomed Anal,2009,49(4):976-982.
    [12] Sparling K. Traveling with diabetes[J]. Diabetes Self Manag,2012,29(6):20-22.
    [13]帕它木·莫合买提,哈木拉提·吾甫尔.代谢组学与维吾尔医现代研究[J].中国民族医药杂志,2008(1):63-66.
    [14]帕提古力·阿布拉.维吾尔医体液学说的生理学意义探讨[J].中国民族医药杂志,2008(6):13-14.
    [15]代文成,哈木拉提·吾甫尔,帕尔哈提·玉素甫等.维吾尔族大学生4种体液质型分布分析[J].科技导报,2009(7):41-44.
    [16]哈木拉提·吾甫尔,艾斯卡尔·依米提,伊力哈木江·沙比提等. apoE基因多态性与异常黑胆质型疾病的关系[J].中华医学遗传学杂志,2003(6):92-93.
    [17]热娜古丽·艾则孜,沙吉旦·阿不都热衣,金伟等.复杂性疾病维吾尔医分型及其血栓前状态研究[J].中国中医药信息杂志,2009(2)
    [18]哈木拉提·吾甫尔,胡汉华,努尔买买提·艾买提等.维吾尔医异常黑胆质载体动物模型下丘脑-垂体-肾上腺轴细胞超微结构的改变[J].中国中医药科技,2008(4):249-250.
    [19]哈木拉提·吾甫尔,艾斯卡尔·依米提,伊力哈木江·沙比提等.维吾尔族异常黑胆质型患者基因多态性研究[J].中华医学遗传学杂志,2003(1):81-82.
    [20].克丽别娜·吐尔逊,哈木拉提.异常黑胆质性哮喘与ECP_IgE及FEV_1的关系研究[J]中国中医药信息杂志,2008(8):234-238.
    [21]买买提哈斯木,艾和买提江.维吾尔医对糖尿病足病变的治疗和认识[J].中国民族医药杂志,2001(1):14-16.
    [22]吾布力哈斯木·艾合买提,迪利夏提·沙德穆罕默德.维医治疗糖尿病172例临床观察[J].中国民族医药杂志,2000(1):10-11.
    [23]陈鸿英,朱永智.中医_证候_与代谢组学研究[J].天津药学,2008(28):48-50.
    [24].朱燕波王琦等.中医体质类型与高血压的相关性研究[J].中西医结合学报,2010(1):75-77.
    [25]热合木尼加提.,阿不力米提阿地里江.,吾甫尔哈木拉提.等.异常黑胆质成熟剂对异常黑胆质载体动物模型支配器官形态学的影响[J].中国实验方剂学杂志,2008(9):30-33.
    [26]艾斯克尔·吐拉洪,哈木拉提·吾甫尔,豪富华等.基于NMR的维吾尔医异常黑胆质型肿瘤患者血浆代谢组学分析[J].科技导报,2009(13)
    [27]吴泽明,赵春霞,许国旺等.基于液相色谱质谱联用系统的维吾尔医异常黑胆质证哮喘病的血清代谢组学研究[J].世界科学技术(中医药现代化),2009(1):134-141.
    [28] Nicholson J. K., Lindon J. C., Holmes E.'Metabonomics':understanding themetabolic responses of living systems to pathophysiological stimuli via multivariatestatistical analysis of biological NMR spectroscopic data[J]. Xenobiotica,1999,29(11):1181-1189.
    [29] Nicholson J. K., Holmes E., Elliott P. The metabolome-wide association study:a newlook at human disease risk factors[J]. J Proteome Res,2008,7(9):3637-3638.
    [30] Goodacre R. Metabolomics shows the way to new discoveries[J]. Genome Biol,2005,6(11):354.
    [31] Schnackenberg L. K., Beger R. D. Monitoring the health to disease continuum withglobal metabolic profiling and systems biology[J]. Pharmacogenomics,2006,7(7):1077-1086.
    [32] Nicholson J. K., Wilson I. D., Lindon J. C. Pharmacometabonomics as an effectorfor personalized medicine[J]. Pharmacogenomics,2011,12(1):103-111.
    [33] Nicholson J. K., Connelly J., Lindon J. C. et al. Metabonomics:a platform forstudying drug toxicity and gene function[J]. Nat Rev Drug Discov,2002,1(2):153-161.
    [34] Lindon J. C., Holmes E., Nicholson J. K. Metabonomics:systems biology inpharmaceutical research and development[J]. Curr Opin Mol Ther,2004,6(3):265-272.
    [35]巴吐尔·买买提明,哈木拉提·吾甫尔,豪富华et al. Plasma Metabonomic Analysiswith1H Nuclear Magnetic Resonance Revealing the Relationship of DifferentTumors.J Disease Homology Theory of Traditional Uyghur Medicine[J]. ChineseJournal of Integrative Medicine(2):111-115.
    [36] Carrola J., Rocha C. M., Barros A. S. et al. Metabolic signatures of lung cancer inbiofluids:NMR-based metabonomics of urine[J]. J Proteome Res,2011,10(1):221-230.
    [37] Xia J. F., Liang Q. L., Liang X. P. et al. Ultraviolet and tandem mass spectrometryfor simultaneous quantification of21pivotal metabolites in plasma from patientswith diabetic nephropathy[J]. J Chromatogr B Analyt Technol Biomed Life Sci,2009,877(20-21):1930-1936.
    [38] Williams R. E., Lenz E. M., Evans J. A. et al. A combined(1)H NMR andHPLC-MS-based metabonomic study of urine from obese(fa/fa)Zucker and normalWistar-derived rats[J]. J Pharm Biomed Anal,2005,38(3):465-471.
    [39] Guy P. A., Tavazzi I., Bruce S. J. et al. Global metabolic profiling analysis onhuman urine by UPLC-TOFMS:issues and method validation in nutritionalmetabolomics[J]. J Chromatogr B Analyt Technol Biomed Life Sci,2008,871(2):253-260.
    [40] Liu L., Li Y., Guan C. et al. Free fatty acid metabolic profile and biomarkers ofisolated post-challenge diabetes and type2diabetes mellitus based on GC-MS andmultivariate statistical analysis[J]. J Chromatogr B Analyt Technol Biomed Life Sci,2010,878(28):2817-2825.
    [41] Nevigato T., Masci M., Orban E. et al. Analysis of Fatty Acids in12MediterraneanFish Species:Advantages and Limitations of a New GC-FID/GC-MS BasedTechnique[J]. Lipids,2012:1231-1235.
    [42]朱晓伟,高新星,安芳等.柱前衍生化HPLC-荧光检测法测定高血压患者尿液中22种游离氨基酸的浓度[J].中国药房,2010(30):2823-2825.
    [43]韩晓菲,王龙星,杨乾栩等.氨基酸消耗谱在区分不同作用机制抗癌药物中的应用[J].色谱,2011(4):330-334.
    [44]刁宏斌,王顺,赵新峰等.高效液相色谱直接衍生化法测定血清游离脂肪酸组成[J].临床和实验医学杂志,2010(6):126-131.
    [45]马振菁,王滔,陈发同等.气相色谱法检测健康人血清游离脂肪酸[J].福建医科大学学报,2006(2):179-181.
    [46]邹晓春,徐小作,李行方等.气相色谱法检测人血清中7种游离脂肪酸的研究[J].实用预防医学,2009(4):1252-1254.
    [47] Zhang T., Wu X., Ke C. et al. Identification of potential biomarkers for ovariancancer by urinary metabolomic profiling[J]. J Proteome Res,2013,12(1):505-512.
    [48] Wang C., Feng R., Sun D. et al. Metabolic profiling of urine in young obese menusing ultra performance liquid chromatography and Q-TOF mass spectrometry(UPLC/Q-TOF MS)[J]. J Chromatogr B Analyt Technol Biomed Life Sci,2011,879(27):2871-2876.
    [49]. A metabonomic analysis of urine from rats treated with rhizoma alismatis usingultra-performance liquid chromatography/mass spectrometry[J]
    [50]. Metabolomic Profilings of Urine and Serum from HighFat-Fed Rats via1H NMRSpectroscopy and PatternRecognition[J]
    [51] Rainville P. D., Stumpf C. L., Shockcor J. P. et al. Novel application of reversed-phase UPLC-oaTOF-MS for lipid analysis in complex biological mixtures:a newtool for lipidomics[J]. J Proteome Res,2007,6(2):552-558.
    [52] Lindon J. C., Holmes E., Nicholson J. K. Metabonomics in pharmaceutical R&D[J].FEBS J,2007,274(5):1140-1151.
    [53] Dumas M. E. Metabolome2.0:quantitative genetics and network biology ofmetabolic phenotypes[J]. Mol Biosyst,2012,8(10):2494-2502.
    [54] Lindon J. C., Holmes E., Nicholson J. K. Metabonomics techniques and applicationsto pharmaceutical research&development[J]. Pharm Res,2006,23(6):1075-1088.
    [55] Keun H. C. Biomarker discovery for drug development and translational medicineusing metabonomics[J]. Ernst Schering Found Symp Proc,2007(4):79-98.
    [56] Keun H. C., Athersuch T. J. Nuclear magnetic resonance(NMR)-basedmetabolomics[J]. Methods Mol Biol,2011,708:321-334.
    [57] Keun H. C., Athersuch T. J. Application of metabonomics in drug development[J].Pharmacogenomics,2007,8(7):731-741.
    [58] Nicholson J. K., Wilson I. D. Opinion:understanding 'global' systems biology:metabonomics and the continuum of metabolism[J]. Nat Rev Drug Discov,2003,2(8):668-676.
    [59] Dumas M. E., Wilder S. P., Bihoreau M. T. et al. Direct quantitative trait locusmapping of mammalian metabolic phenotypes in diabetic and normoglycemic ratmodels[J]. Nat Genet,2007,39(5):666-672.
    [60] Yang J., Xu G., Hong Q. et al. Discrimination of Type2diabetic patients fromhealthy controls by using metabonomics method based on their serum fatty acidprofiles[J]. J Chromatogr B Analyt Technol Biomed Life Sci,2004,813(1-2):53-58.
    [61] Zhao X., Fritsche J., Wang J. et al. Metabonomic fingerprints of fasting plasma andspot urine reveal human pre-diabetic metabolic traits[J]. Metabolomics,2010,6(3):362-374.
    [62] Williams R. E., Lenz E. M., Lowden J. S. et al. The metabonomics of aging anddevelopment in the rat:an investigation into the effect of age on the profile ofendogenous metabolites in the urine of male rats using1H NMR and HPLC-TOFMS[J]. Mol Biosyst,2005,1(2):166-175.
    [63]买提哈斯木吾·布力艾山.维医四大物质和合立体(体液)与化学元素关系初探[J].中国民族医药杂志,2010(8):7-9.
    [64]哈木拉提·吾甫尔,阿衣努尔·买提斯迪克.维医异常体液病证诊断及其用方规范(中国民族医药协会颁布)[J].新疆医科大学学报,2012(12)
    [65]哈木拉提·吾甫尔,艾斯卡尔·依米提,伊力哈木江·沙比提等.血管紧张素转移酶Ace基因多态性与维医异常黑胆质的关系[J].第四军医大学学报,2003(11)
    [66]哈木拉提·吾甫尔,努尔买买提·艾买提,阿地里江·阿布力米提等.异常黑胆质载体动物模型的下丘脑-垂体-肾上腺轴功能紊乱的物质基础研究[J].中国中医基础医学杂志,2007(9):670-672.
    [67]热娜古丽·艾则孜,沙吉达·阿不都热衣木,金伟等.复杂性疾病异常黑胆质证及其血栓前状态的研究[J].中国中医基础医学杂志,2008(8):614-615.
    [68]帕丽旦·麦麦提.维吾尔医异常黑胆质性糖尿病病症模型代谢组学研究[D]:新疆医科大学,2011.
    [69]巴吐尔·买买提明,阿仙姑·哈斯木,陈春丽等.基于不同模式识别方法的大鼠尿液核磁共振氢谱分析[J].新疆医科大学学报,2010(7):755-757.
    [70]巴吐尔·买买提明,哈木拉提·吾甫尔,豪富华.异常黑胆质型与非异常黑胆质型肿瘤患者血浆代谢组学差异分析[J].科技导报,2009(20)
    [71]罗国安,梁琼麟,王义明等.中医药系统生物学发展及展望[J].中国天然药物,2009(4):242-248.
    [72]李海静,吴胜明,方均建等.气质联用法测定人血清游离脂肪酸[J].质谱学报,2009(2):83-87.
    [73]曾瑞峰.基于反相高效液相的方法研究心衰心阳虚证患者血浆氨基酸指纹图谱
    [D]:广州中医药大学,2010.
    [74]. Metabolomic studies of experimental diabetic urine samples by1H-NMRspectroscopy and LC/MS method[J]
    [75] Dove A. D., Leisen J., Zhou M. et al. Biomarkers of whale shark health:ametabolomic approach[J]. PLoS One,2012,7(11):e49379.
    [76] Nemoto T.[Urine metabolomics:comprehensive analysis by NMR-metabolicprofiling][J]. Nihon Jinzo Gakkai Shi,2010,52(4):489-494.
    [77] Davis V. W., Schiller D. E., Eurich D. et al. Urinary metabolomic signature ofesophageal cancer and Barrett's esophagus[J]. World J Surg Oncol,2012,10(1):271.
    [78] Zhang T., Wu X., Ke C. et al. Identification of potential biomarkers for ovariancancer by urinary metabolomic profiling[J]. J Proteome Res,2013,12(1):505-512.
    [79] Zhang S., Nagana Gowda GA, Asiago V. et al. Correlative and quantitative1HNMR-based metabolomics reveals specific metabolic pathway disturbances indiabetic rats[J]. Anal Biochem,2008,383(1):76-84.
    [80] Faber J. H., Malmodin D., Toft H. et al. Metabonomics in diabetes research[J]. JDiabetes Sci Technol,2007,1(4):549-557.
    [81] Hodavance M. S., Ralston S. L., Pelczer I. Beyond blood sugar:the potential ofNMR-based metabonomics for type2human diabetes, and the horse as a possiblemodel[J]. Anal Bioanal Chem,2007,387(2):533-537.
    [82] Jin E. S., Burgess S. C., Merritt M. E. et al. Differing mechanisms of hepatic glucoseoverproduction in triiodothyronine-treated rats vs. Zucker diabetic fatty rats byNMR analysis of plasma glucose[J]. Am J Physiol Endocrinol Metab,2005,288(4):E654-E662.
    [83] plasma metabonomic analysis with1H nuclear magnetic resonance revealing therelationship of different tumors and the disease homology theory of traditionaluyghur medicine[J]
    [84] Lu X. Y., Xu H., Li G. et al. Study on correspondence between prescription andsyndrome and the essence of phlegm and blood stasis syndrome in coronary heartdisease based on metabonomics[J]. Chin J Integr Med,2012
    [85] Salek R. M., Maguire M. L., Bentley E. et al. A metabolomic comparison of urinarychanges in type2diabetes in mouse, rat, and human[J]. Physiol Genomics,2007,29(2):99-108.
    [86] Griffin J. L., Salek R. M. Metabolomic applications to neuroscience:more challengesthan chances?[J]. Expert Rev Proteomics,2007,4(4):435-437.
    [87] Griffin J. L., Atherton H. J., Steinbeck C. et al. A Metadata description of the data in"A metabolomic comparison of urinary changes in type2diabetes in mouse, rat,and human."[J]. BMC Res Notes,2011,4:272.
    [88] Multivariate classification analysis of metabolomic data for candidate biomarkerdiscovery in type2diabetes mellitus[J]
    [89] R M. Salek.A metabolomic comparison of urinary changes in type2diabetes inmouse, rat, and human [J] Physiological Genomics,2013(30):1259-1262.
    [90] Wang Y., Bollard M. E., Keun H. et al. Spectral editing and pattern recognitionmethods applied to high-resolution magic-angle spinning1H nuclear magneticresonance spectroscopy of liver tissues[J]. Anal Biochem,2003,323(1):26-32.
    [91] Holmes E., Foxall P. J., Nicholson J. K. et al. Automatic data reduction and patternrecognition methods for analysis of1H nuclear magnetic resonance spectra ofhuman urine from normal and pathological states[J]. Anal Biochem,1994,220(2):284-296.
    [92] Gartland K. P., Beddell C. R., Lindon J. C. et al. Application of pattern recognitionmethods to the analysis and classification of toxicological data derived from protonnuclear magnetic resonance spectroscopy of urine[J]. Mol Pharmacol,1991,39(5):629-642.
    [93] Eriksson L., Antti H., Gottfries J. et al. Using chemometrics for navigating in thelarge data sets of genomics, proteomics, and metabonomics(gpm)[J]. Anal BioanalChem,2004,380(3):419-429.
    [94] Lindon J. C., Nicholson J. K., Holmes E. et al. Summary recommendations forstandardization and reporting of metabolic analyses[J]. Nat Biotechnol,2005,23(7):833-838.
    [95] Grootveld M., Silwood C. J.1H NMR analysis as a diagnostic probe for humansaliva[J]. Biochem Biophys Res Commun,2005,329(1):1-5.
    [96] Yoon M. S., Jankowski V., Montag S. et al. Characterisation of advanced glycationendproducts in saliva from patients with diabetes mellitus[J]. Biochem Biophys ResCommun,2004,323(2):377-381.
    [97] Dumas M. E., Canlet C., Debrauwer L. et al. Selection of biomarkers by amultivariate statistical processing of composite metabonomic data sets usingmultiple factor analysis[J]. J Proteome Res,2005,4(5):1485-1492.
    [98] Kell D. B. Metabolomics and machine learning:explanatory analysis of complexmetabolome data using genetic programming to produce simple, robust rules[J].Mol Biol Rep,2002,29(1-2):237-241.
    [99] Boccard J., Rutledge D. N. A consensus orthogonal partial least squares discriminantanalysis(OPLS-DA)strategy for multiblock Omics data fusion[J]. Anal Chim Acta,2013,769:30-39.
    [100]Vajargah K. F., Sadeghi-Bazargani H., Mehdizadeh-Esfanjani R. et al. OPLSstatistical model versus linear regression to assess sonographic predictors of strokeprognosis[J]. Neuropsychiatr Dis Treat,2012,8:387-392.
    [101]Paulechka E., Kroenlein K., Kazakov A. et al. A systematic approach fordevelopment of an OPLS-like force field and its application to hydrofluorocar-bons[J]. J Phys Chem B,2012,116(49):14389-14397.
    [102]Rance M., Sorensen O. W., Bodenhausen G. et al. Improved spectral resolution inCOSY(1)H NMR spectra of proteins via double quantum filtering.1983[J].Biochem Biophys Res Commun,2012,425(3):527-533.
    [103]Aguilar J. A., Colbourne A. A., Cassani J. et al. Decoupling two-dimensional NMRspectroscopy in both dimensions:pure shift NOESY and COSY[J]. Angew ChemInt Ed Engl,2012,51(26):6460-6463.
    [104]Sandusky P., Appiah-Amponsah E., Raftery D. Use of optimized1D TOCSY NMRfor improved quantitation and metabolomic analysis of biofluids[J]. J Biomol NMR,2011,49(3-4):281-290.
    [105]Michaliszyn S. F., Sjaarda L. A., Mihalik S. J. et al. Metabolomic profiling ofamino acids and beta-cell function relative to insulin sensitivity in youth[J]. J ClinEndocrinol Metab,2012,97(11):E2119-E2124.
    [106]Wang C., Feng R., Sun D. et al. Metabolic profiling of urine in young obese menusing ultra performance liquid chromatography and Q-TOF mass spectrometry(UPLC/Q-TOF MS)[J]. J Chromatogr B Analyt Technol Biomed Life Sci,2011,879(27):2871-2876.
    [107]Wang T. J., Larson M. G., Vasan R. S. et al. Metabolite profiles and the risk ofdeveloping diabetes[J]. Nat Med,2011,17(4):448-453.
    [108]Kim O. Y., Lee J. H., Sweeney G. Metabolomic profiling as a useful tool fordiagnosis and treatment of chronic disease:focus on obesity, diabetes andcardiovascular diseases[J]. Expert Rev Cardiovasc Ther,2013,11(1):61-68.
    [109]蒋海强,马斌,聂磊等.高血压病肝阳上亢证患者尿液样品的核磁共振谱代谢组学研究[J].浙江中医药大学学报,2011(5):662-664.
    [110]巴吐尔·买买提明,买买提·艾买提,阿仙姑·哈斯木等.核磁共振技术测试不同性别大鼠尿液代谢物的研究[J].分析测试技术与仪器,2010(3):75-79.
    [111]杜智勇,沈安娜,亮苏等.基于1H-NMR的模式识别方法在慢性心力衰竭患者血清代谢组学中的应用[J].南方医科大学学报,2012(3):127-133.
    [112]蒋怀周.基于1H_NMR技术对Wilson病模型大鼠及其中_西药干预比较的代谢组学研究[D]:湖北中医药大学,2010
    [113]吴泽明,赵春霞,许国旺等.基于液相色谱质谱联用系统的维吾尔医异常黑胆质证哮喘病的血清代谢组学研究[J].世界科学技术(中医药现代化),2009(1):134-141.
    [114]Makinen V. P., Soininen P., Forsblom C. et al. Diagnosing diabetic nephropathy by1H NMR metabonomics of serum[J]. MAGMA,2006,19(6):281-296.
    [115]D'Adamo P., Ulivi S., Beneduci A. et al. Metabonomics and populationstudies:age-related amino acids excretion and inferring networks through the studyof urine samples in two Italian isolated populations[J]. Amino Acids,2010,38(1):65-73.
    [116]温锦波,杨叔禹,肖娴等.基于核磁共振的代谢组学数据预处理[J].厦门大学学报(自然科学版),2007(6):783-787.
    [117]王伟,毛新民,冉新建等.新疆维哈两民族糖尿病人群尿液代谢成分特征的初步研究[J].新疆医科大学学报,2010(10):1157-1161.
    [118]Suhre K., Wallaschofski H., Raffler J. et al. A genome-wide association study ofmetabolic traits in human urine[J]. Nat Genet,2011,43(6):565-569.
    [119]Suhre K., Meisinger C., Doring A. et al. Metabolic footprint of diabetes:amultiplatform metabolomics study in an epidemiological setting[J]. PLoS One,2010,5(11):e13953.
    [120]Suhre K., Gieger C. Genetic variation in metabolic phenotypes:study designs andapplications[J]. Nat Rev Genet,2012,13(11):759-769.
    [121]Chen J., Zhao X., Fritsche J. et al. Practical approach for the identification andisomer elucidation of biomarkers detected in a metabonomic study for the discoveryof individuals at risk for diabetes by integrating the chromatographic and massspectrometric information[J]. Anal Chem,2008,80(4):1280-1289.
    [122]Zhao X., Fritsche J., Wang J. et al. Metabonomic fingerprints of fasting plasma andspot urine reveal human pre-diabetic metabolic traits[J]. Metabolomics,2010,6(3):362-374.
    [123]Schrocksnadel K., Widner B., Bergant A. et al. Tryptophan degradation during andafter gestation[J]. Adv Exp Med Biol,2003,527:77-83.
    [124]Bala M. M., Placzkiewicz-Jankowska E., Topor-Madry R. et al. Is newly diagnosedtype2diabetes treated according to the guidelines? Results of the PolishARETAEUS1study[J]. Pol Arch Med Wewn,2011,121(1-2):7-17.
    [125]Jaeschke H., McGill M. R., Ramachandran A. Pathophysiological relevance ofproteomics investigations of drug-induced hepatotoxicity in HepG2cells[J].Toxicol Sci,2011,121(2):428-430,431-433.
    [126]热娜古丽·艾则孜,沙吉达·阿不都热衣木,金伟等.复杂性疾病异常黑胆质证及其血栓前状态的研究[J].中国中医基础医学杂志,2008(8):614-615.
    [127]. Griffin J L,Walker L A,Shore R F. Metabolic profiling of chronic cadmiumexposure in the rat[J]. Chem Res Toxicol,2001,14(10):1428-1434.
    [128]D'Adamo P., Ulivi S., Beneduci A. et al. Metabonomics and populationstudies:age-related amino acids excretion and inferring networks through the studyof urine samples in two Italian isolated populations[J]. Amino Acids,2010,38(1):65-73.
    [129]. Huaixue Kuang,et al.Metabonomics research of the four properties in traditionalchinese medicine based on uplc qtof ms system[J].Recent Advanced theries andpractice of chinese medicine.
    [130]Reynolds W. F., Enriquez R. G. Choosing the best pulse sequences, acquisitionparameters, postacquisition processing strategies, and probes for natural productstructure eluc,idation by NMR spectroscopy[J]. J Nat Prod,2002,65(2):221-244.
    [131]Breton R. C., Reynolds W. F. Using NMR to identify and characterize naturalproducts[J]. Nat Prod Rep,2013,30(4):501-524.
    [132]Zhang J., Yan L., Chen W. et al. Metabonomics research of diabetic nephropathyand type2diabetes mellitus based on UPLC-oaTOF-MS system[J]. Anal ChimActa,2009,650(1):16-22.
    [133]. Yang LL; Zhu SB,et al. A Comparative Study of Elution Gradients in UPLC-TOF-MS-Based Metabonomics[J]. Chromatographia(72):807-813.
    [134]Verma M. K., Najar I. A., Tikoo M. K. et al. Development of a validated UPLC-qTOF-MS Method for the determination of curcuminoids and their pharmacokineticstudy in mice[J]. Daru,2013,21(1):11.
    [135]Wang Y., He S., Cheng X. et al. UPLC-Q-TOF-MS/MS fingerprinting ofTraditional Chinese Formula SiJunZiTang[J]. J Pharm Biomed Anal,2013,80C:24-33.
    [136]D'Avolio A., De Nicolo A., Agnesod D. et al. A UPLC-MS/MS method for thesimultaneous plasma quantification of all isomeric forms of the new anti-HCVprotease inhibitors boceprevir and telaprevir[J]. J Pharm Biomed Anal,2013,78-79C:217-223.
    [137]Jin C., Yan C., Luo Y. et al. Fast and direct quantification of underivatized musconeby UPLC-ELSD[J]. J Sep Sci,2013
    [138]Yao X., Zhou G., Tang Y. et al. A UPLC-MS/MS Method for Qualification ofQuercetin-3-O-beta-D-glucopyranoside-(4(R)1)-alpha-L-rhamnoside in Rat Plasmaand Application to Pharmacokinetic Studies[J]. Molecules,2013,18(3):3050-3059.
    [139]Wilson P. W., D'Agostino R. B., Parise H. et al. Metabolic syndrome as a precursorof cardiovascular disease and type2diabetes mellitus[J]. Circulation,2005,112(20):3066-3072.
    [140]齐小城,章弘扬,梁琼麟等.液质联用技术及其在代谢组学研究中的应用[J].中成药,2009(1):106-112.
    [141]蒋海强,李运伦,解君.基于高效液相色谱-电喷雾-飞行时间质谱联用技术的高血压病血浆代谢组学分析[J].山东大学学报(医学版),2011(10):150-154.
    [142]蒋海强,李运伦,解君.基于高效液相色谱-飞行时间质谱技术的高血压病肝阳上亢证尿液代谢组学研究[J].微循环学杂志,2011(2):97.
    [143]蒋海强,李运伦,解君.基于高效液相色谱-飞行时间质谱技术的高血压病肝阳上亢证尿液代谢组学研究[J].中国中西医结合杂志,2012(3):333-337.
    [144]赵素敏,郑虹,路鑫等.基于液相色谱与质谱联用的代谢组学及磷脂轮廓分析在糖代谢异常研究中的应用[J].色谱,2011(4):307-313.
    [145]刘双梅,李桂林,汤晓丽等.甲基莲心碱对2型糖尿病模型大鼠作用的代谢组学研究[J].中国药理学通报,2012(4)
    [146]谢世平,马素娜,刘伟等.基于液质联用技术艾滋病病毒携带者艾滋病患者脾肺气虚证者尿液的代谢组学研究[J].环球中医药,2011(6):429-433.
    [147]邵雪.采用超高效液相色谱质谱联用技术区分肝细胞癌和肝硬化患者的代谢组学概况[J].临床肝胆病杂志,2012(3):229-232.
    [148]Wishart D. S., Tzur D., Knox C. et al. HMDB:the Human Metabolome Database[J].Nucleic Acids Res,2007,35(Database issue):D521-D526.
    [149]Wishart D. S., Knox C., Guo A. C. et al. HMDB:a knowledgebase for the humanmetabolome[J]. Nucleic Acids Res,2009,37(Database issue):D603-D610.
    [150]Wishart D. S., Jewison T., Guo A. C. et al. HMDB3.0--The Human MetabolomeDatabase in2013[J]. Nucleic Acids Res,2013,41(Database issue):D801-D807.
    [151]Musumarra G., Condorelli D. F., Fortuna C. G. OPLS-DA as a suitable method forselecting a set of gene transcripts discriminating RAS-and PTPN11-mutated cellsin acute lymphoblastic leukaemia[J]. Comb Chem High Throughput Screen,2011,14(1):36-46.
    [152]Vajargah K. F., Sadeghi-Bazargani H., Mehdizadeh-Esfanjani R. et al. OPLSstatistical model versus linear regression to assess sonographic predictors of strokeprognosis[J]. Neuropsychiatr Dis Treat,2012,8:387-392.
    [153]Frey H. A., Macones G. A., Allsworth J. et al. Metabolomic prediction of late-onsetpreeclampsia:Bahado-Singh et al[J]. Am J Obstet Gynecol,2013,208(1):87-88.
    [154]沈国庆.基于动物肿瘤模型的LC-MS/MS代谢组学及药物代谢组学方法研究
    [D]:北京协和医学院,2011.
    [155]Quantitative Metabolomics by1H-NMR and LC-MS/MS Confirms AlteredMetabolic Pathways in Diabetes[J]
    [156]Yue R., Zhao L., Hu Y. et al. Rapid-resolution liquid chromatography TOF-MS forurine metabolomic analysis of collagen-induced arthritis in rats and itsapplications[J]. J Ethnopharmacol,2013,145(2):465-475.
    [157]Godzien J., Ciborowski M., Angulo S. et al. Metabolomic approach with LC-QTOFto study the effect of a nutraceutical treatment on urine of diabetic rats[J]. JProteome Res,2011,10(2):837-844.
    [158]Dinarello C. A. Mutations in cryopyrin:bypassing roadblocks in the caspase1inflammasome for interleukin-1beta secretion and disease activity[J]. ArthritisRheum,2007,56(9):2817-2822.
    [159]Dinarello C. A. Historical insights into cytokines[J]. Eur J Immunol,2007,37Suppl1:S34-S45.
    [160]Matsuzaka T., Shimano H., Yahagi N. et al. Crucial role of a long-chain fatty acidelongase, Elovl6, in obesity-induced insulin resistance[J]. Nat Med,2007,13(10):1193-1202.
    [161]Michaliszyn S. F., Sjaarda L. A., Mihalik S. J. et al. Metabolomic profiling ofamino acids and beta-cell function relative to insulin sensitivity in youth[J]. J ClinEndocrinol Metab,2012,97(11):E2119-E2124.
    [162]血液氨基酸水平预示糖尿病风险可提前10年预测[J].今日药学,2011(3):166.
    [163]McCormack S. E., Shaham O., McCarthy M. A. et al. Circulating branched-chainamino acid concentrations are associated with obesity and future insulin resistancein children and adolescents[J]. Pediatr Obes,2013,8(1):52-61.
    [164]Cheng J. S., Liang Y. Q., Ding M. Z. et al. Metabolic analysis reveals the aminoacid responses of Streptomyces lydicus to pitching ratios during improvingstreptolydigin production[J]. Appl Microbiol Biotechnol,2013
    [165]Kister A. E., Potapov V. Amino acid distribution rules predict protein fold[J].Biochem Soc Trans,2013,41(2):616-619.
    [166]Gatti R., Gioia M. G. Liquid chromatographic fluorescence determination of aminoacids in plasma and urine after derivatization with phanquinone[J]. BiomedChromatogr,2008,22(2):207-213.
    [167]Kaur P., Rizk N., Ibrahim S. et al. Quantitative metabolomic and lipidomic profilingreveals aberrant amino acid metabolism in type2diabetes[J]. Mol Biosyst,2013,9(2):307-317.
    [168]Wang T. J., Larson M. G., Vasan R. S. et al. Metabolite profiles and the risk ofdeveloping diabetes[J]. Nat Med,2011,17(4):448-453.
    [169]Yang J., Chi Y., Burkhardt B. R. et al. Leucine metabolism in regulation of insulinsecretion from pancreatic beta cells[J]. Nutr Rev,2010,68(5):270-279.
    [170]Morris C., O'Grada C., Ryan M. et al. The relationship between BMI andmetabolomic profiles:a focus on amino acids[J]. Proc Nutr Soc,2012,71(4):634-638.
    [171]. pendent amino acid metabolism by linking free amino acids with transcriptionalprofiles through analysis of correlation[2].[J]
    [172]宣柳,沈佐君,何晓东等.高效毛细管电泳测定海马组织和脑脊液中氨基酸类神经递质[J].检验医学,2007(3):324-328.
    [173]Hara K., Uenishi E., Ishii C. et al.[Determination of plasma free amino acids byhigh performance liquid chromatography(2). Fluctuations of plasma free aminoacid levels in liver diseases][J]. Rinsho Byori,1982,30(8):917-922.
    [174]Jiang Z., Liang Q., Luo G. et al. HPLC-electrospray tandem mass spectrometry forsimultaneous quantitation of eight plasma aminothiols:application to studies ofdiabetic nephropathy[J]. Talanta,2009,77(4):1279-1284.
    [175]王文辉,杨俊,王齐等. UPLC测定烟叶中的氨基酸含量[J].光谱实验室,2010(5):1920-1924.
    [176]刘婷,姜金斗,刘宁. HPLC-OPA柱后衍生离子交换法对乳粉中掺水解动物蛋白检测方法的研究[J].食品工业科技,2007(7):207-209.
    [177]刘丽敏,王海敏,虞海霞等.柱前衍生反相高效液相色谱法测定西洋参中游离氨基酸[J].中成药,2009(2):275-278.
    [178]杨菁,孙黎光,白秀珍等.异硫氰酸苯酯柱前衍生化反相高效液相色谱法同时测定18种氨基酸[J].色谱,2002(4):369-371.
    [179]于学娟,贺晶,杨爱华等.氨基酸柱前衍生高效液相色谱分析中色谱条件的优化[J].中国调味品,2011(6):87-89.
    [180]牟德海. OPA柱前衍生反相高效液相色谱法测定氨基酸含量[J].色谱,1997(4):49-51.
    [181]陈日来,陈得光,任斌等. RP-HPLC法测定正常人血浆中14种氨基酸[J].华西药学杂志,1999(3):18-21.
    [182]郭伟忠杨扬秦强.苯基异硫氰酸酯衍生氨基酸的高效液相色谱分析[J].色谱,1994(4):295-296.
    [183]黄松,王杰,丁婕等.三七中十八种游离氨基酸的柱前衍生化-HPLC法测定[J].中国医药工业杂志,2011(1):54-56.
    [184]阳利龙,祝文兵,何周康.柱前衍生反相高效液相色谱法测定人血清中游离氨基酸[J].儿科药学杂志,2010(6):25-27.
    [185]刘惠文.柱前和柱后衍生高效液相色谱分析氨基酸方法进展与评述[J].氨基酸和生物资源,1995(2):50-55.
    [186]诸葛庆,李博斌,周牡艳等.柱后衍生-高效液相色谱法测定青稞黄酒中的18种氨基酸[J].酿酒科技,2010(6):94-96.
    [187]杨俊,王文辉,李翼等.柱前衍生超高效液相色谱法测定核桃仁中的氨基酸含量[J].食品与发酵工业,2011(2):182-185.
    [188]李玉玲,李庆忠,王兆君等. AQC柱前衍生高效液相色谱法测定血浆中谷氨酸[J].滨州医学院学报,2010(5):345-347.
    [189]曹芳,吴隼,许弟群等. AQC柱前衍生荧光检测短小棒状杆菌水解液中氨基酸的研究[J].漳州师范学院学报(自然科学版),2006(3):73-77.
    [190]王亚超,曹玲,王玉. AQC柱前衍生高效液相色谱法测定胃乐宁片中游离氨基酸[J].中国生化药物杂志,2011(4):300-303.
    [191]王亚超,曹玲,王玉. AQC柱前衍生高效液相色谱法测定胃乐宁片中游离氨基酸[J].中国生化药物杂志,2011(4):300-303.
    [192]袁耀佐,杭太俊,纪宇等.柱前衍生化反相高效液相色谱法测定大蒜中的蒜氨酸及其有关物质[J].色谱,2008(2):242-245.
    [193]高晓燕,苏建坤,王雪等.异硫氰酸苯酯法测定清开灵注射液中氨基酸的含量[J].北京中医药大学学报,2012(8):554-558.
    [194]钟其顶,高红波,熊正河等. PITC柱前衍生高效液相色谱法测定黄酒中17种氨基酸方法研究[J].酿酒,2010(5):74-76.
    [195]杨菁,孙黎光,白秀珍等.异硫氰酸苯酯柱前衍生化反相高效液相色谱法同时测定18种氨基酸[J].色谱,2002(4):369-371.
    [196]徐飞,谭乐和,陈鹏等. OPA-FMOC柱前衍生反相高效液相测定糯米香茶叶片中的氨基酸[J].热带作物学报,2012(8):1482-1486.
    [197]苏建坤,王雪,卢建秋等. OPA-FMOC在线衍生化法测定氨基酸的含量[J].中国实验方剂学杂志,2012(15):135-138.
    [198]杜振华,张磊,刘树业.血清代谢轮廓分析在评估乙肝肝硬化病程中的应用[J].分析化学,2011(8):1279-1283.
    [199]斯日古楞,张志贤.不同肝胆病人胆汁的UFLC-MS代谢轮廓分析[J].内蒙古医学院学报,2008:34-36.
    [200]杨晶,陆伟,邹满意等.荷肝癌小鼠血浆和肿瘤组织游离氨基酸代谢变化及其与肿瘤体积相关性研究[J].实用肝脏病杂志,2006(1):22-24.
    [201].李影.高效液相色谱_荧光法同时测定慢性肾功能不全患者血清中芳香族氨基酸[D].
    [202]Xia J. F., Liang Q. L., Liang X. P. et al. Ultraviolet and tandem mass spectrometryfor simultaneous quantification of21pivotal metabolites in plasma from patientswith diabetic nephropathy[J]. J Chromatogr B Analyt Technol Biomed Life Sci,2009,877(20-21):1930-1936.
    [203]Kihlberg R., Sterner G., Wennberg A. et al. Plasma free amino acid levels in uremicrats given high and low protein diets or intravenous infusions of amino acidsolutions[J]. J Nutr,1982,112(11):2058-2070.
    [204]Guy P. A., Tavazzi I., Bruce S. J. et al. Global metabolic profiling analysis onhuman urine by UPLC-TOFMS:issues and method validation in nutritionalmetabolomics[J]. J Chromatogr B Analyt Technol Biomed Life Sci,2008,871(2):253-260.
    [205]YasushiNoguchi,NahokoShikata,etal.Characterization of dietary protein-dependentamino acid metabolism by linking free amino acids with transcriptional profilesthrough analysis of correlation.[J].J Physiol Genomics.2008,34:315-3326.
    [206]Mann G. E., Smith S. A., Norman P. S. et al. Fasting, refeeding and diabetesmodulate free amino acid concentrations in the rat exocrine pancreas:role oftransstimulation in amino acid efflux[J]. Pancreas,1988,3(1):67-76.
    [207]Grigor'Eva L. P., Stroev E. A., Dubinina I. I.[Free amino acid spectrum andcathepsin activity in the blood serum of patients with diabetes mellitus combinedwith diffuse toxic goiter][J]. Probl Endokrinol(Mosk),1982,28(3):13-16.
    [208]Bodnar P. N.[Changes in serum free amino acid concentration in diabetes mellituspatients undergoing treatment][J]. Ter Arkh,1971,43(8):103-105.
    [209]Wu Z. Y., Li C. Y., Guo X. L. et al. Nanofracture on fused silica microchannel forDonnan exclusion based electrokinetic stacking of biomolecules[J]. Lab Chip,2012,12(18):3408-3412.
    [210]韩晓菲,黄宇虹,王龙星等.血浆氨基酸代谢谱与糖尿病相关性研究[J].分析化学,2010(5):697-701.
    [211]余爱琴,冯旺新,麦坤仪等.糖尿病患者血清氨基酸含量的变化[J].广州医学院学报,1990(4):48-51.
    [212]朱振声,刘春兰,毕春元等.糖尿病患者血清游离氨基酸的测定分析[J].山东科学,1997(2):28-30.
    [213]Pflueger M., Seppanen-Laakso T., Suortti T. et al. Age-and islet autoimmunity-associated differences in amino acid and lipid metabolites in children at risk fortype1diabetes[J]. Diabetes,2011,60(11):2740-2747.
    [214]Mihalik S. J., Michaliszyn S. F., de Las Heras J. et al. Metabolomic profiling offatty acid and amino acid metabolism in youth with obesity and type2diabetes:evidence for enhanced mitochondrial oxidation[J]. Diabetes Care,2012,35(3):605-611.
    [215]Visser J. T., Bos N. A., Harthoorn L. F. et al. Potential mechanisms explaining whyhydrolyzed casein-based diets outclass single amino acid-based diets in theprevention of autoimmune diabetes in diabetes-prone BB rats[J]. Diabetes MetabRes Rev,2012,28(6):505-513.
    [216]Magnusson M., Lewis G. D., Ericson U. et al. A diabetes-predictive amino acidscore and future cardiovascular disease[J]. Eur Heart J,2012
    [217]Ito T., Schaffer S. W., Azuma J. The potential usefulness of taurine on diabetesmellitus and its complications[J]. Amino Acids,2012,42(5):1529-1539.
    [218]Murakami S., Sakurai T., Tomoike H. et al. Prevention of hypercholesterolemia andatherosclerosis in the hyperlipidemia-and atherosclerosis-prone Japanese (LAP)quail by taurine supplementation[J]. Amino Acids,2010,38(1):271-278.
    [219]Imae M., Asano T., Murakami S. Potential role of taurine in the prevention ofdiabetes and metabolic syndrome[J]. Amino Acids,2012:1350-1355.
    [220]El Agouza IM, Eissa S. S., El Houseini MMet al. Taurine:a novel tumor marker forenhanced detection of breast cancer among female patients[J]. Angiogenesis,2011,14(3):321-330.
    [221]Wojcik O. P., Koenig K. L., Zeleniuch-Jacquotte A. et al. The potential protectiveeffects of taurine on coronary heart disease[J]. Atherosclerosis,2010,208(1):19-25.
    [222]Rahman M. M., Park H. M., Kim S. J. et al. Taurine prevents hypertension andincreases exercise capacity in rats with fructose-induced hypertension[J]. Am JHypertens,2011,24(5):574-581.
    [223]Schaffer S. W., Azuma J., Mozaffari M. Role of antioxidant activity of taurine indiabetes[J]. Can J Physiol Pharmacol,2009,87(2):91-99.
    [224]Franconi F., Di Leo M. A., Bennardini F. et al. Is taurine beneficial in reducing riskfactors for diabetes mellitus?[J]. Neurochem Res,2004,29(1):143-150.
    [225]Mikami N., Hosokawa M., Miyashita K. Dietary combination of fish oil and taurinedecreases fat accumulation and ameliorates blood glucose levels in type2diabetic/obese KK-A(y)mice[J]. J Food Sci,2012,77(6):H114-H120.
    [226]Rebrin K., Steil G. M., Getty L. et al. Free fatty acid as a link in the regulation ofhepatic glucose output by peripheral insulin[J]. Diabetes,1995,44(9):1038-1045.
    [227]Mo X. L., Wei H. K., Peng J. et al. Free fatty acid receptor GPR120andpathogenesis of obesity and type2diabetes mellitus[J]. Prog Mol Biol Transl Sci,2013,114:251-276.
    [228]Li Y. X., Zeng J. B., Yu K. et al. Beneficial effects of a diabetes specific formula oninsulin sensitivity and free fatty acid in patients with type2diabetes mellitus[J].Chin Med J(Engl),2008,121(8):691-695.
    [229]Liu L., Li Y., Guan C. et al. Free fatty acid metabolic profile and biomarkers ofisolated post-challenge diabetes and type2diabetes mellitus based on GC-MS andmultivariate statistical analysis[J]. J Chromatogr B Analyt Technol Biomed Life Sci,2010,878(28):2817-2825.
    [230]Serlie M. J., Allick G., Groener J. E. et al. Chronic treatment with pioglitazone doesnot protect obese patients with diabetes mellitus type II from free fatty acid-inducedinsulin resistance[J]. J Clin Endocrinol Metab,2007,92(1):166-171.
    [231]Isley W. L., Harris W. S., Miles J. M. The effect of high-dose simvastatin on freefatty acid metabolism in patients with type2diabetes mellitus[J]. Metabolism,2006,55(6):758-762.
    [232]Schmitz O., Juhl C. B., Hollingdal M. et al. Irregular circulating insulin concentra-tions in type2diabetes mellitus:an inverse relationship between circulating freefatty acid and the disorderliness of an insulin time series in diabetic and healthyindividuals[J]. Metabolism,2001,50(1):41-46.
    [233]Greco A. V.,mingrone G., Capristo E. et al. Effects of dexfenfluramine on free fattyacid turnover and oxidation in obese patients with type2diabetes mellitus[J].Metabolism,1995,44(2Suppl2):57-61.
    [234]Monti L. D., Lucotti P. C., Setola E. et al. Effects of chronic elevation of atrialnatriuretic peptide and free fatty acid levels in the induction of type2diabetesmellitus and insulin resistance in patients with mitral valve disease[J]. Nutr MetabCardiovasc Dis,2012,22(1):58-65.
    [235]Mo X. L., Wei H. K., Peng J. et al. Free fatty acid receptor GPR120andpathogenesis of obesity and type2diabetes mellitus[J]. Prog Mol Biol Transl Sci,2013,114:251-276.
    [236]Tang J. Z., Mao J. P., Yang Z. F. et al.[Effects of glimepiride and metformin on freefatty acid in patients with Type2diabetes mellitus][J]. Zhong Nan Da Xue XueBao Yi Xue Ban,2004,29(6):631-634.
    [237]Hejazi L., Ebrahimi D., Guilhaus M. et al. Determination of the composition offatty acid mixtures using GC x FI-MS:a comprehensive two-dimensional separationapproach[J]. Anal Chem,2009,81(4):1450-1458.
    [238]Bondia-Pons I., Molto-Puigmarti C., Castellote A. I. et al. Determination ofconjugated linoleic acid in human plasma by fast gas chromatography[J]. JChromatogr A,2007,1157(1-2):422-429.
    [239]Barnsteiner A., Lubinus T., di Gianvito A. et al. GC-based analysis of plant stanylfatty acid esters in enriched foods[J]. J Agric Food Chem,2011,59(10):5204-5214.
    [240]Yuan K., Kong H., Guan Y. et al. A GC-based metabonomics investigation of type2diabetes by organic acids metabolic profile[J]. J Chromatogr B Analyt TechnolBiomed Life Sci,2007,850(1-2):236-240.
    [241]徐文娟,黄宇虹,王龙星等.血浆游离脂肪酸代谢轮廓柱前衍生定量方法在糖尿病患者中医虚证分型中的应用[J].色谱,2010(6):547-550.
    [242]邹晓春徐小作李行方李红华.气相色谱法检测人血清中7种游离脂肪酸的研究[J].实用预防医学,2009,16(4):1252-1254.
    [243]Glatz J. F., Luiken J. J., Bonen A. Membrane fatty acid transporters as regulators oflipid metabolism:implications for metabolic disease[J]. Physiol Rev,2010,90(1):367-417.
    [244]Cui F., Li J., Ding A. et al. Conditional QTL mapping for plant height with respectto the length of the spike and internode in two mapping populations of wheat[J].Theor Appl Genet,2011,122(8):1517-1536.
    [245]王依屹,张珏,鲁传翠.2型糖尿病患者胰岛素抵抗与血清游离脂肪酸浓度的关系[J].检验医学,2012(10):125-129.
    [246]雪宫,永张,薛长勇.中链脂肪酸对糖尿病小鼠脂代谢的影响及其相关机制研究[J].军医进修学院学报,2012(8):175-178.
    [247]杨建中,许自超,李晓晔,蒋静霞,尹浔.气相色谱法测定恶性血液病患者血浆中游离脂肪酸的含量[J].色谱,1994(4):268-270.
    [248]Jiao K., Liu H., Chen J. et al. Roles of plasma interleukin-6and tumor necrosisfactor-alpha and FFA and TG in the development of insulin resistance induced byhigh-fat diet[J]. Cytokine,2008,42(2):161-169.
    [249]Tripathy D., Aljada A., Dandona P. Free fatty acids(FFA)and endothelialdysfunction; role of increased oxidative stress and inflammation.-to:Steinberg et al.(2002)Vascular function, insulin resistance and fatty acids[J]. Diabetologia,2003,46(2):300-301.
    [250]Boden G. Effects of free fatty acids(FFA)on glucose metabolism:significance forinsulin resistance and type2diabetes[J]. Exp Clin Endocrinol Diabetes,2003,111(3):121-124.
    [251]Miller M. R., Pereira R. I., Langefeld C. D. et al. Levels of free fatty acids(FFA)areassociated with insulin resistance but do not explain the relationship betweenadiposity and insulin resistance in Hispanic Americans:the IRAS Family Study[J]. JClin Endocrinol Metab,2012,97(9):3285-3291.
    [252]Jiao P., Ma J., Feng B. et al. FFA-induced adipocyte inflammation and insulinresistance:involvement of ER stress and IKKbeta pathways[J]. Obesity(SilverSpring),2011,19(3):483-491.
    [253]Stefanovski D., Richey J. M., Woolcott O. et al. Consistency of the dispositionindex in the face of diet induced insulin resistance:potential role of FFA[J]. PLoSOne,2011,6(3):e18134.
    [254]卫阳飞,戚欢阳,杨永建等.衍生化气相色谱法测定生物样品中游离脂肪酸[J].兰州大学学报(医学版),2012(4):62-65.
    [255]佘珠花.气相色谱法中油脂脂肪酸衍生化方法及其选择[J].粮食加工:64-66.
    [256]姜文宇,方京冲,史虹莉等.气相色谱法测定血清脂肪酸组分[J].复旦学报(医学版),2003(4):376-378.
    [257]陆旭亚.肥胖儿童血清磷脂脂肪酸谱研究[J].中国学校卫生,2010(9)
    [258]Boden G., Cheung P., Stein T. P. et al. FFA cause hepatic insulin resistance byinhibiting insulin suppression of glycogenolysis[J]. Am J Physiol Endocrinol Metab,2002,283(1):E12-E19.
    [259]Watt M. J., Holmes A. G., Steinberg G. R. et al. Reduced plasma FFA availabilityincreases net triacylglycerol degradation, but not GPAT or HSL activity, in humanskeletal muscle[J]. Am J Physiol Endocrinol Metab,2004,287(1):E120-E127.
    [260]Votruba S. B., Jensen M. D. Regional fat deposition as a factor in FFAmetabolism[J]. Annu Rev Nutr,2007,27:149-163.
    [261]Pleiner J., Schaller G., Mittermayer F. et al. FFA-induced endothelial dysfunctioncan be corrected by vitamin C[J]. J Clin Endocrinol Metab,2002,87(6):2913-2917.
    [262]Su Z., Tsaih S. W., Szatkiewicz J. et al. Candidate genes for plasma triglyceride,FFA, and glucose revealed from an intercross between inbred mouse strainsNZB/B1NJ and NZW/LacJ[J]. J Lipid Res,2008,49(7):1500-1510.
    [1] Coodacre R. Marking sence of the metabolome using evolutionary computation:seeing the wood with trees[J]. J Exp Bot2005,56(410):245-254.
    [2] Nicholson J K, Lindon J C, Holmes E.‘Metabonomics’:understanding the metabolicresponses of living systems to pathophysiological stimulivia multivariate statisticalanalysis of biological NMR spectroscopic data[J]. Xenobiotic,1999,29:1181-1189.
    [3] Tang H R, Wang Y L. Metabonomics:a revolution in progress[J]. Prog BiochemBioPhys,2006,33(5):401-417.
    [4] Holmes E, Tang H R, Wang Y L, et al. The assessment of plant metabolite profiles byNMR-based methodologies[J]. Plant Med,2006,72(9):771-785.
    [5] Nicholson J K, Bollard M E, Lindon J C, et al. Metabonomics:a platformfor studyingdrug toxicity and gene function[J]. Nat Rev Drug Discovery,2002,1:153-162.
    [6] Goodacre R, Vaidyanathan S, Dunn W B, et al. Kell DB. Metabolomics bynumbers:acquiring and understanding globalmetabolite data[J]. Trends Biotechnol,2004,22:245-252.
    [7] Schnackenbrg LK, Beger RD. Monitoring the health to disease continuum with globalmetabolic profiling and systems biology[J]. Pharmacogenomics,2006,7(7):1077.
    [8] Keun HC. Metabonomic modeling of drug toxicity[J]. PharmacolT her,2006,109(1-2):92.
    [9] Henry CM. New ome in town[J]. Chen Eng News,2002,80(48):66-70
    [10]黄强,尹沛源,路鑫,等.色谱-质谱联用技术在代谢组学中的应用[J].色谱,2009,27(5):566-572.
    [11]赵剑宇,颜贤忠.基于核磁共振的代谢组学研究进展[J]. ForeignMedical SciencesSection on Pharmacy,2004,31(5):308-313.
    [12]Wang Y. I., Bollard M. E., Keun H., et al. Spectral editing and pattern recognitionmethods app lied to high-resolution magic-angle spinning H1nuclearmagneticresonance spectroscopy of liver tissues. Anal. B. iochem.2003,323(1):26-32
    [13]Ren Y. F., Wang T., Peng Y. F., et al. Distinguishing transgenic from non-transgenicArabidopsis plants by1H NMR-based metabolic fingerprinting. J. Genet. Genomics.2009,36(10):621-628
    [14]Reynolds W. F., Enríquez R. G., Choosing the best pulse sequences, acquisitionparameters, postacquisition processing strategies, and probes for natural productstructure elucidation by NMR spectroscopy. J. Nat. Prod.2002,65(2):221-244
    [15]Dettmer K, Aronov PA, Hammock BD. Mass spectrometry-based metabolomics[J].1Mass Spectrom Rev,2007,26(1):51-78.
    [16]Yang J, Xu GW, Zheng YF, et al. Diagnosis of liver cancer using HPLC-basedmetabonomics avoiding false-positive result from hepatitis and hepatocirrhosisdiseases[J]. J Chromatogr B,2004,813(122):59-65.
    [17]唐惠儒,王玉兰.代谢组研究[J].生命科学,2007,19(3):274-280.
    [18]许国旺,杨军.代谢组学及其研究进展[J].色谱,2003,21(4):316-320.
    [19]刘昌孝.代谢组学的发展与药物研究开发[J].天津药学,2005,17(2):1-6.
    [20]李晶,吴小建,刘昌孝,等.代谢组学研究中数据处理新方法的应用[J].药学学报,2006,41(1):47-53.
    [21]许国旺,杨军,宋硕林,等.代谢组学及其应用[J].生物工程学报,2005,21(1):1-5.
    [22]Yang Y, Li C, Nie X, Feng XS, Cehn WX, Xue Y, Tang HR, Deng F. Metabonomicstudies of human hepatocellular carcinoma using high-resolution magic-anglespinning1H NMR spectroscopy in conjuction with multivariate data analysis. JProteome Res,2007,6(7):2605-2614.
    [23]Morvan D, Demidem A. Metabolomics by proton nuclear magnetic resonancespectroscopy of the response to chloroethynitrosourea reveals drug efficacy andtumor adaptive metabolic pathways. Cancer Res,2007,67(5):2150-2159.
    [24]Griffin JL, Kauppinen RA. A metabolomics perspective of human brain tumours.FEBS J,2007,274(5):1132-1139.
    [25]Jordan KW, Cheng LL. NMR-based metabolomics approach to target biomarkers forhuman prostate cancer. Expert Rev Proteomics,2007,4(3):389-400.
    [26]Claudino WM, Quattrone A, Biganzoli L, Pestrin M, Bertini I, Di Leo A.Metabolomics:available results, current research projects in breast cancer, and futureapplications. J Clin Oncol,2007,25(19):2840-2846.
    [27]Odunsi K, Wollman RM, Ambrosone CB, Hutson A, McCann SE, Tammela J,Geisler JP, Miller G, Sellers T, Cliby W, Qian F, Keitz B, Intengan M, Lele S,Alderfer JL. Detection of epithelial ovarian cancer using1H-NMR-basedmetabonomics. Int J Cancer,2005,113(5):782-788.
    [28]WhiteheadTL, Monzavi-Karbassi B, IGeber-Emmons T.1H-NMR metabonomicsanalysis of sera differentiates between mammary tumor-bearing mice and healthycontrols. Metabolomics,2005,1(3):269-278.
    [29]IorioE, MezzanzanicaD, AlbertiP, et al. Alterations of choline phospholipidmetabolismin ovarian tumor progression. Cancer Res,2005,65(10):9369-937
    [30]LombardiV, Valko L, ValkoM.1H NMR Ganglioside Ceramide Resonance Regionon the Differential Diagnosis of Low and High Malignancy of Brain GliomasCellular and Molecular Neurobiology,1997.17(5):521-535.
    [31]Odumi KWollmanBM. JIlbmne CB. Int J Cancer,2005.113(5):782—788.
    [23]WhelehanOP, Earl/ME. ChemometrIntefl lab,2006,84(1/2):82—8"/.
    [29]WuH, Xue R, Dong L, et al. Metabolomic profiling of human urine in hepatocellularcarcinoma patients using gas chromatography/mass spectrometry[J]. Anal Chim Acta,2009,648(1):98-104.
    [30]Wen H, Yoo SS, Kang J, et al. A new NMR-based metabolomics approach for thediagonosis of biliary tract cancer[J]. J Hepatol.2010,52(2):228-233.
    [31]Odunsi K, Wollman RM. Ambrosone CB, et al. Detection of epithelial ovariancancer using H-NMRbased metabonomics. Int J Cancer.2005;113(5):782-788.
    [32]Wang C, Kong H, Guan Y, et al. Plasma phospholipid metabolic profiling andbiomarkers of type2diabetes mellitus based on high–performance liquidchromatography/electrospray mass spectrometry and multrvariate statistical analysis.Anal Chem.2005;77(13):4108-116.
    [33]Xu GW. Liebich H, Normal and modified nucleosides in urine as potential tumormarkers determined by MEKC and HPLC. J. Am Clin Lab,2001,20:22-32
    [34]Yang J, Xu GW, Kong HW, et al. Artificial neural network classification based onhigh-performance liquid chromatography of urinary and serum nucleosides for thclinical diagnosis of cancer J. J Chromatogr B,2002,780(1):27-33.
    [35]Wu H, Xue R, Dong L, et al. Metabolomic profiling of human urinein hepatocellularcarcinoma patients using gas chromatography/mass spectrometry. J Anal Chim Acta,2009;648(1):98-104. [36]Wen H, Yoo SS, Kang J, et al. A new NMR-basedmetabolomics approach for the diagnosis of biliary tract cancer. J J Hepatol,2010;52(2):228-233. 
    [37]Griffin JL, Nicholls AW. Metabolomics as a functional genomic tool forunderstanding lipid dysfunction in diabetes, obesity and related disorders.Pharmacogenomics,2006,7(7):1095-1107.
    [38]Hodavance MS, Ralston SL, Pelczer I. Beyond blood sugar:the potential ofNMR-based metabonomics for type2human diabetes, and the horse as a possiblemodel. Anal Bioanal Chem,2007,387(2):533-537.
    [39]van Doorn M, Vogels J, Tas A, van Hoogdalem EJ, Burggraaf J, Cohen A, van derGreef J. Evaluation of metabolite profiles as biomarkers for the pharmacologicaleffects of thiazolidinediones in Type2diabetes mellitus patients and healthyvolunteers. Br J Clin Pharmacol,2007,63(5):562-574.
    [40]MakinenV-P, Soininen P, Forsblom C, etal. Diagnosing diabetic nephropathy by1HNMR metabonomics of serum[J]. MagResMatPhy,2006,19:281-296
    [41]Jin ES, Burgess SC, Merritt M, etal. Differing mechanisms of hepatic glucose overproduction in triiodothy-ronine treated rats vs. Zucker diabetic fatty rats by NMRanalysis of plasma glucose[J]. AmJPhysiolEndocri2nolMetab,2005,288:E654-E66
    [42]Li X, Xu ZL, Lua X, Comprehensive two-dimensional gas chromatography/time-of–flight mass spectrometry for metabonomics:Biomarker discovery for diabetesmellitus. Anal Chim Acta,2009,633:257-262.
    [43]Yang J, Xu G, Hong Q, et al. Discrimination of type2diabetic patients from healthycontrols by using metabonomics method based on their serum fatty acid profiles, JChromatagr B Analyt Technol Biomed Life Sci,2004,813:53-58.
    [44]Zhao X, Fritache J, Wang J, et al. Metabonomic fingerprints of fasting plasma andspot urine reveal human pre-diabetic metabolic traits. Metabolomics,210,6:362-374.
    [45]Brindle J T, Nicholson J K, Schofield P M, et al. Application of chemomeirtcs toH-1NMR spectroscopic data to investigate a relationship between human serummetabolic profiles and hypertension[J]. Analyst,2003,128(1):32-36.
    [46]Fava F, Lovegrove JA, Gitau R, et al. The gutmicrobiota and lipidmetabolism:implications for human health and coronary heart disease[J]. Curr MedChem,2006,13(25):3005-3021.
    [47]Wang C, Kong H W, Guan Y F, et al. Plasma phospholipids metabolic profiling andbiomarkers of type2diabetes mellitus based on high performance liquidchromatography/electrospray mass spectrometry and multivariate statisticalAnalysis[J]. Anal Chem,2005,77(13):410-411.
    [48]Wang Y L, Holmes E, Tang H R, et al. Experimental MetaboMetabonomic model ofdietary variation and stress interactions[J]. J Proteome Res,2006,5:1535-1542.
    [49]Pan ZZ, Gu HW, Talaty N, et al. Principal component analysis of urine metabolitesdetected by NMR and DESI-MS in patients with inborn errors of metabolism[J].AnalBioanal Chem,2007,387(2):539-549.
    [50]Kuhara T. Gas chromatographic-Mass spectrometric urinary metabolome Analysisto study mutations of inborn errors of metabolism[J]. Mass Spectr Rev,2005,24(6):814-827.
    [51]Constantinou M A, Papakonstantinou E, Spraul M, et al. H1NMR-basedmetabonoics for the diagnosis of inborn errors of metabolism in urine[J]. Anal ChemActa,2005,542(2):169-177.
    [52]Davis C D, Milner J. Frontiers in nutrigenomics, proteomics, metabolomis andcancer prevention[J]. Mutat Res,2004,551(122):51-64.
    [53]Watkins S M, German J B. Toward the implementation of metabolomic assessmentsof human health and nutrition[J]. Curr Op in Biotechnol,2002,13(5):512-516.
    [54]赵剑宇,颜贤忠.基于核磁共振的代谢组学研究进展[J].国外医学(药学分册),2004,31(5):308-314.
    [55]贾伟,蒋剑,刘平,等.代谢组学在中医药复杂理论体系研究中的应用[J].中国中药杂志,2006,31(8):621-625.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700