石灰浆液荷电雾化脱硫的基础理论和试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃煤产生的SO_2已成为生态环境破坏的最大污染源,SO_2污染控制已是急待研究解决的世界性重大课题。燃煤烟气脱硫是目前世界上唯一大规模商业化应用的脱硫技术,其中尤以湿钙法脱硫最为成熟和可靠,是占主导地位的脱硫技术。湿钙法烟气脱硫是气液相际传质及化学反应过程,虽然因其脱硫率高、运行可靠、脱硫剂易得等优势而成为主流技术,但如何进一步改善石灰浆液喷雾效果和SO_2吸收条件,降低投资及运行成本,是该法能否得到普遍推广的关键之一。将高压静电技术引入湿钙法脱硫中是达到上述目的的有效新途径。本文在江苏省高校自然科学基金项目的资助下,针对湿钙法烟气脱硫中使浆液雾滴荷电而产生脱硫增益作用的机理进行深入的理论和试验研究工作。
     本文在综合分析当前典型烟气脱硫技术和高压静电雾化技术的基础上,通过石灰浆液静电雾化的机理分析和试验研究,探索石灰浆液流量、充电方式及结构、充电电压与荷电效果的关系,旨在掌握石灰浆液荷电雾化特性;深入分析荷电雾滴吸收SO_2的传质及化学反应动力学机理,初步建立荷电条件下的雾滴脱硫模型;对脱硫塔内部荷电气液两相流动进行质量、动量、能量守恒分析,在考虑传质和反应动力学等因素的情况下,建立石灰浆液荷电雾化脱硫气液两相基本方程及湍流模型;在流场测试的基础上,对脱硫流场进行数值模拟,研究不同条件下的流场特性;设计、建立了石灰浆液荷电雾化脱硫试验装置,对各种不同工况进行脱硫试验,探索石灰浆液荷电雾化脱硫机理。
     本文取得的创新性成果如下:
     1、首次研究了雾滴带电对SO_2吸收产生影响的机理。认为浆液的雾化使雾滴带上过剩电荷,同时,雾滴在穿越外电场过程中还可能产生非过剩电荷极化带电。雾滴带电主要从三个方面对雾滴表面特性和传质过程产生影响:雾滴形成的偶极矩与气相中极性分子SO_2间的静电力作用,加大气膜扩散速率;雾滴带电引起表面张力及液相SO_2分压下降,增大SO_2吸收的传质推动力;钙离子在雾滴表面的积聚,在促进Ca(OH)_2溶解的同时减小硫分的液相扩散路程,加速传质过程。
     2、首次建立了雾滴荷电脱硫模型,为脱硫塔内部流动模型的建立奠定基础。
     3、首次在荷电气液两相流动数学模型建立中考虑了SO_2吸收的质量交换和传质推动力等相间作用问题,使模型尽可能贴切地反映脱硫流场的实际情况。
     4、首次对三种不同的烟气与浆液雾滴接触方式,进行不同荷电电压、Ca/S、烟气SO_2浓度等参数的对比试验,分别测量系统脱硫率。试验研究表明:脱硫段较短时对进口烟气SO_2浓度的变化比脱硫段较长时敏感;无论是不同的Ca/S或不同荷电电压,雾滴带电都能使脱硫率产生不同程度的提高,并结合理论研究分析了雾滴带电对脱硫效果产生增益作用的机理;明确指出同向流动脱硫率明显优于逆向,雾滴荷电时同向流动脱硫率的增幅也明显优于逆向时的增幅。
     本文得到的重要结论如下:
     1、明确指出对于感应荷电,荷质比随浆液流量、名义雾化角的增大而增大,但流量增加到一定程度后对提高荷质比的作用不明显,甚至会降低,故从荷电效果看,应尽可能采用较大雾化角和最佳流量值;荷质比随荷电电压的增加而增大,但在本文荷电装置条件下,流量较低时存在最佳电压值;电极放电起始电压随两电极距离H值、名义雾化角和流量的增大而减小;针对荷电雾化脱硫的具体情况得到了环状电极高压静电场场强分布的数学模型。
     2、采用PDA和PIV对石灰浆液荷电雾化脱硫流场进行测试,定性、定量研究了荷电对石灰浆液雾滴大小及运动速度的影响规律;定性研究了雾滴荷电时气液两相射流流场发生的变化,该变化将有利于雾滴和烟气的质量、动量和能量交换向全断面拓展,使雾滴和烟气接触在时间上和空间上均得到加强。
     3、采用湍流k-ε-k_p模型,首次对石灰浆液荷电雾化脱硫流场进行数值模拟,结果表明:浆液雾滴带电引起流动规律的明显变化,卷吸、旋涡的出现和主流区流速差的降低均有利于烟气与雾滴的混合接触,改善雾滴吸收SO_2的条件;同向流动的流动特点将使其对脱硫效果的改善比逆向流动明显。
     4、荷电电压、Ca/S和L/G对脱硫率起着关键性作用,脱硫率随Ca/S的增大而提高,随荷电电压的增加而提高,而且两种情况下提高的幅度同向均比逆向显著;通常增大L/G能提高脱硫率,但过高的浆液流量会影响雾滴荷电效果和雾滴与烟气的接触时间,产生不利因素。
SO_2 generated from coal-burning has become the greatest source of ecological damage to the environment, so SO_2 pollution control has been the worldwide major issue which is the urgent task to be studied and resolved. Flue gas desulphurization is the only large-scale commercial application of desulphurization technology in the world now; especially the wet-calcium-desulphurization is the most mature and reliable desulphurization technology, accounting for the dominant position. Wet calcium flue gas desulphurization is mass transfer and chemical reaction process between gas and liquid. It becomes a mainstream technology for its high rate of desulphurization, reliable operation, and easy to get desulfurizer, etc, but how to further improve the effectiveness of lime slurry spray and SO_2 absorption conditions, reduce investment and operating costs is one of the keys to popularize at large. Introduced here the high-voltage electrostatic technology into wet calcium desulphurization is the effective new way for this purpose. This paper is funded by the University Natural Science Foundation of Jiangsu Province, targeting the wet calcium flue gas desulphurization slurry droplet charged arising from the mechanism of desulphurization gain an in-depth theoretical and experimental research.
     Based on the comprehensive analysis of the current typical FGD technology and high-voltage electrostatic atomization technology, and on the basis of lime slurry through electrostatic spray mechanism analysis and pilot studies, this paper explored the relation between the lime slurry flow, charging mode and structure, charging voltage, and the effect of charge, to grasp the lime slurry charge atomization characteristic. Analyzed the mass transfer of droplet SO_2 absorption and chemical reaction kinetics mechanisms, initially established droplet desulphurization model under the charge condition; Analyzed conversation of mass, momentum, energy for internal desulfurizer charge gas and liquid two-phase flow, and established lime slurry atomization desulphurization gas-liquid phase flow basic equation and turbulence model, considering the mass transfer factors and reaction kinetics factors; On the basis of the flow test, theoretically simulated desulphurization flow field, and studied the flow characteristics under different conditions; Designed, established the lime slurry charge atomization tester, experimented in different modes, and explored lime slurry charge atomization desulphurization mechanism.
     In this paper, the results of innovative are as follows:
     1.First studied the mechanism of droplet charge impacting SO_2 absorption, deemed that the serous spray let the droplet get excess charge, while droplets across the outer electric fields may result the non-excess charge polarization charged. Droplet charged affect the droplets surface characteristics and mass transfer process in three main aspects: droplets formated dipole moment and static force effect of the polar molecule SO_2 in gas, increases gas film diffuse speed; droplet charge arouses the drop of surface tension and liquid SO_2 part pressure, increases mass transfer driving force of SO_2 absorption ; calcium ion accumulates on the droplet surface, promotes the solution of Ca (OH)_2, and shortens the liquid diffuse distance of sulfur, accelerates mass transfer process at the mean time.
     2.First established the desulphurization model of droplets charge desulphurization, lies the foundation for the establishment of the internal desulfurizer flow model.
     3.First considered the quality exchange of SO_2 absorption and inter-phase mass transfer driving force in the establishment of the mathematical model of charge gas-liquid two-phase flow, to make the model more appropriate to reflect desulphurization flow situation.
     4. First comparison tests on three different size droplet contacts with the gas in different charging voltage, Ca / S, flue gas SO_2 concentration parameters, respectively measured the SO_2 removal efficiency of these systems. Experimental study showed: short desulphurization segment is sensitizer to the inlet concentration change of SO_2 than long desulphurization segment; whether Ca / S or charge voltage is different, droplet charge can make desulphurization rate increased in different degrees, and combining theoretical study, analyzed the mechanism of droplet charged produced plus function to desulphurization effect; clearly indicated that the desulphurization rate of flow in the same direction is better than reverse, when the droplet is charged the desulphurization rate amplitude of flow in the same direction is superior to reverse.
     In this paper, the important conclusions are as follows:
     1.Clearly pointed out that for the induction charge, the charge-to-mass ratio increases with the increasing of slurry flow, the nominal spray angle, but the role of the charge-to-mass ratio is not obvious when flow has increased to some extent, or even lower, so it should adopt the larger spray angle and the optimum flow value as far as possible from the charged electronic effect; The charge-to-mass ratio increases with the increasing voltage, but in this paper ,under this charged electronic equipment conditions , there exists a best voltage value when flow is low; initial electrode discharge voltage decreases when the polar distance H value, the nominal spray angle and flow increases; Found the mathematiac model of the ring electrode high-voltage static electric field intensity distribution .
     2. Used PDA and PIV to test lime slurry charge atomization desulphurization flow field, qualitatively and quantitatively researched the law of charge affect lime slurry droplet size and movement velocity; qualitatively researched the changes of gas-liquid two phase flow in the jet when the droplet charged. The changes will be beneficial to the droplet and gas quality, momentum and energy exchange developing to the full-facestrengthened the contact of droplet and gas in time and space.
     3.Used turbulence k-ε-k_p model, first theoretically simulated the lime slurrycharge atomization desulphurization flow field, the results showed that: charged slurry droplet caused significant changes of the flow law, entrainment, and the emergence of vortex flow and reduce of velocity of flow difference in the mainstream is propitious to smoke mix and contact with droplet, improve the condition of droplet absorption SO_2, characteristics of flow in the same direction will help to improve the desulphurization effect better than reverse.
     4.Charge voltage, Ca / S and L / G play a key role on desulphurization rate. It increases with the accretion of Ca / S, charge voltage, and that in both cases; the same amplitude of increase is more notable than the reverse; usually increasing L/G can enhance the desulphurization rate, but exorbitant slurry flux will affect the effect of droplet charged and the contact time of droplet and flue gas. This is a engender negative factor.
引文
[1] 蒋文举主编.烟气脱硫脱硝技术手册[M].西安:化学工业出版社,2007
    
    [2] 黄毅城.大幅度提高煤炭利用效率减少煤炭的总用量[J].能源政策研究,2004.(2):5-6
    
    [3] 吴颖海.循环流化床烟气脱硫模拟中试试验和理论研究[D]:[博士学位论文],南京:东南大 学,2000
    
    [4] 郝吉明,王书肖,陆永琪.燃煤二氧化硫污染控制技术手册[M].北京:化学工业出版社, 2001
    
    [5] 张杨帆,李定龙,王晋.我国烟气脱硫技术的发展现状与趋势.环境科学与管理,2006, 31(4):124-127
    
    [6] 唐志勇,仲兆平,孙克勤等.湿法脱硫喷淋塔空塔流场数值模拟[J].能源研究与利用, 2003,(2):10-12
    
    [7] 钟秦.湿法烟气脱硫的理论和实验研究(Ⅱ)-湿壁塔烟气脱硫数学模型[J].南京理工大 学学报,1999,23(1):1-5
    
    [8] 郭秉钧.烟气脱硫技术的研究与开发[J].山西化工,2004,24(1):35-36
    
    [9] 钟 秦编著.燃煤烟气脱硫脱硝技术及工程实例[M].北京:化学工业出版社,2002
    
    [10] 王五清,贺元启.石灰石-石膏湿法烟气脱硫工艺与关键参数分析[J].华北电力技术, 2004,(2):1-3.
    
    [11] 陈汇龙,邹晓琳,刘新爱等.湿钙法烟气脱硫研究进展.中国农业机械学会2006年学术年 会论文集:168-172
    
    [12] 侯庆伟,路春美.湿法烟气脱硫系统的物理化学分析[J].电力环境保护,2005,21(1): 9-10
    
    [13] 金新荣,任建兴.火电厂湿法烟气脱硫装置运行特性及注意事项[J].华东电力,2004, 32(5):21-24
    
    [14] 葛春定编译.德国烟气脱硫技术现状[J].华东电力,2000,27(1):49-51
    
    [15] 陈莲芳,徐夕仁,马春元.石灰和石灰石湿法脱硫系统运行控制指标探讨[J].环境污 染与防治,2005,27(1):50-52
    
    [16] 李丽,苏保青.吸收液温度对湿法烟气脱硫的影响分析[J].山西建筑,2004,30(19): 118-119
    
    [17] 郭毅,李荫堂,李军.烟气脱硫喷淋塔本体设计与分析[J].热力发电,2004,(1): 29-31
    
    [18] 李星玮,李晓宣.湿壁塔烟气脱硫系统的研究[J].重庆环境科学,2000,22(4):27-??28
    
    [19] Pan Weiguo,Hua Zhangguo,Lei Junzhi et al. Experimental Study on Flue Gas Desulfurization Technology with a New Multi-stage Liquid Curtain Spray-abstersion Tower. Energy and the Environment-Proceedings of the International Conference on Energy and the Environment,v2,2003:1188-1192
    
    [20] 汪洪涛,吴少华,杜谦等.下降液膜湿法烟气脱硫的实验研究与机理分析[J].哈尔 滨工业大学学报,2003,35(6):715-718
    
    [21] 王海宁,蒋达华.湿法烟气脱硫的腐蚀机理及防腐技术[J].能源环境保护,2004,18 (5):22-24
    
    [22] 山乐胜,张怀军,张卫华.湿法烟气脱硫设备中鳞片衬里的防腐工艺[J].华北电力技术, 2004(8):23-25
    
    [23] 顾强,白永锋,饶应福.湿式烟气净化装置中烟温降及其主要影响因素[J].煤矿环境 保护,2000,14(2):49-51
    
    [24] 张爽.湿法烟气脱硫装置采用湿烟囱排放的探讨[J].电力建设,2005,26(1):64- 66
    
    [25] 杜谦,吴少华,朱群益等.石灰石/石灰湿法烟气脱硫系统的结垢问题[J].电站系统工 程,2004,20(5):41-44
    
    [26] Brogren C, Karsson H T. Modling the Absorption of SO_2 in a Spray Scrubber Using the Penetration fheory[J].Chen. Eng. Sci., 1997,52(18): 3085-3088
    
    [27] 亢燕铭,李世龙.管道内烟气喷雾脱硫的研究[J].环境工程,2001,19(1):31-33
    
    [28] Lancia A, Musmarra D . Catalytic Oxidation of Calcium Bisulfite in the Wet Limestone-gypsum Flue Gas Desulfurization Process[J].Chemical Engineering Science. 1999, (54): 3019-3026.
    
    [29] 钟秦.石灰石湿法烟气脱硫中氟络合物的影响[J].南京理工大学学报,2001,25(1): 75-78
    
    [30] 周祖飞,金新荣.影响湿法烟气脱硫效率的因素分析[J].浙江电力,2001,(3):42-45
    
    [31] 韩琪,李忠华.石灰石/石膏湿法烟气脱硫的化学过程研究[J].电力环境保护,2002, 18(1):1-3
    
    [32] 庄建华,岳蜂,张秀坤等.中温反应过程中石灰石颗粒化学反应的数值研究[J].黑龙江 电力,2004,26(5):352-355
    
    [33] Harries R R.Process Modelling for Wet Limestone Flue Gas Desulfurization. Process Safety and Environmental Protection: Transactions of the Institution of Chemical Engineers, 1993,??71(4): 289-295
    
    [34] Newton Gerald H, Kramlich John, Payne Roy. Modeling the SO_2-slurry Droplet Reaction.AICHE Journal 1990, 36(12):1865-1872
    
    [35] Gerbec M, Stergar(?)ek A, Kocjan(?)i(?) R.Simulation Model of Wet Flue Gas DesulphurizationPlantComputers & Chemical Engineering, 1995, 19(1): 283-286
    
    [36] Soren Kiil, Michael L, Michelsen et al.Experimental Investigation and Modeling of a WetFlue Gas Desulfurization Pilot Plant.American Chemical Society, 1998, 37(7): 2792-2806
    
    [37] Michalski, Jacek A. Spraying Angle and Spray Polydispersity in Modeling of theAerodynamic Characteristics of FGD Towers. Atomization & Spraya, Sep-Dec 2002,12(5/6): 593
    
    [38] Michalski, Jacek A . Development of Droplet Size Distribution in FGD SprayTower. Atomization and Sprays, 2000,10 (2):105-119
    
    [39] Michalski, Jacek A. Aerodynamic Characteristics of Flue Gas Desulfurization SprayTowers-polydispersity Consideration. Industrial and Engineering Chemistry Research,2000, 39 (9): 3314-3324
    
    [40] Strock, Thomas W. Gohara, Wadie F. Experimental Approach and Techniques for theEvaluation of Wet Flue Gas Desulfurization Scrubber Fluid Mechanics. ChemicalEngineering Science, Chemical Reaction Engineering: Science & Technology, 1994, 49 (24): 4667-4679
    
    [41] 曾芳,陈力,李晓芸.湿式脱硫塔流场数值计算[J].华北电力大学学报,2002,29(2): 106-110
    
    [42] 徐君岭,卢万成,施建伟.喷雾脱硫过程中拐形分离器内气雾间热交换及分离的研究[J]. 动力工程,2000,20(6):916-918
    
    [43] 徐君岭,卢万成.喷雾脱硫时拐形流道内烟气与水雾间传热传质工程研究[J].环境工程, 2000,18(6):37-39
    
    [44] 吴树志,赵长遂,段钰锋等.增湿活化脱硫反应器内流动、蒸发与碰撞过程数值计算[J]. 热能动力过程,2003,18(5):471-474
    
    [45] 杨柳,王世和,王小明.湿式脱硫塔除雾器流场的数值模拟[J].华东电力,2004,32(10): 5-6
    
    [46] 王益农,童钧耕,严达.喷雾脱硫过程中喷雾特性对脱硫效率影响的数值研究[J].四川 环境,2003,22(1):37-39
    
    [47] 王益农,童钧耕,严达.喷雾分离脱硫中传热传质的数值研究[J].城市环境与城市生态,2003,16(4):13~15
    
    [48] 赵旭东,项光明,姚强等.液柱喷射烟气脱硫技术工程[J].中国环保产业,2004,(12): 27-29
    
    [49] 宋洪鹏,周屈兰,惠世恩等.液幕状气液两相流传热特性的实验研究[J].西安交通大 学学报,2004,38(5):533-536
    
    [50] 高振强,赵科,张伟等.一维炉内SO_2的生成与喷钙脱硫规律的研究[J].动力工 程,2004,24(6):880-884
    
    [51] Andrzej G. Chmielewski, Janusz Licki, Andrzej Pawelec et al. Operational Experience of the Industrial Plant for Electron Beam Flue Gas Treatment[J]. Radiation Physics and Chemistry, 2004, 71 (1-2): 439-442
    
    [52] 毛本将,丁伯南.电子束烟气脱硫技术及工业应用[J].环境保护,2004,(9):15-18
    
    [53] 杨睿戆,吴彦,任志凌等.电子束氨法烟气脱硫技术工艺研究[J].环境污染治理技 术与设备,2004,5(11):82-84
    
    [54] 孙军蓉.电子束烟气脱硫技术[J].科技情报开发与经济,2003,13(8):142-144
    
    [55] 张晔.电子束烟气脱硫技术特点及适用条件分析[J].电力环境保护,2000,16(4): 47-50
    
    [56] Masuda S. Pulse Corona Induced Plasma Chemical Process[J]. Pure &Appl. Chem., 1988, 60 (5): 727-731
    
    [57] Keping Yan,Hexing Hui. Corona Induced Non-thermal Plasmas: Fundamental Study andIndustrial Applications[J]. Journal of Eletrostatics, 1998,44:17-39
    
    [58] Guiwei Shao, Jin Li, Wanlin Wang et al. Desulfurization and Simultaneous Treatmentof Coke-oven Wastewater by Pulsed Corona Discharge[J] . Journal of Electrostatics, 2004,62:1-13
    
    [59] Young Sun Mok, In-Sik Nam. Modeling of Pulsed Corona Discharge Process forthe Removal of Nitric Oxide and Sulfur Dioxide[J]. Chemical EngineeringJournal, 2002, 85 (1): 87-97
    
    [60] 朱益民.脉冲电晕法脱硫脱硝研究概述[J].环境科学进展,1997,5(5):75-77
    
    [61] 赵志斌,刘建民.温度与湿度对氨为添加剂脉冲放电烟气脱硫影响的研究[J].东北电 力技术,1999,1:13-15
    
    [62] Andrei A, Kulikovsky. Production of Chemically Active chemical Species in the Air by a Single Positive Streamer in a Non-uniform Field[J]. IEEE Trans. on Plasma Science, 1997, 25(3): 439-446
    
    [63] Gallimberti I. Impulse Corona Simulation for Flue Gas Treatment. Pure & Appl. Chem., 1988, 60 (6): 663-674
    
    [64] 李瑞年,闫克平,蒲以康等.低温等离子体烟气脱硫的反应机制[J].化工学报,1996. 47(4):481-486
    
    [65] Young Sun Mok, In-Sik Nam. Positive Pulsed Corona Discharge Process for Simultaneous Removal of SO_2 and NO_X from Iton-ore Sintering Flue Gas. IEEE Trans.Plasma Sci., 1999, 27(4): 1188-1196
    
    [66] 马志民,章兴文.放电等离子体烟气脱硫脱硝技术研究[J].黑龙江大学自然科学学报, 1997,14(2):83-86
    
    [67] Young Sun Mok, Ho Won Lee, Young Jin Hyun. Flue Gas Treatment Using Pulsed Corona Discharge Generated by Magnetic Pulse Compression Modulator. Journal of Electrostatics, 2001, 53 (3):195-208
    
    [68] 童永湘,魏海荣,闵志军等.脉冲电晕放电等离子体烟气脱硫技术研究[J].工业安全 与防尘,1998,(7):1-3
    
    [69] Manabu H, Satoshi U, Nagatosi S, et al. Soot Elimination and NO_X and SO_XReduction in Diesel Engine Exhaust by a Combination of Discharge Plasmaand Oil Dynamics. IEEE Trans Plasmas Sci, 1992, 20(1):1-11
    
    [70] Filimonovaea, Amirrovrh, Kimht, etal. Comparative Modeling of NO_X and SO_2Removal from Pollutant Gases Using Pulsed Corona and Silent Discharges. PlysD Appl Phys, 2000, 33:1716-1727
    
    [71] Ma H B, Chen P, Zhang M L, et al. Study of SO_2 Removal Using Non-thermalPlasma Induced by Dielectric Barrier Discharge(DBD). Plasma Chemistry andProcessing, 2002, 22(2): 239-254
    
    [72] Bai Xiyao, Zhang Zhitao, Han Hui et al. Research Situation and Progress ofNon-equilibrium Plasma Chemistry. Chinese Sclletin Bulletin, 2000, 47(7): 529-530
    
    [73] 周建刚,白希尧,詹科萍等.电离放电烟气脱硫的研究[J].大连海事大学学报,2004, 30(2):64-66
    
    [74] 安钟峰,鲍爱楠,王希麟等.高压沿面放电烟气脱硫技术动态实验研究[J].工程热物 理学报,2003,24(4):711-713
    
    [75] 王祖武,曾汉才,杨敏等.湿式电迁移烟气脱硫技术研究[J].华中科技大学学报(自 然科学报),2005,33(1):84-86
    
    [76] 李亚冰,徐光,徐晓画等.电子束深度氧化烟气净化技术[J].热力发电,2005(11): 30-33
    
    [77] 陈亚非.烟气脱硫技术综述(续一)[J].制冷空调与电力机械,2002,23(85):35- 37
    
    [78] 葛自良,毛骏健,陆汝杰.液体静电雾化现象及其应用[J].自然杂志,2000,22(1):37-41
    
    [79] Pilat M J. Collection of aerosol particles by electrostatic droplet spray scrubbers[J].Air Pollution Control Assoc, 1975, 25(2):176
    
    [80] 张世仁.烟气脱硫、脱氮技术发展近况[J].电器及气体净化,1997,3(1):13-18
    
    [81] 亢燕铭.荷电喷雾脱硫与细颗粒捕集的研究[D]:[博士学位论文],西安交通大学,1999
    
    [82] Ran Zuo, Jiahua Han.Ion-induced and Field Gradient Induced Electroconvection . Journal ofElectrostatics, 2002, 48(2):205-215
    
    [83] Moser E. Electrostatic Spraying With a Knapsack Spray.AMA, 1985, 16(3):41-46
    
    [84] HussainMD, Moser E. Some Fundamentals of Electrostatic. AMA, 1986, 17(2):39-45
    
    [85] Law S E, Lane M D. Electrostatic Deposition of Pesticide Spray onto Ionizing Targets:Change and Mass Transfer Analysis IEEE, 1982, IA 18(6):673-679
    
    [86] Giles D K, Law S E. Space Change Deposition of Pesticide Sprays onto CylindricalTargets Arrays.ASAE, 1985, 28(3):658-664
    
    [87] Cooper S C, Law S E. Bipolar Spray Changing for Leaf-tip Corona Reduction bySpace-change Central. IEEE, 1987, IA 23(2):217-233
    
    [88] Marchant J A. An Electrostatic Spinning Disc Atomizer. ASAE. 1985, 28(2):386-392
    
    [89] Marchant J A. The Electrostatic Changing of Spray Produced by Hydraulic Nozzles.J.(?)fAgric. Engng.Res. 1985, 31(4): 329-360
    
    [90] Castle GSP, Inculet I I. Space Change Effects in Orchard Spraying. IEEE. 1981, ISA 81,44C:1155-1160
    
    [91] 江苏工学院.静电喷雾理论及其测试技术的研究评议资料汇集.1985
    
    [92] 高良润,冼福生,朱和平等.静电喷雾冶虫实验[J].农业机械学报,1994,25(2):30-36
    
    [93] 郑加强,冼福生,高良润.静电喷雾荷质比测定研究[J].江苏工学院学报,1992,13(1):1- 5
    
    [94] 周浩生,罗惕乾,高良润等.静电喷粉沉积速度场理论研究[J].农业机械学报,1998,29(6): 55-59
    
    [95] 杨超珍.农用喷雾机器人基础技术研究[D]:[博士学位论文],江苏大学,2005
    
    [96] 郑加强.风送静电喷雾研究及其在灭蝗中的应用[D]:[博士学位论文],江苏工学院,1992
    
    [97] 王泽.荷电气—固两相流及其在植保工程中的应用[D]:[博士学位论文],江苏理工大学, 1994
    
    [98] 周浩生.荷电气—固两相流理论及其应用[D]:[博士学位论文],江苏理工大学,1997
    
    [99] 闻建龙.荷电两相湍流理论及柴油荷电喷雾燃烧的试验研究[D]:[博士学位论文],江苏 大学,2003
    
    [100]王军锋.荷电喷雾燃烧的基础研究—燃烧静电喷雾及荷电两相湍流射流的研究[D]:[博 士学位论文],江苏大学,2002
    
    [101]陈汇龙,刘新爱,邓云天等.高电压技术在烟气脱硫中的应用研究[J].高电压技术,2006, 32(11):96-99
    
    [102] 郭烈锦编著.两相与多相流动力学[M].西安:西安交通大学出版社,2002
    
    [103] 任惠芳,韩学孟,王玉顺.气力式静电喷头雾化特性研究[J].山西农业大学学报,2003, 2(4):148-151
    
    [104] Marshall W R J.Atomization and Spray Drying.Chem. Engr. Progress Monograph SeriesNo.2.Publ.by AICHE, 1954
    
    [105] Elbanna H, Rashed M I I, Ghazi M A.Droplets from Liquid Sheets in an Airstream.Transactions of ASAE, 1984, 27(3): 677-679
    
    [106] Rayleigh J W S.On the Instability on the Jets.Proc.Roy.Soc.1879, 24:71-97
    
    [107] Jones A R. Thong K C.The Production of Charged Monodisperse Full Droplets by ElectricalDispersion.B*rit.Jour.Appl.Phy.Series.D.1971, 4:1159-1166
    
    [108] Garmendia L. A Simplified Model of Electro-aerodynamic Atomization.AIChE Jour.1977,23: 935-938
    
    [109] Thong K C, Weinberg F J.Electrical Control of the Combustion of Solid and LiquidParticulate Suspensions. Proc.Roy.Soc.1971,32(4): 201-215
    
    [110] Edward S Law.Embedded-electrode Electrostatic-induction Spray-charging Nozzle :Theoretical and Engineering Design.Transaction of ASAEIA.1979, 20(6): 1096-1100
    
    [111] 贺文智,陈宇峰,孟庆.气流式雾化实验研究进展[J].内蒙古石油化工,1996,22(2): 38-41
    
    [112] 黄镇宇,姚悦,刘建忠等.高粘度流体撞击多级雾化特性研究[J].中国电机学报,2005, 25(25):285-288
    
    [113] Carroz J W, Keller P N. Electrostatic Induction Parameters to Attain Maximum Spray Charge[J]. Transactions of the American Society for Aerospace Education,1978,21(1): 63-69
    
    [114] Hu D, Balachandran. A non-wetting Electrostatic Assisted Nozzle for Spraying a Catalytic Melt, in IAS'94, 1994, (2): 1445-1450
    
    [115] 刘景良.荷电液滴特性及液滴荷电量测定方法的研究[J].工业安全与防尘,1991,(8): 14-16
    
    [116] 鲍重光编.静电技术原理[M].北京:北京理工大学出版社,1993
    
    [117] 孙目珍编著.电介质物理基础[M].广州:华南理工大学出版社,2000
    
    [118] 方俊鑫,殷之文主编.电介质物理学[M].北京:科学出版社,2000
    
    [119] [日]中野义映编,张乔根译.高电压技术[M].北京:科学出版社,2004
    
    [120] 王喜忠,于才渊,周才君编著.喷雾干燥[M].北京:化学工业出版社,2003
    
    [121] Edward S Law, Henry D Brown.Effects of Liquid Conductivity Upon Gaseous Discharge of Droplets.IEEE.1989, 25(6): 1073-1080
    
    [122] 陈汇龙,李庆利,袁寿其等.低浓度石灰浆雾滴荷电特性的试验研究[J].高电压技术, 2007,33(10):83-87
    
    [123] 亢燕铭.荷电水雾除尘的性能研究[J].西安建筑科技大学学报,1996,28(3):287-290
    
    [124] 杨超珍,吴春笃,陈翠英.环形电极感应充电机理及其应用研究[J].高电压技术,2004, 30(5):9-11
    
    [125] 张军,闻建龙,王军锋等.不同雾化模式下静电雾化的雾滴特性[J].江苏大学学报(自然 科学版),2006,27(2):105-108
    
    [126] Mamoru Shimoda.A Natural Interpretation of Fuzzy Sets and Fuzzy Relations[J].Fuzzy Setsand System, 2002(118): 135-147
    
    [127] Krammer G, Brunner Ch, Khinast J, et al.Reaction of Ca(OH)_2 with SO_2 at LowTemperature[J].Ind Eng Chem Res, 1997, (36): 1410-1418
    
    [128] 钱枫,郑跃红,张溱芳.潮湿气氛下Ca(OH)_2与SO_2反应动力学研究[J].环境化学,1999, 18(4):315-320
    
    [129] 赵毅,王小明,汪黎东.Ca(OH)_2颗粒脱硫反应的动力学研究[J].电力环境保护,2005, 21(1):21-23
    
    [130] 朱步瑶,赵振国编著.界面化学基础[M].北京:化学工业出版社,1996
    
    [131] 王涛,朴香兰,朱慎林编著.高等传递过程原理[M].北京:化学工业出版社,2005
    
    [132] 韩德刚,高盘良编著.化学动力学基础[M].北京:北京大学出版社,1987
    
    [133] 肖文德,吴志泉编著.二氧化硫脱除与回收[M].北京:化学工业出版社,2001
    
    [134] Barrie L A.An Improved Model of Reversible SO_2-washout by Rain[J].Atmos.Environ., 1978,12(3):407-412
    
    [135] 王淑兰主编.物理化学[M].北京:冶金工业出版社,2007
    
    [136] 朱炳辰主编.化学反应工程[M].北京:化学工业出版社,2001
    
    [137] [美]J.R.威尔特等编著,马紫峰,吴卫生等译.动量、热量和质量传递原理[M].北京:化 学工业出版社,2005
    
    [138] Gao X, Zhou J, Luo Z et al. Modeling of the Aqueous Ca(OH)_2 Reaction Under Semi-dry FGD Condition. ICEE '98, Energy and Environment, China M achine Press, 1998: 342-348
    
    [139] 李梦龙主编.化学数据速查手册[M].北京:化学工业出版社,2003
    
    [140] 苏小云,臧祥生编.工科无机化学[M].上海:华东理工大学出版社,2004
    
    [141] 冯旺聪,郑士琴.粒子图像测速(PIV)技术的发展[J].仪器仪表用户,2003,6(10):1-3
    
    [142] Lindken R, Merzkirch W. A Novel PIV Technique for Measurements in Multiphase Flowsand Its Application to Two-phase Bubbly Flows. Experiments in Fluids . 2002(33):814-825
    
    [143] Hyoung-bum Kim, Jean Hertzberg, Craig Lanning, et al. Noninvasive Measurement ofSteady and Pulsating Velocity Profiles and Shear Rates in Arteries Using Echo PIV: In VitroValidation Studies. Annals of Biomedical Engineering, 2004, 8(32):1067-1076
    
    [144] Nogueira J, Lecuona A, RodriHguez P A. Local Field Correction PIV: on the Increase ofAccuracy of Digital PIV Systems . Experiments in Fluids, 1999, 27:107-116
    
    [145] Hu H, Saga T, Kobayashi T et al. Dual-plane Stereoscopic Particle Image Velocimetry:System Set-up and Its Application on a Lobed Jet Mixing Flow. Experiments in Fluids,2001, 31: 277-293
    
    [146] Huang H. An Extension of Digital PIV-processing to Double-exposed Images. Experimentsin Fluids, 1998, 24:364-372
    
    [147] 罗惕乾.流体力学[M].北京:机械工业出版社,2003
    
    [148] 陶文铨.数值传热学[M].西安:西安交通大学出版社,1995
    
    [149] 梁海杰.气液两相双流体模型和数值分析[D].[硕士学位论文],西安交通大学,2002
    
    [150] 陈矛章.粘性流体动力学基础[M].北京:高等教育出版社,1993
    
    [151] Gosman A D, Lekakou C et al. Multidimensional Modeling of Turbulent Two-phaseFlows in Stirred Vessels. AICHE J, 1992, 38:1946-1956
    
    [152] Serag-Eldin M A, Spading D B. Computations of Three-Dimensional Gas TurbineCombustion Chamber Flows. ASME Journal of Engineering for Power,1997,101:327-336
    
    [153] Rapley C W. Flow and Heat Transfer in Non-Circular Passages, in: Numerical Modeling in Diffusion Convection. Pentech Press, London: Plymouth, 1982:78-128
    
    [154] Chan S H. Abou-Ellail M M M. A Two-Fluid Model for Reacting Turbulent Two-Phase Flows. J. Heat Transfer, 1994, 116:427-435
    
    [155] 闻建龙,唐志华,陈汇龙等.荷电两相湍流模型的建立[J].农业机械学报,2006,37(7): 59-61
    
    [156] 岳湘安著.液—固两相流基础[M].北京:石油工业出版社,1996
    
    [157] 林建忠著.流—固两相拟序涡流及稳定性[M].北京:清华大学出版社,2003
    
    [158] Adamiak K, Castle G S P.Inculet I I. Numerical Simulation of the Electric Field Distribution in Tribo-powder Coating of Conducting Cylindrical Objects. I EEE, 1994, 0(1):15-221
    
    [159] 王军锋,闻建龙,罗惕乾.荷电喷雾两相湍流流场的数值计算[J].江苏大学学报(自然科 学版),2004,25(5):13-16
    
    [160] 周力行.湍流两相流动与燃烧的数值模拟[M].北京:清华大学出版社,1989
    
    [161] 孔华,施正伦,高翔等.喷淋式湿法脱硫装置的试验研究[J].动力工程,2001,21(5): 1459-1463
    
    [162] 王福军编著.计算流体动力学分析[M].北京:清华大学出版社,2004
    
    [163] 陈汇龙,刘新爱,邓云天等.石灰浆液荷电雾化脱硫试验与机理研究[J].动力工程,2007, 27(5):781-784
    
    [164] 陈汇龙,刘新爱,袁寿其等.石灰浆荷电雾化脱硫中雾滴吸收SO_2的传质特性分析[J]. 江苏大学学报(自然版),录用待发

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700