石灰浆荷电雾化脱硫内部气液两相流流场的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湿法脱硫技术是目前世界上技术成熟度最高、使用最广泛的脱硫工艺。本文将静电效应引入石灰浆脱硫工艺中,以实验室模拟的石灰浆荷电喷雾脱硫塔内部流场为研究对象,运用相关的数值方法及测试手段进行研究,为荷电喷浆脱硫技术的应用提供相关的理论基础。
     本文以颗粒拟流体模型以及前人建立的荷电喷雾两相湍流κ-ε-κ_p模型为理论基础,建立荷电石灰浆喷雾的两相湍流模型,同时建立了Ca(OH)_2雾滴的脱硫反应模型以及SO_2的传质方程。运用建立的湍流基本方程对石灰浆荷电雾化脱硫立式吸收塔内的二维流场进行数值计算,计算中采用差分方法,运用交错网格,以速度和压力作为原始变量,用混合物连续方程建立压力修正方程,采用压力速度耦合求解的方法。用SIMPLE算法进行编程运算,并运用商业计算软件包STAR-CD对脱硫塔内部气液两相流流场进行了模拟计算,最后给出了吸收塔内荷电气液两相湍流速度场的二维分布。在数值模拟部分运用粒子动态分析仪(PDA)测试技术得出了荷电喷雾雾滴的速度边界条件。
     采用激光相位多普勒粒子分析(PIV)技术对吸收塔内石灰浆荷电喷雾流场进行了测试,获得了瞬时速度矢量图、速度云图等一系列反映石灰浆荷电雾化脱硫流场的详细信息,测量结果表明:在电场力的作用下,流场特性变化明显,荷电后喷雾雾化角明显增大,雾滴直径变小,整个湍流流场速度分布趋向均匀,这有助于提高脱硫效率,在喷雾边缘可看见明显的卷吸和回流区。将试验结果与数值模拟结果进行比较分析,结果表明建立的数学模型可以实现对荷电气液两相流流场的模拟。
The wet Flue Gas Desulphurization method has been one of the most mature and most useful process in the world. With this understanding of introducing electrostatic effect to the wet FGD, the research object of this thesis is a limestone-gypsum wet FGD adsorption column in the use of experimental simulation. We hope that with using computer and suitable experimental method to simulate the flow field inside the adsorption column, the results will offer relational theoretical basis to the application of lime slurry electrostatic spraying desulphurization technology.
     In this thesis, the particle simulated fluid model is applied to establish two-phase turbulence model of lime slurry electrostatic spraying arrcoding to electrostatic sprayingκ-ε-κ_p turbulence model which has been builded. At the meantime, establishing Ca(OH)_2 droplet adsorption reaction model and SO_2 transfer equation. The turbulence fundamental equations which have been established are used to simulate charged gas-liquid two-phase turbulence in the adsorption column. The different method and crisscross mesh are used in the calculation. Velocity and pressure are taken as original variables to compile operational program by using SIMPLE algorithm, then the mixture continuity equation is used in the modeling. The thesis uses the software STAR-CD to simulate charged gas-liquid two-phase turbulence, then the numerical simulation of planar velocity fields in the charged gas-droplet two-phase turbulent of lime slurry electrostatic spraying is accomplished. In the part of numerical simulation, particle dynamic analyzer (PDA) is used to measure velocity boundary condition of charged spraying droplets.
     The flow field of electro-spray in the adsorption column is measured by means of PIV. The distributions of velocity vector, velocity nephogram and some other details flow information in the field are obtained. With these researches, we obtain the following research views: In the effect of electrical field, flow field characteristics vary obviously, charging spraying angles change clearly, and lime slurry droplets' diameter is smaller. The whole turbulence flow field is well-proportioned, this result conduces to improve desulphurization efficiency. In the margin of spraying, we see visible entrainment phenomena and inverse flow. Comparing experimental results with numerical simulation results, the consequents indicate that the founded mathematical model can carry out numerical simulation of the charged gas-liquid two-phase turbulence flow field.
引文
[1] 管一明,李仁刚.湿式石灰石烟气脱硫工艺现状和发展.电力环境保护.1999,15(2):54-58.
    [2] 谭鑫,钟儒刚,甄岩等.钙法烟气脱硫技术研究进展.化工环保.2003,23(6):322-328.
    [3] 刘志勇,陈建中.中国湿法烟气脱硫技术现状和前景展望.云南环境科学.2004,23(增刊1):147—149.
    [4] 曾芳,陈力,李晓芸.湿式脱硫塔流场数值计算.华北电力大学学报.2002,29(2):106-110.
    [5] 唐志勇,仲兆平,孙克勤,周山明,金保升.湿法脱硫喷淋塔空塔流场数值模拟.能源研究与利用.2003,2:10-12.
    [6] 钟秦.湿法烟气脱硫的理论和实验研究(Ⅱ)—湿壁塔烟气脱硫数学模型.南京理工大学学报.1999,23(1):1-5.
    [7] 杨柳,王世和,王小明.湿式脱硫塔除雾器流场的数值模拟.华东电力.2004,32(10):5-6.
    [8] M. Gerbec, A. Stergarsek, R. Kocjancic. Simulation model of wet flue gas desulphurization plant. Computers & Chemical Engineering. 1995, 19(1): 283-286.
    [9] Soren Kiil, Michael L. Michelsen, Kim Dam-Johansen. Experimental Investigation and Modeling of a Wet Flue Gas Desulfurization Pilot Plant. American Chemical Society. 1998, 37(7): 2792-2806.
    [10] 徐君岭,卢万成,施建伟.喷雾脱硫过程中拐形分离器内气雾间热交换及分离的研究.动力工程.2000,20(6):916-918.
    [11] 徐君岭,卢万成.喷雾脱硫时拐形流道内烟气与水雾间传热传质工程研究.环境工程.2000,18(6):37-39.
    [12] 庄建华,岳蜂,张秀坤,郑松岭,陆慧林冲温反应过程中石灰石颗粒化学反应的数值研究.Heilongjiang Electric Power2004,26(5):352-355.
    [13] 吴树志,赵长遂,段钰锋,陈晓平.增湿活化脱硫反应器内流动、蒸发与碰撞过程数值计算.热能动力过程.2003,18(5):471-474.
    [14] Harries, R. R. Process modelling for wet limestone flue gas desulfurization. Process Safety and Environmental Protection: Transactions of the Institution of Chemical Engineers. 1993, 71(4): 289-295.
    [15] Newton Gerald H, Kramlich John, Payne Roy. Modeling the SO_2-slurry droplet reaction. AICHE Journal. 1990, 36(12): 1865-1872.
    [16] 王益农,童钧耕,严达.喷雾脱硫过程中喷雾特性对脱硫效率影响的数值研究.四川环境.2003,22(1):37-39.
    [17] 王益农,童钧耕,严达.喷雾分离脱硫中传热传质的数值研究.城市环境与城市生态.2003,16(4):13-15.
    [18] 周祖飞,金新荣.影响湿法烟气脱硫效率的因素分析.浙江电力.2001,3:42-45.
    [19] 亢燕铭,李世龙.管道内烟气喷雾脱硫的研究.环境工程.2001,19(1):31-33.
    [20] 韩琪,李忠华.石灰石/石膏湿法烟气脱硫的化学过程研究.电力环境保护.2002,18(1):1-3.
    [21] 鲍重光.静电技术原理.北京:北京理工大学出版社,1993.
    [22] 任惠芳,韩学孟,王玉顺.气力式静电喷头雾化特性研究.山西农业大学学报.2003,2(4):148-151
    [23] Marshall. W. R. Jr. Atomization and spray drying. Chem. Engr. Progress Monograph Series No. 2. Publ. by AICHE, 1954.
    [24] H. Elbanna, M. I. I. Rashed, M. A. Ghazi. Droplets from Liquid Sheets in an Air stream. Transactions of ASAE. 1984, 27(3): 677-679.
    [25] Rayleigh. J. WS. On the instability on the jets. Proc. Roy. Soc. 1879, 24: 71-97.
    [26] Jones A. R, K. C. Thong. The production of charged monodisperse full droplets by electrical dispersion. Brit. Jour. Appl. Phy. Series. D. 1971, 4: 1159-1166.
    [27] Garmendia. L. A simplified model of electro-aerodynamic atomization. AIChE Jour. 1977, 23: 935-938.
    [28] Thong. K. C, F. J. Weinberg. Electrical control of the combustion of solid and liquid particulate suspensions. Proc. Roy. Soc. 1971, 32(4): 201-215.
    [29] S. Edward Law. Embedded-electrode electrostatic-induction spray-charging nozzle: theoretical and engineering design. Transaction of ASAEIA. 1979, 20(6): 1096-1100.
    [30] 贺文智,陈宇峰,孟庆.气流式雾化实验研究进展内蒙古石油化工.第22卷:38-41.
    [31] 黄镇宇,姚悦,刘建忠,崔彦栋,周俊虎,岑可法.高粘度流体撞击多级雾化特性研究.中国电机学报.2005,25(25):285—288.
    [32] 陆承祖,王克起.静电原理及防灾.天津:天津大学出版社,1991.
    [33] 王荣.植保机械学.北京:机械工业出版社,1990.
    [34] S. Edward Law, Henry D. Brown. Effects of liquid conductivity upon gaseous discharge of droplets. IEEE. 1989, 25(6): 1073-1080.
    [35] K. Adamiak, G. S. P. Castle, I. I. Inculet-. Numerical simulation of the electric field distribution in tribo-powder coating of conducting cylindrical objects. I EEE. 1994, 30(1): 15-221.
    [36] 王军锋,闻建龙,罗惕乾.荷电喷雾两相湍流流场的数值计算.江苏大学学报(自然科学版).2004,25(5):13-16.
    [37] 亢燕铭,李世龙.荷电喷雾脱硫实验与机理分析.环境科学学报.2001,21(5):538-541.
    [38] 金晗辉.荷电两相湍流理论在病虫害防治技术中的应用研究.江苏理工大学硕士论文,1999.
    [39] 罗惕乾.流体力学.北京:机械工业出版社,2003.
    [40] 陶文铨.数值传热学.西安:西安交通大学出版社,1995.
    [41] 梁海杰.气液两相双流体模型和数值分析.西安交通大学硕士论文,2002.
    [42] 陈矛章.粘性流体动力学基础.北京:高等教育出版社,1993.
    [43] Gosman, A. D, Lekakou, C, Politis, S, Issa, R. I, and Looney, M. K. Multidimensional Modeling of Turbulent Two-phase Flows in Stirred Vessels. AICHE J. 1992, 38: 1946-1956.
    [44] Serag-Eldin, M. A, Spading, D. B. Computations of Three-Dimensional Gas Turbine Combustion Chamber Flows. ASME Journal of Engineering for Power. 1997, 101: 327-336.
    [45] Rapley, C. W, Edited by J. Coldwell and A. O. Moscardini. Flow and Heat Transfer in Non-Circular Passages, in: Numerical Modeling in Diffusion Convection. Pentech Press, London: Plymouth. 1982: 78-128.
    [46] Chan, S. H, Abou-Ellail, M. M. M. A Two-Fluid Model for Reacting Turbulent Two-Phase Flows. J. Heat Transfer. 1994, 116: 427-435.
    [47] 李晓芸.湿法脱硫立式吸收塔塔内过程的数值模拟.华北电力大学硕士论文,2002.
    [48] 王军锋.荷电喷雾燃烧的基础研究—燃油静电喷雾及荷电两相湍流射流的研究.江苏大学博士论文,2002.
    [49] 李永光.气液两相绕流的数值模拟和实验研究.华北电力大学硕士论文,2002.
    [50] Newton G H, Gramlic J. Modeling the SO_2 slurry droplet reaction. A. I. Ch. E. J. 1990, 36(12): 1865~1872.
    [51] Ruhland F, Kind R, Weiss S. The kinetics of the absorption of sulfur dioxide in calcium hydroxide suspension. Chem, Eng, Sci. 1991, 46(4): 934~946.
    [52] Gao X, Zhou J, Luo Z et al. Modeling of the aqueous Ca(OH)_2 reaction under semi-dry FGD condition. ICEE 98, Energy and Environment, China Machine Press. 1998: 342~348.
    [53] 高翔,骆仲泱,倪明江,岑可法.喷钙脱硫系统中增湿活化装置的脱硫性能研究——模型的建立.中国电机工程学报.1999,2.
    [54] 由长福,祈海鹰,徐旭常,凌晓聪,马千里.生石灰颗粒中温脱硫过程数值计算.中国工程热物理学会第十届年会.
    [55] 金玲荣,刁永发,沈恒根.烟道内冲灰水喷雾烟气脱硫工程中传热传质的数值研究.能源环境保护.2006,20(1):41-44.
    [56] 刘大有.建立两相流方程的动力论方法.力学学报.1990,19(3).
    [57] 傅德薰,马延文.计算流体力学.北京:高等教育出版社,2002.
    [58] 刘大有.二相流体动力学.北京:高等教育出版社,1993.
    [59] 周力行.湍流两相流动与燃烧的数值模拟.北京:清华大学出版社,1989.
    [60] 李开泰,黄艾香.张量分析及其应用.西安:西安交通大学出版社,1984.
    [61] 鲁钟琪.两相流与沸腾传热.北京:清华大学出版社,2002.
    [62] 周力行.颗粒湍动能输送方程的两相湍流模型和平面闭式两相射流的数值模拟.中国科学.1988,A(12).
    [63] 刘儒勋,舒其望.计算流体力学的若干新办法.北京:科学出版社,2003.
    [64] Gabriel Nii Laryea, Soo-Young No. Development of electrostatic pressure-swirl nozzle for agricultural applications. Journal of Electrostatics. 2003, 57: 129-142.
    [65] 王运良.气固两相双流体模型与数值计算及轴流叶轮内两相流场的实验研究.西安交通大学博士论文,1993.
    [66] Zbigniew Adamczyk~*. Particle adsorption and deposition: role of electrostatic interactions. Advances in Colloid and Interface Science. 2003, 100 (102): 267-347.
    [67] S. N. Jayasinghe, M. J. Edirisinghe. Effect of viscosity on the size of relics produced by electrostatic atomization. Journal of Aerosol Science. 2002, 33: 1379-1388.
    [68] S.V.帕坦卡著,张政译.传热与流体流动的数值计算.北京:科学出版社,1984.
    [69] F. Barreras, H. Amaveda, A. Lozano. Transient high-frequency ultrasonic water atomization. Experiments in Fluids. 2002, 33: 405-413.
    [70] 韩艳霞,金辉.计算流体力学通用软件STAR-CD简介.甘肃科技.2005,21(9):35~36.
    [71] 陈景秋,胡韩飞,张永祥.Star-CD对汽车外流场的三维数值模拟.重庆大学学报(自然科学版).2005,28(4):99~101.
    [72] 孔华,施正伦,高翔,吕同波,骆仲泱,倪明江,岑可法.喷淋式湿法脱硫装置的试验研究.动力工程.2001,21(5):1459-1463.
    [73] IBRAHIM K M, WERTHIMER G D, BACHALO W D. Signal processing consideration for laser Doppler and phase Doppler application. 5~(th) Inter. Symp. on Appl. of laser Techanics, 1990.
    [74] 刘贵苏,刘诗楼,张治国,郭嘉,罗晔.三维动态分析仪的原始数据开发.激光技术.1994,18(5):257~260.
    [75] 冯旺聪,郑士琴.粒子图像测速(PIV)技术的发展.仪器仪表用户.2003,6(10):1-3.
    [76] R. Lindken, W. Merzldrch. A novel PIV technique for measurements in multiphase flows and its application to two-phase bubbly flows. Experiments in Fluids. 2002, 33: 814-825.
    [77] HYOUNG-BUM KIM, JEAN HERTZBERG, CRAIG LANN1NG, ROBIN SHANDAS. Noninvasive Measurement of Steady and Pulsating Velocity Profiles and Shear Rates in Arteries Using Echo PIV: In Vitro Validation Studies. Annals of Biomedical Engineering. 2004, 8(32): 1067-1076.
    [78] 孙鹤泉,康海贵,李广伟.PIV的原理与应用.水道港口.2002,23(1):42~45.
    [79] J. Nogueira, A. Lecuona, P. A. RodriHguez. Local field correction PIV: on the increase of accuracy of digital PIV systems. Experiments in Fluids. 1999, 27: 107-116.
    [80] H. Hu, T. Saga, T. Kobayashi, N. Taniguchi, M. Yasuki. Dual-plane stereoscopic particle image velocimetry: system set-up and its application on a lobed jet mixing flow. Experiments in Fluids. 2001, 31: 277-293.
    [81] H. Huang. An extension of digital PIV-processing to double-exposed images. Experiments in Fluids. 1998, 24: 364-372.
    [82] 邹晓琳,陈汇龙,金超花等.石灰浆荷电雾化特性的实验研究.排灌机械.2007,03.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700