倾转旋翼/机翼气弹耦合动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
倾转旋翼机通过旋翼的倾转,实现在直升机飞行模式和飞机飞行模式之间动态转换,使其兼具直升机及固定翼飞机的飞行能力。倾转旋翼机的旋翼与机翼之间存在着严重的气弹耦合现象,尤其是旋翼倾转过渡飞行状态,系统的结构动力学特性、旋翼的气动力及入流均处于动态变化过程,具有复杂的非线性和非定常特性。本文通过理论分析与试验,重点研究倾转旋翼/机翼气弹耦合动力学特性。
     基于Hamilton原理,利用多体方法描述动力学部件的空间运动关系,充分考虑倾转旋翼/弹性机翼之间强耦合非线性的气动、惯性及结构耦合,建立了倾转旋翼/机翼气弹耦合动力学分析模型,所建立的模型保留了机翼弹性变形以及倾转角度速度与旋转旋翼之间的各种惯性耦合影响。旋翼入流采用带有动态尾迹弯曲修正的广义动态入流模型,综合考虑旋翼/机翼耦合变形,尤其是旋翼动态倾转过程中,响应、气动力及旋翼诱导速度之间的气动耦合影响。非线性的结构动力学模型与非定常的气动及入流模型集成为时域内紧耦合的气弹动力学综合分析模型,利用数值积分进行倾转旋翼机的瞬态响应分析。
     通过进行数值算例分析,结合带有复杂几何外形的等速万向铰倾转旋翼桨毂的模态试验、倾转旋翼/机翼气弹耦合动力学缩尺模型的风洞试验研究,开展了倾转旋翼/机翼气弹耦合动力学建模的验证研究。试验结果与模型计算分析结果吻合良好,试验研究与对比分析表明本文所建立的倾转旋翼/机翼气弹耦合动力学分析模型具有很高的分析精度,可以有效分析倾转旋翼/机翼耦合系统的气弹动力学问题。
     利用所建立的倾转旋翼/机翼气弹耦合动力学分析模型,进行了倾转旋翼机在倾转过渡状态的瞬态响应研究,并利用瞬态响应的方法进行了倾转旋翼机在飞机模式大速度前飞时的回转颤振机理研究。倾转过渡状态的瞬态响应分析研究了倾转操纵规律以及前飞速度对于旋翼/机翼气弹耦合响应的影响,最终进行了变旋翼转速变总距操纵的动态倾转过渡瞬态响应分析。回转颤振现象的瞬态响应研究从物理上描述了倾转旋翼的挥舞运动与机翼垂直弯曲及扭转模态发生不稳定气弹耦合的机理,并研究了复合材料机翼大梁气弹剪裁设计对于回转颤振抑制的有效性。
     基于所建立的倾转旋翼/机翼气弹耦合动力学分析模型,进行了倾转旋翼机的气弹稳定性参数影响研究,分析参数包括:机翼弹性、耦合刚度、机翼几何参数及复合材料的铺层设计参数;短舱惯量、倾转旋翼轴安装位置及长度;桨毂构型参数、挥舞变距调节等基本动力学设计参数。分析研究得到了一些有意义的结论与参数影响规律,这些结论可以用于指导倾转旋翼机的动力学设计。
Tiltrotor aircraft can implement continuous flight conversion between helicopter mode andpropeller plane mode through the pivoting of rotor. Because the tiltrotor is planted at the tip of theelastic wing and the tiltrotor is permitted to flap, tiltrotor aircraft has seriously aeroelastical couplingsbetween rotor and wing. Especially in its conversion flight, inflows and aerodynamics of rotor and thedynamical characteristics of tiltrotor-wing coupled system are varied in dynamic process, which resultin complicated nonlinear and unsteady characteristics of tiltrotor-wing coupled system. This papergives emphasis to the researches on the dynamical characteristics of tiltrotor-wing aeroelasticallycoupled system with analyses and experiments.
     Basing on Hamilton’s principle, a dynamical analysis model of semi-span tiltrotor aircraft isdeveloped by the multi-body method with considerations of complex couplings between tiltrotor andwing due to the nonlinear and unsteady characteristics coming from the complicated aerodynamic andinertial force as well as the complicated structures. In which, all of nonlinearly inertial couplingsbetween the rotating blade and elastic distortions of wing are retained and variations of pivoting androtating speed of rotor are considered. Then, the generalized dynamic inflow model is used with themodification of dynamic wake distortion to wholly take into account the aeroelastical couplingsamong responses, aerodynamics and inflows for the coupled distortion of tiltrotor and wing,especially in conversion flight. Finally, all of the structural dynamic model, aerodynamic model andinflow model are tightly coupled together in time domain to analyze the response with implicatingnumeric integration method。
     The aeroelastically dynamic analysis model of tiltrotor-wing coupled system was validatedthrough numerical and experimental contrastive analyses. A modal experiment of gimbaled tiltrotorwith advanced geometry blade and aeroelastically dynamical experiments with reduced scale modelof semi-span tiltrotor have been completed in wind tunnel of LORA NUAA to support the validation.Contrastive analyses achieved good correlations between numerical and experimental results, whichindicate that the multi-body analytical model represented in this paper has capacities to analyzeaeroelastically dynamic characteristics of coupled tiltrotor-wing coupled system.
     The dynamic characteristics of tiltrotor aircraft in conversion flight and the mechanism of whirlflutter in prop-plane forward flight have been simulated by the method of transient responsecalculated with the validated analysis model. As to the conversion flight, effects of variations ofpivoting and rotating speed of rotor were analyzed first, and then, aeroelastic coupling responses oftiltrotor and wing during transition flight with varying rotational speed and varying pitch controls were simulated. The mechanism of whirl flutter simulated in transient response indicated that physicalphenomena of tiltrotor aircraft’s whirl flutter was the aeroelastic coupling radiation between the flapof tiltrotor and the vertical bending and torsion of elastic wing when flight velocity upon the boundaryspeed. Aiming at the mechanism of whirl flutter, the potential application of aeroelastically tailoringcomposite wing beam was analyzed.
     Aeroelastical stability of tiltrotor wing coupled system was analyzed with the analysis modeldeveloped in this research. The studied parameters included: the elastic and coupling stiffness of wing,structural geometry parameters of wing, the layer parameters of composite material of wingcrossbeam, the inertia of tilting nacelle, the length of hub to tilting hinge and the position of the tiltinghinge, structural parameters of hub and the coupling between flap and pitch. Some useful conclusionsand disciplines have been obtained which can be used to provide the guide to dynamic design oftiltrotor aircraft.
引文
[1]Wayne Johnson,Helicopter Theory[M],USA:Dover Publications,Inc.,31East2ndStreet,Mineola,N.Y.11501,1994.
    [2]张呈林,郭才跟,直升机总体设计[M],北京:国防工业出版社,2006。
    [3] Nixon, M. W., Aeroelastic Response and Stability of Tiltrotors with ElasticallyCoupled Composite Rotor Blades[D], University of Maryland,1993.
    [4] Hyeonsoo Yeo and Wayne Johnson,Optimum Design of a Compound Helicopter[J],JOURNALOF AIRCRAFT,Vol.46, No.4, July–August2009.
    [5] Matthew W. Floros and Wayne Johnson, Performance Analysis of the Slowed-RotorCompound Helicopter Configuration[C], Presented at the AHS4th Decennial Specialists’Conference on Aeromechanics,San Francisco, California, January21–23,2004.
    [6] Matthew W. Floros and Wayne Johnson, Stability Analysis of the Slowed-Rotor CompoundHelicopter Configuration[C], American Helicopter Society60th Annual Fnrnm. Baltimore.MD. June7-10.3004. Copyright
    [7] Simon Newman, The compound helicopter configuration and the helicopter speed trap,Aircraft Engineering and Aerospace Technology[J],Volume69, Number5,1997, pp.407–413.
    [8]Esculier,J.et al. Preliminary Comparisons of Tilt Rotor and Compound Helicopter forCivil Applications[C], The46th Annual National Forum and Technology Display ofAHS,1989,Boston,Massachusetts.
    [9] Martin D. Maisel, Demo J. Giulianetti, Daniel C. Dugan. The History of the XV-15Tilt Rotor Research Aircraft: From Concept to Flight[R]. NASA SP-2000-4517. NationalAeronautics and Space Administration Office of Policy and Plans,NASA History Division,Washington, D.C.2000.
    [10] Martin, S., Jr., A.H. Schoen, and R. Vehorn, Cdr, USN. V-22Development[C]. The43rd Annual National Forum of the American Helicopter Society.1987. St. Louis, Missouri.
    [11]Magee J.P.,Alexander H.R.,Gillmore K.B.,etc. Wind Tunnel Tests of a Full ScaleHingeless Prop/Rotor Design for the Boeing Model222Tiltrotor Aircraft[R]. ReportNo.D222-10059-1,Contract NAS2-6505,April1973.
    [12]Wayne Johnson, Dynamics of Tilting Proprotor Aircraft in Cruise Flight[R].NASA-TN-D-7677. Ames Research Center and U.S. Army Air Mobility R&D Laboratory MoffettField, Calif.
    [13]Quigley H.C. and Koenig D.G., A Flight Study of the Dynamic Stability of a TiltingRotor Convertiplane, NASA TN D-778,April1961.
    [14]Anna Kathleen Tyler Howard,The Aeromechanical Stability of Soft-inplaneTiltrotors[D],The Pennsylvania State University, the graduate school College ofEngineering,2001.
    [15]Abbott F.T., Kelly H.N., and Hampton K.D., Investigation of1/8size DynamicAeroelatic Model of the Lockheed Electra Airplane in the Langley Transonic DynamicsTunnel, NASA TM SX-456, November1960
    [16]Kvaternik R.G., Experimental and Analytical Studies in Tilt Rotor Aeroelasticity,AHS/NASA Ames Specialists Meeting on Rotorcraft Dynamics,1974
    [17] Young, M.I. and R.T. Lytwyn,The Influence of Blade Flapping Restraint on the DynamicStability of Low Disk Loading Propeller-Rotors,The23rd Annual National Forum of theAmerican Helicopter Society.1967. Washington, D.C.
    [18] DeLarm, L.N.,Whirl Flutter and Divergence Aspects of Tilt-Wing and Tilt-RotorAircraft. In U.S. Air Force V/STOL Technology and Planning Conference.1969. Las Vegas,Nevada.
    [19] Kvaternik, R.G., Studies in Tilt-Rotor VTOL Aircraft Aeroelasticity, in SolidMechanics Structures and Mechanical Design. Case Western Reserve University. p.659.1973.
    [20] Johnson, W., Analytical Model for Tilting Proprotor Aircraft Dynamics, IncludingBlade Torsion and Coupled Bending Modes, and Conversion Mode Operation.1974, NASA AmesResearch Center: Moffett Field, California. p.1-160.
    [21] Johnson, W., Analytical Modeling Requirements for Tilting Proprotor AircraftDynamics.1975, NASA Ames Research Center: Moffett Field, California.
    [22] Johnson, W.,“Recent Developments in the Dynamics of Advanced Rotor Systems.”1985,NASA. TM86669.
    [23] Srinivas, V., Aeroelastic Analysis of Advanced Tiltrotor Aircraft, in AerospaceEngineering.1995, University of Maryland: College Park, Maryland.
    [24] William T. Yeager, Jr.,Raymond G. Kvaternik,A Historical Overview of AeroelasticityBranch and Transonic Dynamics Tunnel Contributions to Rotorcraft Technology andDevelopment[R],NASA/TM-2001-211054, ARL-TR-2564,August2001.
    [25]Sreenivas N. Nampy nd Edward C. Smith,Extension-Twist Coupled Tiltrotor Blades UsingFlexible Matrix Composites,46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics&Materials Confer,18-21April2005, Austin, Texas
    [26]David J. Piatak, Raymond G. Kvaternik, Mark W. Nixon, and etc., A Wind-TunnelParametric Investigation of Tiltrotor Whirl-Flutter Stability Boundaries[C], Presentedat the American Helicopter Society57th Annual Forum, Washington, DC, May9-11,2001.
    [27]G. L. Ghiringhelli, P. Masarati1, P. Mantegazza,M. W. Nixon,Multi-Body Analysisof the1/5Scale Wind Tunnel Model of the V-22Tiltrotor[C], Presented at the AmericanHelicopter Society55th Annual Forum, Montreal, Canada, May25-27,1999.
    [28]Mark W. Nixon,Raymond G. Kvaternik,T. Ben Settle,Tiltrotor Vibration ReductionThrough Higher Harmonic Control[C],PPresented at the American Helicopter Society53rdAnnual orum, Virginia Beach, Virginia, April29-May1,1997.
    [29]Raymond G. Kvaternik, David J. Piatak, Mark W. Nixon, and etal. An ExperimentalEvaluation of Generalized Predictive Control for Tiltrotor Aeroelastic StabilityAugmentation in Airplane Mode of Flight[C], Presented at the American Helicopter Society57th Annual Forum, Washington, DC, May9-11,2001.
    [30] Mark W. Nixon, Chester W. Langston, J. D. Singleton and etal. AEROELASTIC STABILITYOF A FOUR-BLADED SEMIARTICULATED SOFT-INPLANE TILTROTOR MODEL[C], Presented at the2003International Forum on Aeroelasticity and Structural Dynamics, June4-6,2003, Amsterdam,The Netherlands.
    [31] Mark W. Nixon, Chester W. Langston, Jeffrey D. Singleton,and etal., AeroelasticStability Of A Soft-Inplane Gimballed Tiltrotor Model In Hover[C],AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, April16-19,2001/Seattle, WA
    [32] Johnson,W., A Comprehensive Analytical Model of Rotorcraft Aerodynamics andDynamics,Part1: Analysis Development.1980, NASA.
    [33] Johnson, W., A Comprehensive Analytical Model of Rotorcraft Aerodynamics andDynamics.1980, NASA. TM81182.
    [34] Johnson, W., A Comprehensive Analytical Model of Rotorcraft Aerodynamics andDynamics.1980, NASA. TM81183.
    [35] Johnson, W., A Comprehensive Analytical Model of Rotorcraft Aerodynamics andDynamics.1980, NASA. TM81184.
    [36] Johnson, W., A Comprehensive Analytical Model of Rotorcraft Aerodynamics andDynamics.1988, Johnson Aeronautics: Palo Alto, CA.
    [37] Srinivas, V. and I. Chopra (1996). Formulation of a Comprehensifve AeroelasticAnalysis for Tiltrotor Aircraft. The37th AIAA/ASME/ASCE/AHS/ASC Structures, StructuralDynamics,and Materials Conference, Salt Lake City, UT, American Institute of Aeronauticsand Astronautics,Inc.
    [38] Srinivas, V. and I. Chopra (1996). Validation of a Comprehensive AeroelasticAnalysis for Tiltrotor Aircraft. The52nd Annual National Forum and Technology Displayof the American Helicopter Society, Washington, DC.
    [39] Srinivas, V., I. Chopra, et al.(1998). Aeroelastic Analysis of Advanced GeometryTiltrotor Aircraft. Journal of the American Helicopter Society43(3):212-221.
    [40]Venkat Srinivas, Inderjit Chopra, Mark W. Nixon, Aeroelastic Analysis of AdvancedGeometry Tiltrotor Aircraft[C],AIAA-95-1454-CP, presented at the36th structures,structural dynamics and materials conference and adaptive structures forum, New Orleans,April,1995
    [41]Venkat Srinivas and Inderjit Chopra, Formulation of a Comprehensive AeroelasticAnalysis for Tiltrotor Aircraft, Presented at the37th structures, structural Dynamicsand Materials Conference, Salt Lake City, Utah, April15-17,1996. AIAA-96-1546-CP
    [42]Giuseppe Quaranta, Pierangelo Masarati, Paolo Mantegazza, Speeding up MultibodyAnalysis by Parallel Computing[C], Presented at the CAPI2000,4_Workshop sul Calcoload Alte Prestazioni in Italia, Milano,2000.
    [43]Giuseppe Quaranta, Pierangelo Masaratiy, Massimiliano Lanz, etc., Dynamic Stabilityof Soft-in-Plane Tiltrotors by Parallel Multibody Analysis, Presented at the26thEuropean Rotorcraft Forum,26-29September2000, The Hague, The Netherlands
    [44] David Popelka, David Lindsay, Tom Parham, Jr, and etc., RESULTS OF AN AEROELASTICTAILORING STUDY FOR A COMPOSITE TILTROTOR WING[C], Presented at the American HelicopterSociety51st Annual Forum, Fort Worth, Texas, May9–11,1995.
    [45] Mark W. Nixon, David J. Piatak, Aeroelastic Tailoring for Stability Augmentationand Performance Enhancements of Tiltrotor Aircraft[C], Presented at the AHS55th AnnualForum, Montreal, Quebec, Canada, May25-27,1999.
    [46]Agnihotri,A.,Schuessler,W.,and Marr,R.V22Aerodynamic loads Analysis andGevelopment of Loads Alleviation Flight Control System.45th Annual forum of the AmericanHelicopter Society,Boston,Massachusetts,May,1989.
    [47]James M. Wang, Christopher T. Jones, Mark W. Nixon, A Variable Diameter Short HaulCivil Tiltrotor[C], Presented at the AHS55th Annual Forum, Montreal, Quebec, Canada,May25-27,1999.
    [48]Gerand E. Welch, Assessment of Aerodynamic Challenges of a Variable speed PowerTurbine for Large Civil Tilt rotor Application. NASA/TM-2010-216758, August2010.
    [49]徐敏.倾转旋翼机的发展与关键技术综述[J].直升机技术,2003(02).
    [50]周加松.倾转旋翼飞行器悬停状态下旋翼/机翼干扰研究[D].南京航空航天大学,2004.
    [51]李春华;徐国华.悬停和前飞状态倾转旋翼机的旋翼自由尾迹计算方法[J]空气动力学学报,2005,(02).
    [52]徐恺.倾转旋翼机旋翼/机翼/机身气动干扰计算[D].南京航空航天大学,2007.
    [53]李春华;徐国华.倾转旋翼机旋翼对机翼气动干扰的建模及分析[J]空气动力学学报,2008,(02).
    [54]陈平剑;林永峰;黄水林.倾转旋翼机旋翼/机翼气动干扰的试验研究[J]直升机技术,2008,(03).
    [55]岳海龙;夏品奇.倾转旋翼机在转换飞行时的旋翼尾迹弯曲非定常动态入流模型[J]中国科学(E辑:技术科学),2009,(12).
    [56]曹芸芸;陈仁良.倾转旋翼飞行器旋翼对机翼向下载荷计算模型[J]航空动力学报,2011,(02).南京航空航天大学航空宇航学院直升机旋翼动力学重点实验室
    [57]Hao Kang.Transient Aeroelastic Response Prediction of Gimballed Tiltrotors DuringEngage and Disengage Operations[C].海峡两岸直升机技术研讨会,南京,1998,7.
    [58]杨卫东;董凌华.倾转旋翼过渡状态瞬态响应分析与试验[J],航空动力学报,2005(05).
    [59]杨卫东;董凌华.变转速倾转旋翼机多体系统气弹响应分析[J].哈尔滨工业大学学报,2006(02).
    [60]董凌华;杨卫东.倾转旋翼/机翼耦合系统过渡飞行瞬态响应分析[J].南京航空航天大学学报,2006(03).
    [61]董凌华;杨卫东;夏品奇.直升机模式下倾转旋翼机多体气弹动力稳定性分析(英文)[J].Transactions of Nanjing University of Aeronautics&Astronautics,2006(03).
    [62]贾大伟.倾转旋翼机气弹响应及稳定性若干问题研究[D].南京航空航天大学,2007.
    [63]彭名华;蔡杰;张呈林.倾转旋翼桨叶空气动力学/结构动力学多学科优化设计研究[J].航空动力学报,2007(06).
    [64]邵松;张呈林;朱清华;薛立鹏.基于虚拟样机的倾转旋翼/机翼系统动力学仿真[J].系统仿真学报,2007(09).
    [65]岳海龙;夏品奇.倾转旋翼机前飞动力学稳定性分析[J].航空动力学报,2007(11).
    [66]董凌华;杨卫东;张呈林.倾转旋翼/机翼耦合系统过渡状态气弹动力学试验研究[J].振动工程学报,2008(05).
    [67]薛立鹏;邵松;张呈林.变直径倾转旋翼设计研究[J].机械科学与技术,2008(10).
    [68]薛立鹏;张呈林.前飞状态倾转旋翼机气弹稳定性建模[J].航空动力学报,2009(02).
    [69]贾大伟;韩景龙.倾转旋翼机直升机状态系统稳定性判断的一种方法[J].直升机技术,2009(01).
    [70]薛立鹏;张呈林.动力学参数对倾转旋翼机气弹稳定性的影响[J].南京航空航天大学学报,2011(01).
    [71]汪石农.倾转旋翼模型实验台的操纵机构及控制系统设计[D].南京航空航天大学,2006.
    [72]沙虹伟.无人倾转旋翼机飞行力学建模与姿态控制技术研究[D].南京航空航天大学,2007.
    [73]宋彦国;王焕瑾;沙虹伟;徐敏.倾转旋翼飞行器飞行力学模型研究[J].空气动力学学报,2008(02).
    [74]曹芸芸,陈仁良,倾转旋翼飞行器的操纵策略和配平方法.南京航空航天大学学报,2009,第41卷,第1期。
    [75]陈永;龚华军;王彪.倾转旋翼机过渡段纵向姿态控制技术研究[J].飞行力学,2011(01).
    [76]王福新;黄明其.倾转旋翼飞行器的风洞试验技术综述[J].实验流体力学,2005(04).
    [77]周文雅;李立涛;杨涤.倾转旋翼航空器建模方法研究[J].飞行力学,2008(03).
    [78]胡国才.倾转旋翼机气动弹性稳定性研究进展[J].海军航空工程学院学报,2004(03).
    [79]胡国才.新型倾转旋翼机气动弹性稳定性分析模型[J].海军航空工程学院学报,2006(06).
    [80]李海旭;屈香菊;王维军.倾转旋翼机的多体运动建模与仿真(英文)[J]. ChineseJournal of Aeronautics,2010(04).
    [81]郭家舜;王三民;袁茹.倾转旋翼机传动系统动态效率研究[J].航空动力学报,2010(08).
    [82]杨喜立;朱纪洪;孙增圻.倾转旋翼飞机直升机模态短舱倾转飞行控制[J]清华大学学报(自然科学版),2006,(07).
    [83]余长杰;朱纪洪;胡春华;孙增圻.倾转旋翼机模拟平台建模与仿真[J].清华大学学报(自然科学版),2006(04).
    [84]杨喜立;朱纪洪;黄兴李;胡春华;孙增圻.倾转旋翼飞机建模与仿真[J].航空学报,2006(04).
    [85]邹灿东;王维军;屈香菊.倾转旋翼机悬停建模与实验[J].飞行力学,2010(01).
    [86]Jinggen Zhao,J.V.R.Prasad,David A.Peters.Rotor Dynamic Wake Distortion Model forHelicopter Maneuvering Flight[C].58th Annual Forum Proceedings ofAHS,Montreal,Canada,2002.
    [87]Jinggen Zhao,Dynamic Wake Distortion Model for Helicopter Maneuvering Flight[D].School of Aerospace Engineering,Georgia Institute of Technology,March2005
    [88] David A.peters. Toward a Unified Lift Model for Use in Rotor Blade StabilityAnalyses[J].Journal of The American Helicopter Society, July1985:32~41.
    [89]David A.Peters,Jorge A.Morillo,Adria M.Nelson.New Developments in Dynamic WakeModeling for Dynamics Applications[C].57th Annual Forum Proceedings ofAHS,Washington,DC,2001.
    [90]David A.Peters,David Doug Boyd,Cheng Jian He.Finite-State Induced-Flow Model forRotors in Hover and Forward Flight[C].43rd Annual Forum Proceedings ofAHS,St.Louis,1987.
    [91]David A.Peters, Cheng Jian He.Correlation of Measured Induced Velocities with aFinite-State Wake Model[C].45th Annual Forum Proceedings of AHS,Boston,Mass,1989.
    [92]Bruce D.Nibbelink,David A.Peters.Flutter Calculatuons for Fixed and Rotating Wingswith State-Space Inflow Dynamics[R].AIAA-93-1300-CP,1993.
    [93]David A.Peters, Cheng Jian He.A Closed–Form Unsteady Aerodynamic Theory forLifting Rotors in Hover and Forward Flight[C].43rd Annual Forum Proceedings ofAHS,St.Louis,1987:839-865.
    [94]David A.Peters, Cheng Jian He.Comparision of Measured Induced Velocities withResults from A Closed-Form Finite State Wake Model in Forward Flight[C].45th AnnualForum Proceedings of AHS,Boston,Mass,1989:533-550.
    [95]J.G.Leishman,T.S.Beddoes.A Generalised Model For Airfoil Unsteady AerodynamicBehaviour And Dynamic Stall Using The Indicial Method[C].42nd.Anunual Forum of theAmerican Helicopter Society,Washington D.C, June1986:243~265.
    [96]Morten Hartvig Hansen,Mac Gaunaa,Helge Aagaard Madsen.A Beddoes-Leishman typedynamic stall model in state-space and indicial formulations[R].Riso NationalLaboratory, Roshilde, Denmark. June2004.
    [97]Sandeep Gupta,J.Gordon Leishman.Dynamic Stall Modling of the S809Airfoil andComparison With Experiments[C].44th AIAA Aerospace Sciences Meeting, Reno,Nevada,9-12,January2006.
    [98] Andrew S.Elliott,J.Gordon Leishman,Inderjit Chopra.Rotorcraft AeromechanicalAnalysis Using A Nonlinear Unsteady Aerodynamic Model[C].44th Annual Forum Proceedingsof AHS, Washington, DC,1988:833-845.
    [99]Leishman, J Gordon,Crouse, Gilbert L, Jr. State-space model for unsteady airfoilbehavior and dynamic stall[C].30th AIAA, ASME, ASCE, AHS, and ASC, Structures,Structural Dynamics and Materials Conference,Mobile, AL,1989:1372-1383.
    [100]J.G.Leishman,K.Q.Nyuyen.State-Space Representation of Unsteady AirfoilBehavior[J].AIAA Journal,1990,28(5):836-844.
    [101]高正,直升机空气动力学的新成果[M],北京,航空工业出版社,1999.
    [102]韩东,一种新型式无人直升机的动力学问题研究[D],南京航空航天大学,2006.
    [103]Edward C.Smith,Inderjit.Chopra. Formulation and Evaluation of an Analytical Modelfor Composite Box-Beams[C].31st AIAA/AHS/ASME/ASCE/ASC Structures,StructuralDynamics and Materials Conference,Long Beach,Calif,Apr2-4,1990:23~35.
    [104]Edward C.Smith,Inderjit Chopra. Aeroelastic Response and Blade Loads of a CompositeRotor in Forward Flight[C].33rd AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamicsand Materials Conference,Dallas,Texas,1992:1996~2014.
    [105]郭连峰,带新型桨尖的复合材料桨叶气弹响应分析[D],南京航空航天大学,1998.
    [106] Gunjit Bir, Inderjit Chopra, University of Maryland Advanced Rotorcraft Code(UMARC)Theory Manual,Vol.1,1994
    [107]Chengjian He,Development and Application of a Generalized Dynamic Wake Theory forLiting Rotors[D],Georgia Institute of Technology,July,1989.
    [108] J.G. Leishman, Principles of Helicopter Aerodynamics(SecondEdition)[M],Cambridge University Press,2006
    [109].李其汉,陈志英,张大林.螺旋桨桨叶试验模态分析[J].航空动力学报,1991,6(4):337-341.
    [110].胡海岩,孙久厚,陈怀海.机械振动与冲击[M]。北京:航空工业出版社,2002:263-278.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700