苏牧2号象草新品种耐盐机制初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
象草(Pennisetum purpureum Schumach),原产热带非洲,抗逆性强、适应性广光合效率高,可作为草食畜禽和鱼类的优质青饲料、水土保持植物、优质纸浆和人造板原料,还是重要的生物质能源作物。苏牧2号为2010年国家审定的耐盐象草新品种,是以N51为原始材料,利用细胞工程手段筛选出来的体细胞突变型耐盐象草。本试验以N51象草为对照,研究了0、4、6、和10g/L海盐浓度条件下苏牧2号象草幼苗生长情况、形态特征、植株不同部位阳离子积累及叶片抗氧化酶的变化规律,以期为盐渍土的高效生态利用和象草产业化开发提供技术支撑。试验结果如下:
     (1)随海盐浓度的升高,苏牧2号和N51的株高、植株各部分干重均呈降低的趋势,叶片损伤情况加重;随胁迫时间的延长,海盐对两品种生长的抑制作用均逐渐显著。4g/L、6g/L和10g/L海盐浓度处理下,N51的相对枯叶率和枯叶干重率在胁迫后第28d分别是苏牧2号的1.27、1.25、1.09和1.44、1.20、1.15倍,苏牧2号茎和鲜叶的干重均显著高于N51。
     (2)随海盐浓度的升高,苏牧2号和N51植株各部分Na+含量升高,K+、Ca2+、Mg2+含量和K+/Na+降低。相同海盐浓度胁迫下,苏牧2号和N51植株各部分Na+含量为叶<茎<根,K+含量为根<叶<茎,K+/Na+为根<茎<叶,Ca2+含量为根<茎<叶,Mg2+含量为叶<根<茎。其中,4~10g/L不同海盐浓度胁迫下,苏牧2号和N51根中的K+/Na+均无显著差异;苏牧2号茎中的K+/Na+均高于N51,各浓度下显著性差异不尽相同;除海盐浓度4g/L、处理28d苏牧2号叶中的K+/Na+与N51无显著差异外,叶中的K+/Na+苏牧2号均显著高于N51;苏牧2号的SK+/Na+(stem/root)除海盐浓度4g/L、处理7d低于N51外,苏牧2号均高于N51,是其运输系数的1.02-2.19倍。
     (3)0~6g/L浓度海盐胁迫下,苏牧2号和N51的SOD和POD活性在胁迫后第14d、21d和28d,MDA含量在胁迫后第7d、14d和28d随海盐浓度的升高而升高,CAT活性随海盐浓度的变化与海盐胁迫时间存在交互作用。相同浓度海盐胁迫下,苏牧2号的SOD和POD活性均极显著高于N51;除海盐浓度为4g/L和6g/L时,胁迫后第7d苏牧2号与N51的CAT含量无显著差异外,苏牧2号的CAT活性均显著高于N51。除海盐浓度为0g/L时,胁迫后第28d苏牧2号与N51的MDA含量无显著差异外,苏牧2号MDA含量均极显著低于N51。而10g/L海盐胁迫下,苏牧2号和N51生长至21d时已全部死亡。
     (4)随海盐浓度升高,苏牧2号和N51表皮气孔总密度、表皮毛总密度及泡状细胞长度增大,叶片横切面面积/维管束数目苏牧2号逐渐减小,而N51为0g/L>6g/L>4g/L>10g/L,6g/L比4g/L高6.98%。相同海盐浓度胁迫下,0g/L处理下,表皮气孔总密度苏牧2号与N51无显著差异,4~0g/L处理下苏牧2号显著高于N51。叶片横切面面积/维管束数目除4g/L处理下苏牧2号比N51高13.69%外,均低于N51;细胞深陷程度在0g/L和4g/L下低于N51,在6g/L和10g/L下高于N51;表皮毛总密度为0~6g/L低于N51,10显著高于N51。
Purpureum Pennisetum Schumach was native to tropical African, it has a strong resistance, wide adaptability, highly photosynthetic efficiency, and can be used for the high quality green fodder for fish and herbivores, plant of water and soil conservation, raw materials of high quality pulp and man-made board, and it is important energy crops. Sumu No.2 is a new saline-variety of Purpureum Pennisetum Schumach which was authorized in 2010 by national. It used N51 for raw materials to get Purpureum Pennisetum Schumach of salt resistance by cell engineering screening out of somatic mutations. Seedling growth situation, morphological characteristics, cationic accumulation of different parts of plant and variation rules of antioxidative activity and MDA content of leaves were studied. It could provide technical support for the efficient and ecological using of saline soil and the industrial application of Sumu No.2 on the saline soils.The results are as follows:
     (1) The plant length, dry weight of different parts of plant of Sumu No.2 and N51 decreased and damage degree of leaf increased with the sea-salt concentration increased; Growth inhibitory gradually significant under different sea-salt concentration after prolonged sea-salt stress time. Under 4g/L,6g/L and 1 Og/L sea-salt concentration, the relative deied leaf rate and deied leaf DW rate of N51 were 1.27,1.25,1.09 and 1.44,1.20,1.15 times of Sumu No.2 after 28d treatment. The dry weight of SuMu 2 stem and fresh leavse was significantly higher than N51.
     (2) With sea-salt concentration increasing, Na+content increased and K+、Ca2+、Mg2+ content and K+/Na+ reduced in different parts of Sumu No.2 and N51 plants. Na+ content in different parts of Sumu No.2 and N51 plants was:leaf     (3) The results showed that SOD and POD activities of Sumu No.2 and N51 increased with the increasing of sea-salt concentration after 14d,21d and 28d of stressed, the content of MDA increased with sea-salt concentration increasing after 7d,14d and 28d of stressed and CAT activity had interactive effects between the stress of sea-salt concentration and time under the stress of 0~6g/L sea-salt concentration. The activity of SOD and POD of Sumu No.2 very significantly (P<0.01) higher than those of N51, CAT activity was significantly (P<0.01) higher than that of N51 except that 4g/L and 6g/L of sea-salt concentration after 7d stressed, MDA content was obviously (P<0.05) lower than those of N51 besides Og/L of sea-salt concentration after 28d stressed. Sumu No.2 and N51 were all dead under lOg/L sea-salt stressed in 21d.
     (4) Total density of stomatal and leaf hair and bulliform cell length of Sumu No.2 and N51 increased with the increasing of sea-salt concentration. Leaf total cross-sections per Vascular bundle number of Sumu No.2 decresed, N51was:0 g/L>6 g/L> 4 g/L> 10 g/L(6 g/L higher than 4 g/L for 6.98%) with the increasing of sea-salt concentration. Leaf total cross-sections per Vascular bundle number of Sumu No.2 lower than N51 except that higher than N51 for 13.69% under 4g/L of sea-salt concentration stressed; Bubbly cells length of Sumu No.2 lower than N51 under Og/L and 4g/L of sea-salt concentration stressed and higher than N51 under 6g/L and 10g/L of sea-salt concentration stressed; Stomatal total density of Sumu No.2 extremely higher than N51 except that lower than N51 under 0g/L of sea-salt concentration stressed.
引文
[1]饮佩,周春林,安树青,等.海滨盐土农业生态工程[M].化学工业出版社,2002
    [2]吕贻忠,李保国.土壤学[M].北京:中国农业出版社,2006:356-357
    [3]赵福庚,何龙飞,罗庆云,植物逆境生理生态学[M].化学工业出版社,2004,137-138
    [4]陆静梅,等.中国野生大豆盐腺的发现[J].科学通报,1998,43(19):2074-2077
    [5]赵可夫,范海编.盐生植物及其对盐渍生境的适应生理[M].北京:科学出版社,2005.
    [6]李彦,张英鹏,孙明等.盐分胁迫对植物的影响及植物耐盐机理研究进展[J].植物生理科学,2008,24(1):258-265
    [7]王先宏,蔡青,杨清辉,范源洪.象草(Pennisetum purpureum Schumach)的减数分裂及植物学特征[J].亚热带农业研究,2005,1(3):7-10
    [8]Munns R. Comparative physiology of salt and water stress[J]. Plant Cell Environ,2002,25:239-250
    [9]陈洁,林栖凤.植物耐盐生理及耐盐机理研究进展[J].海南大学学报自然科学版,2003,21(2):177-181
    [10]Dvorak J, Gorham J. Methodology of gene transfer homologous recombination into Triticum rugidum transfer of K+/Na+ discrimination from T. aestivum[J]. Genome,1992,35:639-646
    [11]李子芳,王玉国,孙守钧.植物应对盐胁迫的生理机制[J].河北农业科学,2008,12(3): 1-3
    [12]聂莉莉,张越,刘仲齐.植物抵御盐害的生理机制[J].天津农业科学,2008,14(1):6-9
    [13]丁海荣,洪立州,王茂文,等.星星草耐盐生理机制及改良盐碱土壤研究进展[J].安徽农学通报,2007,13(16):58-59
    [14]王萍,郭继勋.盐碱化草地常见牧草耐盐机理研究[J].东北师大学报自然科学版,1998,(3):116-119
    [15]杨明锋,杨超,侯文莲,等.NaCl和KCl胁迫对碱蓬根和地上部分生长的效应[J].山东师大学报(自然科学版),2002,17(1):68-72
    [16]侯振安,李品芳,郭世文,等.NaCl胁迫对苜蓿和羊草生长与水分利用的影响[J].中国农业科学,2002,35(7):894-900
    [17]党瑞红,周俊山,范海.海滨锦葵的抗盐特性[J].植物生理学通讯,2008,44(4):635-638
    [18]刘志华.盐生植物獐毛耐盐基础生理的研究[J].衡水学院学报,2007,9(1):5-9
    [19]卜庆梅,柏新富,朱建军,等.盐胁迫条件下三角滨藜叶片中盐分的积累与分配[J].应用与环境生物学报,2007,13(2):192-195
    [20]EMNyambati, L E Sollenberger, W E Kunkle. Feed intake and lactation performance of dairy cows offered napiergrass supplemented with legume hay[J]. Livestock Production Science, 2003,83(2):179-189
    [21]岳辉,陈志彪,黄炎和.象草在花岗岩侵蚀劣地的适应性及其水十保持效应[J].福建农林大学学报(自然科学版),2007,36(2):186-189
    [22]周自玮,袁福锦,匡崇义,等.云南德宏地区逸生狼尾草的综合鉴定[J].中国草地学报,2008,30(3):111-114
    [23]V Nallathambi Gunaseelan. Regression models of ultimate methane yields of fruits and vegetable solid wastes, sorghum and napiergrass on chemical composition[J]. Bioresource Technology, 2007,98(6):1270-1277
    [24]钟小仙,佘建明,顾洪如,等.象草幼穗离体培养植株再生研究[J].草业学报,2007,16(3):43-48
    [25]钟小仙,张建丽,佘建明,等.体细胞突变体筛选法获得象草耐盐植株[J].江苏农业学报,2009,25(6):1325-1329
    [26]翁森红,王承斌.植物的耐盐性[J].中国草地,1995,(4):70-72
    [27]赵可夫.植物抗性生理[M].北京:中国科学技术出版社,1993,132-163.
    [28]Nandwal AS, Godara M, Sheokand S, etal. Salinity induced changes in plant water status, nodule functioning and ionic distribution in phenotypically differing genotypes of Vigna radiata L[J]. PlantPhysiol,2000,156:350-359
    [29]Sun G R, PengY Z, ShaoH B, etal. DoPuccinellia tenuiflorahave the ability of salt exudation Colloids and SurfacesB[J]. Biointerfaces,2005,46:197-203
    [30]Fahn A. Secretory tissues in vascular plants[J]. New Phyto,1988,108:229-257.
    [31]韦存虚,王建波,陈义芳,等.耐盐植物星星草叶表皮具有泌盐功能的蜡质层[J].生态学报,2004,24(11):2451-2456
    [32]陆静梅,李建东,胡阿林,等.二色补血草叶片泌盐结构扫描电镜观察[J].应用生态学报,1995,6(4):355-358
    [33]李长润,刘友良.盐胁迫下小麦幼苗离子吸收运输的选择性与叶片耐盐量[J].南京农业大学学报,1993,16(1):16-20
    [34]Hernandez J A, Olmos, etal. Salt-induced oxidative stress in chloroplasts of pea Plants[J]. Plant Sci.1995,105:151-167
    [35]Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology,2008, 59:651-681
    [36]Takemura T, Hanagata, etal. Physiological and biochemical responses to salt stress in the mangrove, Bruguiera gylnnorrhiza[J]. Aquat Bot,2000,68:15-28
    [37]Agarwal S, Pandey V. Antioxidants enzyme responses to NaCl stress in Cassia angustifolia[J]. Biol Plant,2004,48:555-560
    [38]李妍,张霞.盐胁迫对中华补血草生长及体内Na+、K+、Cl-含量的影响[J].江苏农业科学,2007,(5):179-181
    [39]李品芳,杨志成.NaCl胁迫下高羊茅生长及K+、Na+吸收与运输的动态变化[J].草业学报,2005,14(4):58-64
    [40]苏慧,沈秀瑛,程伟燕,等.Na2CO3胁迫对牧草苗期生理特性的影响[J].草业科学,2005,26(6):46-48
    [41]刘春华,苏加楷,黄文惠.禾本科牧草5个耐盐生理指标的研究[J].草业学报,1993,2(1):45-54
    [42]刘华,舒孝喜,赵银,等.盐胁迫对碱茅生长及碳水化合物含量的影响[J].草业科学,1997,14(1):18-22
    [43]马琳.NaCl胁迫对牧草种子萌发与幼苗生理生化的影响及耐盐性评价[D].山东农业大学,2010
    [44]Vikas Yadav Patade, Penna Suprasanna. Effects of salt stress in relation to osmotic adjustment on sugarcane (Saccharum officinarum L.) callus cultures[J]. Plant Growth Regul,2008,55:169-173
    [45]徐鲜钧,沈宝川,祁建民.植物耐盐性及其生理生化指标的研究进展[J].亚热带农业研究,2007,3(4):275-280
    [46]Very A A, Sentenac H. Molecular mechanisms and regulation of K transport in higher plants[J]. Annu Rev Plant Biol,2003,54:575-603
    [47]石德成,殷立娟.盐(NaCl)与碱(Na2CO3)对星星草胁迫作用的差异[J].植物学报,1993,35(2):144-149
    [12]Maathuis F JM, Amtmann A. K+ nutrition and Na+ toxicity:the basis of cellular K+/Na+ ratios[J]. Ann Bot,1999,84:123-133
    [13]Ramn S, Rodr guez NavarroA. Ion homeostasis during salt in plants[J]. Curr Opin CellBiol, 2001,13:399-404
    [48]石德成,殷立娟NaCl、Na2CO3胁迫下星星草根际K+、Ca2+的生理行为[J].应用环境生物学报,1997,3(2):112-118
    [49]颜宏,赵伟,尹尚军,等.羊草对不同盐碱胁迫的生理响应[J].草业学报,2006,15(6):49-55
    [50]张永亮,聂微微,任秀珍,等.复盐胁迫下二种虉草K+、Na+吸收与运输的特点[J].中国草地学报,2010,32(3):28-33
    [51]Lerner H R. Adaptation to salinity at the plant cell level[J]. Plant Soil,1985,89:3-14
    [52]Seeman J R, Critechley C. Effect of salt stress on the growth, ion content, stomatal behaviour and phytosynthetic capacity of a salt sensitive species, Phaseolus vulgaris L [J]. Planta,1985,164: 151-162
    [53]高奔,宋杰,刘金萍.盐胁迫对不同生境盐地碱蓬光合及离子积累的影响[J].植物生态学报,2010,34(6):671-677
    [54]Nublat A, Desplans J, Casse F, etal. Arabidopsis mutant overaccumulating sodium in the shoot, shows deficiency in the control of the root radial transport of sodium[J]. Plant Cell,2001,13: 125-137
    [55]王萍,郭继勋.盐碱化草地常见牧草耐盐机理研究[J].东北师大学报自然科学版,1998,(3):116-119
    [56]张振华,刘强,宋海星,等.K+,Ca2+和Mg2+对不同水稻基因型苗期耐盐性的影响[J].中国农业科学,2010,43(15):3088-3097
    [57]韩金龙,徐立华,徐相波.盐胁迫下不同玉米品种在苗期叶片和根中Na+、K+、Ca2+及脯氨酸含量变化的研究[J].作物杂志,2010,49-52
    [59]Yasar F. Effects of salt stress on ion and lipid peroxidation content in green Beans genotypes[J]. Asian J Chem,2007,19:1165-1169
    [60]Bohnert H J, Jensen, etal. Strategies for engineering water stress tolerance inplants[J]. Trends Biotechnol.1996,14:89-97
    [61]Vaidyanathan H, Sivakumar P, Chakrabarty R, etal. Scavenging of reactive oxygen species in NaCl stressed rice (Oryza sativa L.):diferential response in salt-tolerant and sensitive varieties [J]. Plant Sci,2003,165:1411-1418
    [62]Meloni D A, Oliva M A, Martinez C A, etal. Photosynthesis and activity of superoxide dismutas, peroxidase and glutathione reductase in cotton under salt stress[J]. Environ Exp Bot,2003,49: 69-76
    [63]Leopold A C, etal. Evidence for toxicity effects of salt on membranes in Salinity Tolerance in Plants[C]. New York:John Wiley and Sons,1984,67-76
    [64]郭艳茹,詹亚光.植物耐盐性生理生化指标的综合评价[J].黑龙江农业科学,2006,(1):66-70
    [65]孙国荣,关旸,阎秀峰.盐胁迫对星星草幼苗保护酶系统的影响[J].草地学报,2001,9(1):34-38
    [66]刘延吉,张珊珊,田晓艳,等.盐胁迫对NHC牧草叶片保护酶系统,MDA含量及膜透性的影响[J].草原与草坪,2008,127(2):30-34
    [67]刘锦川,云锦凤,张磊.氯化钠胁迫下3种披碱草属牧草生理特性的研究[J].草地学报,2010,18(5):694-697
    [68]李志刚,张玉霞,董丽杰.沙生牧草和盐生牧草抗氧化特性比较[J].中国草地学报,2007,29(5):115-118
    [69]张永峰,殷波.混合盐碱胁迫对苗期紫花苜蓿抗氧化酶活性及丙二醛含量的影响[J].草业学报,18(1):46-50
    [70]彭立新,周黎君,冯涛,等.盐胁迫对沙枣幼苗抗氧化酶活性和膜脂过氧化的影响[J].天津农院学报,2009,16(4):1-4
    [71]Costa P H A, Neto A, Bezerra M, etal. Antioxidant-enzymatic system of two sorghum genotypes differing in salt tolerance[J]. Braz J Plant Physiol,2005,17:353-361
    [72]M Hefny, D Z Abdel-Kader. Antioxidant-Enzyme System as Selection Criteria for Salt Tolerance in Forage Sorghum Genotypes[J]. Salinity and Water Stress,2009,:25-36
    [73]朱宇旌,张勇,胡自治,等.小花碱茅叶适应盐胁迫的显微结构研究[J].中国草地,2001,23(2):19-22
    [74]West K R. The anatomy of Atriplex leaves. In:Jones, R. (Ed.):The biology of Atriplex. Deniliquinlum. CSIRO, Canberra 1970,11-15
    [75]Bressan R A, Hasegawa P M, Kononowicz A K. Cell cycle duration in tobacco cells adapted to NaCl[J]. Environmental and Experimental Botany,1992,32(2):1-9
    [76]Piqueras A, Hernandez J A, Olmos E, etal. Changes in antioxidant enzymes and organic solutes associated with adaptation of citrus cells to salt stress[J]. Plant Cell Tissue and Organ Culture, 1996,45(1):53-60
    [77]韦存虚,张军,王建军,等.星星草营养器官适应盐胁迫的结构特征[J].植物资源与环境学报,2006,15(1):51-56
    [78]杨春雪.星星草解剖结构特征及重要物质组分变化与耐盐性关系研究[D].东北林业大学,2008
    [79]段显德,季长波,陆静梅.盐胁迫下羊草的生理适应性及结构适应性研究[J].通辽师范学院学报,2003,24(2):26-29
    [80]赵自国,陆静梅.植物耐盐性研究及发展[J].长春师范学院学报,2002,21(1):51-53.
    [81]孙建吕,王兴盛,杨生龙.植物耐盐性研究进展[J].干旱地区农业研究,2008,26(1):226-230
    [82]Stephen F. Chandler, Indrak K. Vasil. Selection and characterization of NaCl tolerant cells from embryogenic cultures of Pennisetum Purpureum Schum. (Napier grass)[J]. Plant Science Letters, 1984,37:157-164
    [83]杨宝灵,姜健,封德全,等.紫花苜蓿耐盐突变体筛选[J].大连民族学院学报,2006,32(3):40-43
    [84]郑霞,韦小敏,季良越,等.玉米体细胞抗盐突变体的筛选及耐盐性鉴定[J].河南农业大学 学报,2004,38(2):139-143
    [85]Cohen A, Bray E A. Characterization of three mRNAs that accumulate in wilted tomato leaves in response to elevated levels of endogenous abscisic acid [J]. Planta, 1990,182:27-33
    [86]Kavikishor P B. Salt stress in cultured rice cells:effects of praline and abscisic acid[J]. Plant Cell Envi,1989(12):629
    [87]Amzallag G N, Lerner H R, Polijakoff-Mayber A. Exogenous ABA as a modulator of the response of sorghum to high salinity[J]. J Exp Bot,1990,41:1529-1534
    [88]田晓艳,刘延吉,郭迎春,等.盐胁迫对NHC牧草IAA、ABA、CaM及NADK ase的动态变化[J].草业科学,2008,25(11):50-53
    [89]赵可夫,范海,Harris P. J. C盐胁迫下外源ABA对玉米幼苗耐盐性的影响[J].植物学报,1995,37(4):295-300
    [90]陈沁,刘友良.外源GSH对盐胁迫下大麦幼苗生长的影响[J].上海大学学报,2000,4:193-197
    [91]李培夫.盐碱地的生物改良与抗盐植物的开发利用[J].垦殖与稻作,1999,(3):3840
    [92]陈才俊.江苏滩涂大米草促淤护岸效果[J].海洋通报,1994,13(2):55-62
    [93]陈锡鹏,吴浩,张登辉.大米草促淤保滩和培肥利用[J].土壤通报,1981,4:13-14
    [94]张立宾.盐生植物的耐盐能力及其对滨海盐渍土的改良效果研究[M].山东农业大学,2005
    [95]苗济文,何尚仁,王平武.盐碱荒地种植碱茅草的改土效果及效益[J].盐碱地利川,1993,(1):9-12
    [96]孙国荣,阎秀峰,李晶.星星草对碱化土壤物理性质的影响[J].草地学报,2002,10(2):118-123
    [97]李志丹,干友民,泽柏,等.牧草改良盐渍化土壤理化性质研究进展[J].草业科学,2004,21(6):17-21
    [98]赵芸晨,秦嘉海.几种牧草对河西走廊盐渍化土壤改土培肥的效应研究[J].草业学报,2005,14(6):63-66
    [99]郭瑞萍,梁广民,沈景林,等.不同牧草品种对盐碱化草地改良效果研究[J].草业与畜牧,2007,(8):1-4
    [100]陆炳章,许慰睽,周春霖.牧草对改良滨海盐土的效果及其利用效益[J].土壤通报,1993,53-55
    [101]秦嘉海.耐盐牧草籽粒苋对河西走廊草甸盐土改土培肥效应[J].土壤通报,2005,36(5):806-808
    [102]秦嘉海,吕彪,南永慧.种植碱茅草改良河西走廊草甸盐土的初步研究[J].新疆农垦科技,1991,(4):58-59
    [103]陈惠哲,Natalia Ladatko,朱德峰,等.盐胁迫‘下水稻苗期Na+和K+吸收与分配规律的初步 研究[J].植物生态学报,2007,31(5):937-945
    [104]Cheeseman I M. Mechanism of salinity tolerance in plants [J]. Plant Physiology,1988, (87): 547-550
    [105]Greenway H, Munns R. Mechanism of salt tolerance in non-halophytes[J]. Ann Rev. Plant Physiol,1980,31:149-190
    [106]於丙军,刘友良.SOS基因家族与植物耐盐性[J].植物生理学通讯,2004,40(4):409-413
    [107]王加启,于建国.饲料分析与检疫[M].中国计量出版社,2003,74-79
    [108]Baker D A, Hall J L. Solute transport in plant cells and tissues[C]. New York:John Wiley and Sons,1988,392-412
    [109]Edward P Glenn, Brown Jed J. Effects of soil salt levels on the growth and water use efficiency of at riplex canescens (Che-nopdiaceae) varieties in drying soil[J]. American Journal of Botany, 1998,85(1):10-16
    [110]王宝山,邹琦,赵可夫.NaCl胁迫对高粱不同器官离子含量的影响[J].作物学报,2000,26:845-850
    [111]赵听,赵敏桂,谭会娟,等,NaCl胁迫对盐芥和拟南芥K+、Na+吸收的影响[J].草业学报,2007,16(4):21-24
    [112]朱小梅,洪立洲,王茂文,等.NaCl胁迫下作物对离子的吸收及分配[J].中国十壤与肥料,2010,4:1-4
    [113]邹轶,顾洪如,钟小仙,等.海盐胁迫对海滨雀稗生长及植株体内阳离子含量的影响[J].草业科学,2009,26(4):117-120
    [114]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000
    [115]孙学荣.干湿处理及PEG渗透调节对油松种子活力的影响[D].南京:南京林业大学,2005
    [116]Foyer C H, Halliwell B. The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic arid metabolism[J]. Planta,1976,133:21-25
    [117]马旭俊,朱大海.植物超氧化物歧化酶(SOD)的研究进展[J].遗传,2003,25(2):225-231
    [118]Mckerise B D, Murnaghan J, Jones K S. Iron-superoxide dismutase expression in transgenic alfalfa increases winter tolerance[J]. Plant Physiol,2000,122:1427-1437
    [119]夏更寿,王加真.高盐胁迫对沟叶结缕草叶片抗氧化酶活性的影响[J].河北农业大学学报,2009,32(1):30-33
    [120]黄锦文,陈冬梅,郑红艳,等.暖季型结缕草对低温响应的生理生态特性[J].中国草地学报,2009,31(1):65-69
    [121]Hanson A D, Nelsen E H. Evaluation of free praline accumulation as an index of drought resistance using two contrasting barley cultivars[J]. Crop Sci,1977,71:720-734
    [122]吐尔逊娜依,高辉远,安沙舟,等.8种牧草耐盐性综合评价[J].中国草地,1995,(1):30-32
    [123]孙同兴,江幸山.简便有效的叶表皮离析方法—过氧化氢-醋酸法[J].广西植物,2009,29(1):4447
    [124]李正理.植物制片技术[M].北京:科学出版社,1987,129-137
    [125]郑国錩.生物显微技术[M].北京:人民教育出版社,1993,10-103
    [126]傅志强,黄璜,何保良,等.水稻叶片气孔特性及其相关性[J].湖南农业大学学报(自然科学版),2007,33(6):646-650
    [127]陆静梅,杨凤清,谷颐.气孔的发育及其类型.生物学教学,1992,(1):36-37
    [128]贺学礼.植物学[M].高等教育出版社·北京,2010,118-120
    [129]Owens S. Salt of the earth[J].2001,2:877-879
    [130]Locy R D, Chang C C, Nielson B L, etal. Photosynthesis in salt-adapted heterotrophic tobacco cells and regenerated plants[J]. Plant Physiol,1996,110:321-328
    [131]T Liu, J van Staden. Growth rate, water relations and ion accumulation of soybean callus lines differing in salinity tolerance under salinity stress and its subsequent relief [J]. Plant Growth Regulation,2001,34:277-285
    [132]Liu T, vanStaden J. Selection and characterization of sodium chloride tolerant callus of Glycine max(L.)Merr cv. Acme[J]. Plant Growth Regul,2000,31:195-207
    [133]Apel K, Hirt H. Rea ctive oxygen species:metabolism, oxidative stress, and signal transduction[J]. Ann Rev Plant Biol,2004,55:373-399
    [134]Sairam R K, Rao K V, Srivastava G C. Differential response of wheat genotypes to long-term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration[J]. Plant Sci,2002,163:1037-1046
    [135]Azevedo Neto A D, Prisco J T, Eneas-Filho J, etal. Hydrogen peroxide pretreatment induces salt-stress acclimation in maize plants [J]. Plant Physiol,2005,162:1114-1122
    [136]鲁松.盐胁迫对中华结缕草的叶片结构及盐腺发育的影响[D].山东师范大学,2006,22-36
    [137]赵妹丽,陈温福,马殿荣,等.盐胁迫对水稻叶片气孔特性的影响[J].垦殖与稻作,2006,(6):26-29

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700