双季稻群体生长与氮吸收对密度和氮肥的响应及其NDVI诊断
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以常规籼稻为材料,在江西鹰潭双季稻区对早、晚稻设置不同密度、不同氮肥和不同密肥互作处理,研究双季稻群体生长、产量和氮素吸收与利用对密度、氮肥和密肥互作的响应,以不同年份、不同氮肥水平试验为基础,建立基于冠层NDVI的水稻LAI、植株干物质积累量和植株吸氮量的监测模型,并利用三年不同的独立试验数据对模型进行检验,主要研究结论如下:
     1、密度对早、晚稻群体生长和氮素吸收与利用的效应
     随着密度的减小,早、晚稻群体茎蘖数、LAI和干物质积累量都显著下降,早稻各个时期的植株吸氮量逐渐升高,而晚稻呈现先升高后降低的趋势,氮素利用效率都随着密度的增加先增后降;在低密度处理下,早、晚稻宽行窄株较等行株距茎蘖数、LAI和干物质积累量有所降低,而较高密度处理时宽行窄株较等行株距茎蘖数、LAI和干物质积累量增加,而在相同基本苗下,栽插穴数少、每穴栽插苗数多时早、晚稻各个时期茎蘖数、LAI和植株干重都显著下降,在株行距为10.0 cm×26.7 cm时,早稻和晚稻都获得较高产量
     2、氮肥对早、晚稻群体生长和氮素吸收与利用的效应
     氮肥用量的增加使群体茎蘖数、LAI和干物质积累量都呈增加的趋势,对植株吸氮量影响显著,在低氮水平,早稻植株吸氮量和氮素利用效率随基肥比例的增加而降低,氮水平较高时,则随着基肥比例的增加呈先增后降的趋势,晚稻植株吸氮量随着氮肥用量增加而增加,氮素转运率、氮素生理效率、氮素农学效率、氮素回收效率和氮肥偏生产力则表现为下降的趋势,随着基蘖肥用量的增加,晚稻氮素回收效率和氮肥偏生产力显著下降,而对氮素转运率和氮素生理效率影响不大;早稻氮肥-产量报酬曲线为明显的抛物线,最高产量出现在氮肥用量为180 kg/hm2和基肥:蘖肥:穗肥=33:42:25时,晚稻在较低氮肥用量就能获得较高产量,适宜的氮肥用量为180 kg/hm2且基蘖肥:穗肥=6:4。
     3、氮肥和密度对早、晚稻群体生长和氮素吸收与利用的效应
     不同的密度最适宜的氮肥用量不同,水稻前期在同一密度处理下,随着氮肥用量的增加茎蘖数、LAI、干物质积累量都有所增加,而拔节期以后随着氮肥用量的增加呈先增加后减少的趋势,早稻在同一密度处理下随着氮肥用量的增加吸氮量增加,晚稻则在低密度处理时吸氮量随氮肥用量增加而增加,在较高密度时则呈先增后减的趋势;早稻和晚稻最高产量都出现在株行距为13.3 cm×30.0 cm的密度处理下,此时早稻的氮肥用量为195 kg/hm2,晚稻为165 kg/hm2。
     4、基于冠层NDVI的双季稻群体长势监测和氮素诊断模型
     以4个氮肥试验数据为基础,分析了冠层NDVI与水稻LAI、植株干物质积累量和植株吸氮量的关系。结果表明,早稻分蘖期冠层NDVI与LAI、干物质积累量和吸氮量呈极显著的线性正相关,拔节期和齐穗期则呈现极显著的指数相关;晚稻分蘖期冠层NDVI与LAI呈极显著的线性正相关,拔节期和齐穗期冠层NDVI与LAI则呈现极显著的指数相关,而分蘖期、拔节期和齐穗期冠层NDVI与干物质积累量和吸氮量间均呈显著的指数相关。基于冠层NDVI与LAI、植株干物质积累量和植株吸氮量的关系,建立了18个监测模型,并利用6个独立试验数据对模型进行了检验,结果表明监测模型预测效果较好。
These experiments was carried out to study the effects of different density, nitrogen fertilizer and their interaction on population growth, grain yield, nitrogen uptake and utilization of double-cropping rice (conventional varieties) at Yingtan City, Jiangxi Province. The monitoring model between canopy NDVI and LAI, dry matter accumulation, plant nitrogen uptake was developed using the data of experiment with different nitrogen and years, and the models were tested using independent experiment data of 3 years. The main conclusions were as followed:
     1. The effects of different density on population growth, nitrogen uptake and utilization of early and late rice
     With the density decreasing, the population tiller number, LAI and dry matter accumulation at different growth stages of early and late rice decreased significantly, plant nitrogen uptake at different growth stages of early rice increased gradually, while late rice first increased then decreased, the nitrogen use efficiency of early and late rice both first increased then decreased. Under low density, the tiller number, LAI and dry matter accumulation of wide row and short space treatment lower than the same row and space treatment, and under the high density the trend is inversed. Under the same basic seedling, the tiller number, LAI and dry matter accumulation at different growth stages of early and late rice decreased significantly when more less transplanting pits and more planting seedling number per pits. The highest grain yield of early and late rice appeared at the planting spacing of 10.0 cm×26.7 cm treatments.
     2. The effects of different nitrogen fertilizer on population growth, nitrogen uptake and utilization of early and late rice
     Population tiller number, LAI and dry matter accumulation at different growth stages of early and late rice were increasing with nitrogen rate increasing. Under the low nitrogen levels, the increase of basal nitrogen ratio decreased the plant nitrogen uptake and nitrogen use efficiency of early rice, and first increased then decreased with the increasing of basal nitrogen ratio when nitrogen content was higher. With the nitrogen rate increasing, plant nitrogen uptake of late rice increased, nitrogen translocation efficiency (NTE), physiological efficiency (NPE), agronomic efficiency (NAE), recovery efficiency (NRE), and partial factor productivity of applied nitrogen (PEP) were decreasing, with basal fertilizer increased, recovery efficiency (NRE), and partial factor productivity of applied nitrogen (PEP) were decreased significantly, but the nitrogen translocation efficiency (NTE), physiological efficiency (NPE) have no significant difference.Nitrogen fertilizer were significantly curve correlated with the early rice grain yield, the treatment with the highest grain yield, were 180 kg/hm2 nitrogen level, and the ratio of basal, tiller and panicle was 33:42:25, and the optimum nitrogen rate of late rice was 180 kg/hm2, the ratio of basal and panicle nitrogen was 6:4.
     3. The effects of different nitrogen fertilizer and density on population growth, nitrogen uptake and utilization of early and late rice
     Different density has different optimum nitrogen fertilizer, in the early growth period of double-cropping rice, the increase of nitrogen rate increased the tiller number, LAI and dry matter accumulation while treated in the same density, but first increased then decreased after the jointing stages. In the same density, plant nitrogen uptake of early rice increased with the nitrogen increased, but late rice were increased in the low density treatment, first increasing then decreasing in higher density. At the planting spacing of 13.3 cm×30.0 cm treatments, the grain yield of early and late rice were the highest, and the nitrogen rate were 195 kg/hm2,165 kg/hm2 respectively.
     4. The models of growth condition monitoring and nitrogen nutrition diagnosis of double-cropping rice based on canopy NDVI
     Analysis the relationship between canopy NDVI and LAI, plant dry matter accumulation and nitrogen uptake using the data of 3 years field experiment with different nitrogen treatments. The results shows that canopy NDVI was highly significant linear correlated with LAI, plant dry matter and nitrogen uptake of early rice at tillering stage, and was highly significant index correlated at jointing and full heading stages. At the tillering stage, the canopy NDVI was highly significant linear correlated with LAI, and was highly significant index correlated at jointing and full heading stages, and canopy NDVI was highly significant index correlated with plant dry matter accumulation and nitrogen uptake at different growth stages. And the author establishments 18 monitoring models tested those models using 6 independent experiment data, the tested results shows that those monitoring models forecasts better.
引文
[1]徐宗传,冯明友,张鹏,等.不同播期、密度、基本苗对产量的影响[J].耕作与栽培,1994(5):29-31.
    [2]宋勇生,范晓晖,林德喜,等.太湖地区稻田氨挥发及影响因素的研究[J].土壤学报,2004,41(2):265-269.
    [3]朱兆良.中国土壤氮素研究[J].土壤学报,2008,45(5):778-783.
    [4]Ghosh B C, et al. Environmental hazards of nitrogen loading in wetland rice fields[J]. Environmental Pollution,1998,102:123-126.
    [5]章家恩.作物群体结构的生态环境效应及其优化探讨[J].生态科学,2000,19(1):30-35.
    [6]郑克武,邹江石,吕川根.氮肥和栽插密度对杂交稻“两优培九”产量及氮素吸收利用的影响[J].作物学报,2006,(23)6:885-893.
    [7]凌启鸿主编.水稻群体质量理论与实践[M].北京:中国农业出版社,1995,265-270.
    [8]郑智慧,黄山林,罗彦长.竹舟5号主要特征特性和高产栽培技术[J].安徽农业科学,2002,30(1):66-67.
    [9]施伏芝,苏泽胜,罗志祥,等.不同茎蘖苗和栽插密度对协优57产量及其主要经济性状的影响[J].安徽农业科学,2001,29(4):439-440,446.
    [10]柳金来.水稻自动调节与产量[J].吉林农业科学,1992,4(3):20-24.
    [11]钟明喜,张洪程,藏其根,等.品种与密度对粳稻产量及其源库的影响[J].江苏农学院学报,1993,14(增):14-19.
    [12]北條良夫,星川清親.作物的形态与机能(刘兴海译)[M].农业出版社,1983,411-435.
    [13]张宪政主编.作物生理研究法[M].北京:农业出版社,1992,1-158.
    [14]李建广,张秀和,张国新,等.移栽密度对水稻生长发育及产量的影响[J].垦殖与稻作,2005,1:18-19.
    [15]刘树金.移栽地点和密度对不同类型品种水稻形态特征与群体质量影响[D].四川农业大学,硕士学位论文.2010.
    [16]陆顺生,曾林,万卫东,等.优质籼稻不同品种、密度对其产量及构成因素的影响[J].中国农学通报,2003,19(2):50-52.
    [17]盛敏宽,丁金海.不同种植密度对水稻产量的影响[J].安徽农学通报,2008,14(7):25-31.
    [18]张玉屏,陈穗哲,周爱珠,等.浙江省连作晚稻产量差异及其成因分析[J].中国稻米,2008,(4):43-45.
    [19]凌启鸿,苏祖芳.水稻成穗率与群体质量的关系及其影响因素的研究[J].作物学报,1995,21(4):463-469.
    [20]吴洪恺,纪凤,文止怀,等.水稻栽插不同株行距配比方式初探[J].耕作与栽培,2000,(1):17-22.
    [21]王夫玉,张洪程,赵新华,等.行株距配比对水稻群体特征的影响[J].甘肃科学学报,2001,(2):38-42.
    [22]蒋振华,徐国沾,施金裕,等.不同群体质量对稻米品质的影响[J].上海农业科技,2004(4):24-26.
    [23]荆爱霞.移栽行距、密度对水稻超高产形成的影响[D].扬州:扬州大学,硕士学位论文,2008.
    [24]王英满,张海泉,庞其敬.武运粳7号相近基本苗的不同栽插行距对生长效应的影响[J].上海农业科技,1995(5):14-15.
    [25]杨惠杰,李义珍,黄育民,等.超高产水稻的产量构成和源库结构[J].福建农业学报,1999,14(1):1-5.
    [26]Wang G, Dobermann A, Witt C, et al. Performance of site-specific nutrient management for rice in southeast China[J]. Agron. J,2001,93:869-878.
    [27]Fagerial N K, BaligarV C. Methodology for evaluation of lowland rice genotypes for nitrogen use efficiency [J]. J. Plant Nutr,2003,26:1315-1333.
    [28]凌启鸿.作物群体质量[M].上海:上海科学技术出版社,2000,1:154-197.
    [29]娄成后,王学臣.作物产量形成的生理学基础[M].中国农业出版社,2001,167-169.
    [30]浙江农业大学主编.实用水稻栽培学[M].上海:上海科技出版社,1981,202-230.
    [31]凌启鸿,张洪程,苏祖芳,等.稻作新理论[M].北京:科学出版社,1992,287-307.
    [32]腾宏飞,邹陈勇.水稻不同氮肥运筹与抛栽密度对群体质量的影响[J].南京农专学报,2000,16(4):20-24.
    [33]Kiss E, Balint A, Debreezenik, et al. Gentic basis of N-utilization[A]. In:Satic M R and Loughman B C[Eds.], Genetic aspects of plant nutrition[C]. Martinus Ni jbof and DR W. Jank Publishers,1983: 463-469.
    [34]Matsushima S. Rice Cultivation for the Million[M]. Tokyo:Japan Scientific Societies Press.1980, 93-146.
    [35]慕永红,孙海燕,孙建勇,等.不同施氮比例对水稻产量与品质的影响[J].黑龙江农业科学,2000(3):18-19.
    [36]鲁伟林,祁玉良,余新春,等.不同施氮水平对杂交水稻群体特征和产量的影响[J].安徽农业科学,2008,36(3):926-928.
    [37]陈亚琴,刘喜,谭玉琴,等.不同施肥方法对水稻产量和品质的影响[J].中国农学通报,1998,14(5):64-66.
    [38]杨益花,张亚杰,苏祖芳.施氮量对杂交水稻产量构成因素和干物质积累的影响[J].天津农 学院学报,2005,12(1):5-8.
    [39]孟维韧.栽培措施对水稻产量和品质的影响[D].沈阳农业大学,博士学位论文,2008.
    [40]郭万胜,王曙光.氮肥施用对水稻产量及群体质量的影响[J].耕作与栽培,2005,2:40-41.
    [41]吴文革,李泽福,王元垒.氮肥运筹对双季晚稻产量和品质的影响[J].中国土壤与肥料,2008,3:28-31.
    [42]范大泳,莫绍芬,蒋满英.氮肥运筹对晚稻产量和氮素利用率的影响[J].广西农业生物科学,2007,26(4):312-316.
    [43]刘立军,王志琴,桑大志,等.氮肥运筹对水稻产量及稻米品质的影响[J].扬州大学学报:农业与生命科学版,2002,23(3):46-50.
    [44]杨华文,汪丽,程秀萍,等.高产优质杂交中籼新两优6号栽插密度与施肥水平研究[J].安徽农业科学,2005,33(3):378-379.
    [45]赵乃轩,李必钦.施氮量和种植密度对中油杂11产量的影响[J].湖北农业科学,2006,45(6):724-726.
    [46]周江明,赵琳,董越勇,等.氮肥和栽植密度对水稻产量及氮素利用率的影响[J].植物营养与肥料学报,2010,16(2):274-281.
    [47]杨立炯,崔继林,陈永康.高产栽培技术[M].北京:农业出版社,1964.
    [48]孙锐锋,严宗卜.施氮量与栽插密度对杂交香稻香两优875产量的影响[J].西南农业学报,2008,21(5):1326-1329.
    [49]吴行国,成国法,戴增捷.密度与氮肥对早育秧水稻产量的影响[J].上海农业科技,1997(3):11-12.
    [50]周培南,冯惟珠,许乃霞,等.施氮量和移栽密度对水稻产量及稻米品质的影响[J].江苏农业研究,2001,22(1):27-31.
    [51]陈晓阳,胡谷琅,钱秋平,等.施氮水平和栽插密度对天优华占生长和产量及产量构成因子影响[J].中国农学通报,2010,26(17):160-163.
    [52]苏祖芳,周培南,徐乃霞.密肥条件对水稻氮素吸收和产量形成的影响[J].中国水稻科学,2001,15(4):281-286.
    [53]吴春赞,叶定池,林华,等.栽插密度对水稻产量及品质的影响[J].中国农学通报,2005,21(9):190-192.
    [54]朱贵平,俞爱英,张培艳,等.水稻强化栽培体系适宜移栽密度探讨[J].杂交水稻,2004,19(3):45-46.
    [55]江立庚,曹卫星,甘秀芹,等.不同施氮水平对南方早稻氮素吸收利用及其产量和品质的影响[J].中国农业科学,2004,37(4):490-496.
    [56]樊红柱,曾祥忠,张冀.移栽密度与供氮水平对水稻产量、氮素利用影响[J].西南农业学报. 2010,23(4):1137-1141.
    [57]樊红柱,曾祥忠,吕世华.水稻不同移栽密度的氮肥效应及氮素去向[J].核农学报,2009,23(4):681-685.
    [58]蒋彭炎,冯来定,俞美玉,等.水稻发生贪青的原因和防止途径探讨[J].中国农业科学,1989,22(4):33-40.
    [59]De Datta S K, Buresh R J. Integrated nitrogen management in irrigated rice[J]. Advances in Soil Science,1989,10:143-169.
    [60]Peng S, Garcia F V, Laza R C, et al. Increased N-use efficiency using a chlorophyll meter on high-yielding irrigated rice[J]. Field Corps Research,1996,47:243-252.
    [61]Thomas P, Zacharias, Moo Y, et al. Use of plant-tissue analysis in an economic decision-making model:An Application to nitrogen fertilization in rice production[J]. Prod. Agric,1989,2(2): 116-121.
    [62]Velu V, Ramanathan K M. Efficiency of nitrogen sources in wetland rice soil during different crop seasons[J]. Madras Agric. J,1994,81(11):605-609.
    [63]Bijay S, Yadvinder S, Jagdish K, et al. Chlorophyll meter and leaf color chart based nitrogen management for rice and wheat in Northwestern India[J]. Agronomy Journal,2002,94:821-829.
    [64]Hao H J, Wei Y Z, Yang X E, et al. Effects of different nitrogen fertilizer levels on Fe, Mn, Cu and Zn concentrations in shoot and grain quality in rice (Oryza sativa)[J]. Rice Sci,2007, (4):55-60.
    [65]万靓军,张洪程,霍中洋,等.氮肥运筹对超级杂交粳稻产量、品质及氮素利用率的影响[J].作物学报,2007,33(2):175-182.
    [66]王绍华,曹卫星,丁艳锋,等.基本苗数和施氮量对水稻氮吸收与利用的影响[J].南京农业大学学报,2003,26(4):1-4.
    [67]Zhang Y H, Fan J B, Zhang Y L, et al. N accumulation and translocation in four Japonica rice cultivars at different N rates[J]. Pedosphere,2007,17(6):792-800.
    [68]张云桥,吴荣生.水稻的氮素利用效率与品种类型的关系[J].植物生理学通讯,1989,2:45-47.
    [69]Inthapanya R, Sipaseuth, Sihavong P, et al. Genotype differences in nutrient uptake and utilization for grain yield production of rained lowland rice under fertilized and non-fertilized conditions[J]. Field Crops Research,2000,65:57-68.
    [70]吴文革,杨联松,苏泽胜,等.不同施氮条件下杂交中籼稻的群体质量与产量形成[J].中国生态农业学报,2008,16(5):1083-1089.
    [71]刘立军,桑大志,刘翠莲,等.实时实地氮肥管理对水稻产量和氮素利用率的影响[J].中国农业科学,2003,36(12):1456-1461.
    [72]丁艳锋,刘胜环,王绍华,等.氮素基、蘖肥用量对水稻氮素吸收与利用的影响[J].作物学报, 2004,30(8):734-744.
    [73]凌启鸿,张洪程,戴其根,等.水稻精确定量施氮研究[J].中国农业科学,2005,38(12):2457-2467.
    [74]郑永美,丁艳峰,王强盛,等.起身肥对水稻分蘖和氮素吸收利用的影响[J].作物学报,2008,34(3):513-519.
    [75]顾伟.云南涛源特殊生态区水稻超高产生理生态特征研究[D].南京农业大学,硕士学位论文,2009.
    [76]刘胜环.基蘖氮肥用量对水稻群体质量影响及氮肥高效利用机理研究[D].南京农业大学,硕士学位论文,2003.
    [77]Tirol-Padre A, Ladha J K, SinghU, et al. Grain yield performance of rice genotypes at suboptimal levels of soil N as affected by N uptake and utilization efficiency[J]. Field Crops Res,1996,46: 127-143.
    [78]Zhang Y H, Fan J B, Zhang Y L, et al. N accumulation and translocation in four Japonica rice cultivars at different N rates [J]. Pedosphere,2007,17(6):792-800.
    [79]苏祖芳,周培南,徐乃霞.密肥条件对水稻氮素吸收和产量形成的影响[J].中国水稻科学,2001,15(4):281-286.
    [80]杨建吕,王志琴,朱庆森.不同土壤水分下氮素营养对水稻产量的影响及其机理研究[J].中国农业科学,1996,29(4):58-66
    [81]Shibayama M, Akiyama T. Seasonal Visible, Near-Infrarde and Mid-Infrared Spectra of rice canopies in relation to LAI and above-ground dry biomass[J]. Remote Sensing of Environment, 1989,27:119-127.
    [82]金仲辉,张宏民,王家圣.关于光谱反射率和叶面积指数之间关系的研究[J].北京农业大学学报,1992,18(2):189-197.
    [83]Asrar G, Kanemasu E T, Yoshida M. Estimation of leaf area index from spectral reflectancd of wheat under different cultural practices and solar angles[J]. Remote Sensing of Environment,1985, 17:1-11.
    [84]Choubey V K, Choubey R. Spectral reflectance, growth and chlorophyll relationships for rice crop in a semi-arid region of India[J]. Water Resources Management,1999,13:73-84.
    [85]张晓阳,李劲锋.利用垂直植被指数推算作物叶面积系数的理论模式[J].遥感技术与应用,1995,10(3):13-18.
    [86]Casanova D, Epema G F, Goudriaan J. Monitoring rice reflectance at field level for estimating biomass and LAI[J]. Field Crops Research,1998,55:83-92.
    [87]Lee K S, Cohen W B, Kennedy R E, et al. Hyperspectral versus multispectral data for estimating leaf area index in four different biomes[J]. Remote Sensing of Environment,2004,91:508-520.
    [88]Van der Meer F. Analysis of spectral absorption features in hyperspectral imagery[J]. International Journal of Applied Earth Observation and Geoinformation,2004,5:55-68.
    [89]Diker K, Bausch W C. Potential use of nitrogen reflectance index to estimate plant parameters and yield of maize[J]. Biosystems Engineering,2003,85:437-447.
    [90]王秀珍,黄敬峰,李云梅,等.高光谱数据与水稻农学参数之间的相关分析[J].浙江大学学报(农业与生命科学版),2002,28:283-288.
    [91]唐延林,黄敬峰,王秀珍,等.水稻、玉米、棉花的高光谱及其红边特征比较[J].中国农业科学,2004,37:29-35.
    [92]唐延林,王秀珍,王珂.利用光谱法测定水稻生物物理参数及其与光谱变量的相关性研究[J].贵州大学学报(农业与生物科学版),2002,21:327-331.
    [93]唐延林,王人潮,王秀珍,等.水稻叶面积指数和叶片生化成分的光谱法研究[J].华南农业大学学报(自然科学版),2003,24(1):4-7.
    [94]Schlerf M, Atzberger C, Hill J. Remote sensing of forest biophysical variables using HyMap imaging spectrometer data[J]. Remote Sensing of Environment,2005,95:177-194.
    [95]Gitelson Anatoly A, Yoram J, Kaufman, et al. Novel algorithms for remote estimation of vegetation fraction[J]. Remote Sens Environ,2002,80:76-87.
    [96]Elvidge C D, Chen Zhikang, Groeneveld, et al. Detection of trace quantities of green vegetation in 1990 AVIRIS data[J]. Remote Sens. Environ,1993,44(2-3):271-279.
    [97]Inoue Y, Moran M S, Horie T. Analysis of spectral measurements in paddy field for predicting rice growth and yield based on a simple crop simulation model[J]. Plant Production Science,1998,1: 269-279.
    [98]黄春燕,王登伟,陈冠文,等.基于高光谱植被指数的棉花干物质积累估算模型研究[J].棉花学报,2006,18(2):115-119.
    [99]王秀珍,黄敬锋,李云梅.水稻地上鲜生物量的高光谱遥感估算模型研究[J].作物学报,2003,29(6):815-821.
    [100]傅玮东,刘绍民,黄敬锋.冬小麦生物量遥感监测模型的研究[J].干旱区资源与环境,1997,11(1):84-89.
    [101]张良培,郑兰芬,童庆禧.利用高光谱对生物变量进行估计[J].遥感学报,1997,1(2):110-113.
    [102]王渊,王福民,黄敬峰.油菜不同组分生物量光谱遥感估算模型[J].浙江农业大学学报,2004,16(2):79-83.
    [103]薛利红,曹卫星,罗卫红,等.基于冠层反射光谱的水稻群体叶片氮素状况监测[J].中国农 业科学,2003,36(7):807-812.
    [104]Carlson R M. Cabrera R I, Paul J L, et al. Rapid direct determination of ammonium and nitrate in soil and plant tissue extracts[J]. Communication in Soil Science and Plant Analysis.1990,21: 1519-1529.
    [105]陈新平,贾良良,张福锁.无损伤测试技术在作物氮素营养诊断及施肥推荐中的应用[J].植物营养研究进展与展望,2000:197-206.
    [106]王绍华,曹卫星,王强盛,等.水稻叶色分布特点与氮素营养诊断[J].中国农业科学.2002,35(12):1461-1466.
    [107]张文安.SPAD-501型叶绿素计在测定水稻叶绿素含量中的应用[J].贵州农业科学,1991,4:37-39.
    [108]Evans J R, Seemann J R. Difference between wheat genotypes in specific activity of ribulose-l, 5-bisphosphate carboxylase and the relationship to photosynthesis[J]. Plant Physiol,1984,74: 759-765.
    [109]Turner F T, Jund M F. Assessing the nitrogen requirements of rice crops with a chlorophyll meter method[J]. Australian Journal of Expand Agheulture,1994,34:1001-1005.
    [110]Chapman S C, Barreto H J. Using a chlorophyll meter to estimate specific leaf nitrogen of tropical maize during vegetative growth[J]. Agronomy Journal,1997,89:557-562.
    [111]Gianquinto G, Sambo P, Pimpini F. The use of SPAD-502 chlorophyll meter for dynamically optimizing the nitrogen supply in potato crop:first results[J]. Acta Horticulture,2003,627: 225-230.
    [112]李刚华,丁艳峰,薛利红.利用叶绿素计(SPAD-502)诊断水稻氮素营养和推荐追肥的研究进展[J].植物营养与肥料学报,2005,11(3):412-416.
    [113]Wood C W, Reeves D W, Himelriek D G. Relationships between chloropyl 1 meter readings and leaf chlorophyll coneentration, N status, and crop yield:Areview[J]. Proeeedings of the Agronomy Soeiety of New Zealand,1993,23:1-9.
    [114]Berntsen J, Thomsen A, Schelde K, et al. Algorithms for sensor-based redistribution of nitrogen fertilizer in winter wheat[J]. Precis Agricul,2006,7:65-83.
    [115]Tremblay N, Wang Z, Ma B, et al. A comparison of crop data measured by two commercial sensors for variable-rate nitrogen application[J]. Precis Agricul,2009,10:145-161.
    [116]张喜杰,李民赞,张彦娥,等.基于自然光照反射光谱的温室黄瓜叶片含氮量预测[J].农业工程学报,2004,20:11-14.
    [117]孙焱鑫,王纪华,李保国,等.基于GA的GRNN高光谱遥感反演冬小麦叶片氮含量模型的建立与验证[J].土壤通报,2007,38:508-512.
    [118]田永超,朱艳,姚霞,等.基于光谱信息的作物氮素营养无损监测技术[J].生态学杂志,2007,26(9):1454-1463.
    [119]牛铮,陈永华,隋洪智,等.叶片化学组分成像光谱遥感探测机理分析[J].遥感学报,2000,4(2):125-129.
    [120]薛利红,罗卫红,曹卫星,等.作物水分和氮素光谱诊断研究进展.遥感学报[J].2003,7(1):73-80.
    [121]Rouse J W R H, Haas J A, Schell D W, et al. Monitoring the vernal advancement of retrogradation of natural vegetation. NASA/GSFC, Type III, Final Report, Greenbelt, MD, USA,1974.
    [122]Xue L H, Yang L Z. Recommendations for nitrogen fertilizer topdressing rates in rice using canopy reflectance spectra[J]. Biosystems Engineering,2008,100:524-534.
    [123]Kokaly R, Root R, Brown K, et al. Calibration of compact airborne spectrographic imager(CASI) data to surface reflectance at the Roosevelt National Park. Abstract:221 st Annual Meeting of the American Chemical Society. San Diego, CA.2001,4:1-5.
    [124]Johnson L F, Billow C R. Spectrometric estimation of total nitrogen concentration in Douglaafir foliage[J]. Remote Sensing of Environment,1996,17(4):489-500.
    [125]Johnson L F. Nitrogen influence on fresh-leaf NIR spectra remote sensing of environment[J]. 2001, 78:314-320.
    [126]Lee T, Raia K R, Gretchen F Sassenrath-Cole. Reflectance Indices with precision and accuracy in predicting cotton leaf nitrogen[J]. Crop Science.2000,40:1814-1819.
    [127]Fernandez S, Vidal D, Simon E, et al. Radiometric Characteristics of Triticum aestivum cv. Astral under Water and Nitrogen Stress[J]. International Journal of Remote Sensing,1994,15(9): 1867-1884.
    [128]Thomas J R, Oerther G F. Estimating Nitrogen Content of Sweet Pepper Leaves by Reflectance Measurements [J]. Agronomy Journal,1972,64:11-13.
    [129]王德仁,卢婉芳,温怀南,等.水稻高产、高效、高氨基酸含量及营养价的施氮量优化[J].中国农学通报,1995,11(2):24-27.
    [130]崔玉亭,程序,韩纯儒,等.苏南太湖流域水稻经济生态适宜施氮量研究[J].生态学报,2000,20(4):659-662.
    [131]傅庆林,陈英旭,俞劲炎.浙中水稻生长适宜施氮量研究[J].土壤学报,2003,40(5):787-790.
    [132]张洪程,王秀芹,戴其根,等.施氮量对杂交稻两优培九产量、品质及吸氮特性的影响[J].中国农业科学,2003,36(7):800-806.
    [133]杨京平,姜宁,陈杰.施氮水平对良种水稻产量影响的动态模拟及施肥优化分析[J].应用生态学报,2003,14(10):1654-1660.
    [134]阙金华,张洪程,宋锦花,等.施氮量对江苏里下河稻区水稻综合生产力的影响[J].耕作与栽培,2004,1:20-22.
    [135]Lukina E V, Freeman K W, Wynn K J, et al. Nitrogen fertilization optimization algorithm based on in-season estimates of yield and plant nitrogen uptake[J]. Journal of Plant Nutrition,2001,24(6): 885-898.
    [136]Wood G A, Welsh J P, Godwin R J, et al. Real-time measures of canopy size as a basis for spatially varying nitrogen applications to winter wheat sown at different seed rates[J]. Biosystems Engineering,2003,84(4):513-531.
    [1]徐宗传,冯明友,张鹏.不同播期、密度、基本苗对产量的影响[J].耕作与栽培,1994(5):29-31.
    [2]李家康,林保,梁国庆,等.对中国化肥使用前景的剖析[J].植物营养与肥料学报,2001,7(1):1-10.
    [3]李建广,张秀和,张国新,等.移栽密度对水稻生长发育及产量的影响[J].垦殖与稻作,2005,1:18-19.
    [4]金玉女,田奉俊,赵世龙,等.水稻大养稀栽培分蘖发育特性的研究[J].延边大学农学学报,1998,20(4):258-261.
    [5]钟明喜,张洪程,藏其根,等.品种与密度对粳稻产量及其源库的影响[J].江苏农学院学报,1993,14(增):14-19.
    [6]孟维韧.栽培措施对水稻产量和品质的影响[D].沈阳农业大学,博十学位论文,2008.
    [7]吴文革,李泽福,王元垒.氮肥运筹对双季晚稻产量和品质的影响[J].中国土壤与肥料,2008,3:28-31.
    [8]慕永红,孙海燕,孙建勇,等.不同施氮比例对水稻产量与品质的影响[J].黑龙江农业科学,2000(3):18-19.
    [9]陈亚琴,刘喜,谭玉琴,等.不同施肥方法对水稻产量和品质的影响[J].中国农学通报,1998, 14(5):64-66.
    [10]杨益花,张亚杰,苏祖芳.施氮量对杂交水稻产量构成因素和干物质积累的影响[J].天津农学院学报,2005,12(1):5-8.
    [11]鲁伟林,祁玉良,余新春,等.不同施氮水平对杂交水稻群体特征和产量的影响[J].安徽农业科学,2008,36(3):926-928.
    [12]郑智慧,黄山林,罗彦长.竹舟5号主要特征特性和高产栽培技术[J].安徽农业科学,2002,30(1):66-67.
    [13]刘树金.移栽地点和密度对不同类型品种水稻形态特征与群体质量影响[D].四川农业大学,硕士学位论文,2010.
    [14]荆爱霞.移栽行距、密度对水稻超高产形成的影响[D].扬州:扬州大学,硕士学位论文,2008.
    [15]陆顺生,曾林,万卫东,等.优质籼稻不同品种、密度对其产量及构成因素的影响[J].中国农学通报,2003,19(2):50-52.
    [16]张玉屏,陈穗哲,周爱珠,等.浙江省连作晚稻产量差异及其成因分析[J].中国稻米,2008,(4):43-45.
    [17]Wang G, Dobermann A, Witt C et al. Performance of site-specific nutrient management for rice in southeast China[J]. Agron. J,2001,93:869-878.
    [18]浙江农业大学主编.实用水稻栽培学[M].上海:上海科技出版社,1981,202-230.
    [19]凌启鸿,张洪程,苏祖芳,等.稻作新理论[M].北京:科学出版社,1992,287-307.
    [20]周兵.氮肥运筹方式对早稻干物质积累和产量的影响[J].河北农业科学,2007,11(3):14-20.
    [21]范大泳,莫绍芬,蒋满英.氮肥运筹对晚稻产量和氮素利用率的影响[J].广西农业生物科学,2007,26(4):312-316.
    [22]杨华文,汗丽,程秀萍,等.高产优质杂交中籼新两优6号栽插密度与施肥水平研究[J].安徽农业科学,2005,33(3):378-379.
    [23]赵乃轩,李必钦.施氮量和种植密度对中油杂11产量的影响[J].湖北农业科学,2006,45(6):724-726.
    [24]周江明,赵琳,董越勇,等.氮肥和栽植密度对水稻产量及氮素利用率的影响[J].植物营养与肥料学报,2010,16(2):274-281.
    [1]张福锁,王激清,张卫峰,等.中国主要粮食作物肥料利用率现状与提高途径[J].土壤学报,2008,45(5):915-924.
    [2]Wang G H, Dobermann A, Witt C, et al. Performance of site-specific nutrient management for irrigated rice in southeast China[J]. Agronomy Journal,2001,93:869-878.
    [3]Peng S, Huang J, Zhong X, et al. Challenge and opportunity in improving fertilizer-nitrogen use efficiency of irrigated rice in China[J]. Agriculture Science in China,2002,1(7):776-785.
    [4]江立庚,曹卫星,甘秀芹,等.不同施氮水平对南方早稻氮素吸收利用及其产量和品质的影响[J].中国农业科学,2004,37(4):490-496.
    [5]张四海,吴文革,李泽福,等.氮肥运筹对双季晚稻产量和品质的影响[J].中国土壤与肥料,2008,3:28-31.
    [6]李土明,郭宏文,侯乐锋,等.双季稻作的氮肥定量运筹技术研究[J].江西农业学报,2007,19(5):78-80.
    [7]凌启鸿,张洪程,蔡建中,等.水稻高产群体质量及其优化控制探讨[J].中国农业科学,1993,26(6):1-11.
    [8]苏祖芳,周培南,徐乃霞.密肥条件对水稻氮素吸收和产量形成的影响[J].中国水稻科学,2001,15(4):281-286.
    [9]蒋彭炎,冯来定,俞美玉,等.水稻发生贪青的原因和防止途径探讨[J].中国农业科学,1989,22(4):33-40.
    [10]Novoa R, Loomis R S. Nitrogen and plant production[J]. Plant Soil,1981,58:177-204.
    [11]Ntanos D A, Koutroubas S D. Dry matter and N accumulation and translocation for Indica and Japonica rice under Mediterranean conditions[J]. Field Crops Research,2002,74:93-101.
    [12]荆爱霞.移栽行距、密度对水稻超高产形成的影响[D].扬州:扬州大学,硕士学位论文,2008.
    [13]樊红柱,曾祥忠,张冀.移栽密度与供氮水平对水稻产量、氮素利用影响[J].西南农业学报,2010,23(4):1137-1141.
    [14]樊红柱,曾祥忠,吕世华.水稻不同移栽密度的氮肥效应及氮素去向[J].核农学报,2009,23(4):681-685.
    [15]张耀鸿,张亚丽,黄启为,等.不同氮肥水平下水稻产量以及氮素吸收、利用的基因型差异比较[J].植物营养与肥料学报,2006,12(5):616-621.
    [16]Zhang Y H, Fan J B, Zhang Y L et al. N accumulation and translocation in four Japonica rice cultivars at different N rates[J]. Pedosphere,2007,17(6):792-800.
    [17]杨祥田,林贤青,曾孝元,等.水稻强化栽培下不同氮肥管理对产量与氮素利用的影响[J].土 壤通报,2007,38(3):463-466.
    [18]顾伟.云南涛源特殊生态区水稻超高产生理生态特征研究[D].南京农业大学,硕十学位论文,2009.
    [19]吴文革,杨联松,苏泽胜,等.不同施氮条件下杂交中籼稻的群体质量与产量形成[J].中国生态农业学报,2008,16(5):1083-1089.
    [20]范大泳,莫绍芬,蒋满英,等.氮肥运筹对晚稻产量和氮素利用率的影响[J].广西农业生物科学,2007,26(4):312-316.
    [1]Bunnik N J J. The multispectral reflectance of short wave radiation by agriculture crops in relation with their morphological and optical properties[J]. Wagemingen. the Netherlands:Pubox Publ, 1978:98-114.
    [2]Hatfield J L, Kanemasu E T, Asrar G, et al. Leaf area estimates from spectral measurements over various planting dates of wheat[J]. International Journal of Remote Sensing,1985,6:167-175.
    [3]Shibayama M, Akiyama T. Seasonal visible, near-infrared and mid-infrared spectra of rice canopies in relation to LAI and above-ground dry phytomass[J]. Remote Sensing of Environment,1989,27: 119-127.
    [4]薛利红,曹卫星,罗卫红,等.光谱植被指数与水稻叶面积指数相关性的研究[J].植物生态学报.2004,28(1):47-52.
    [5]Gitelson A A, Kaufman Y J, Stark R, et al. Novel algorithms for remote estimation of vegetation fraetion[J]. Remote Sensing of Environment,2002,80:76-87.
    [6]唐延林,王秀珍,王坷,等.利用光谱法测定水稻生物物理参数及其与光谱变童的相关性研究[J].贵州大学学报(农业与生物科学版),2002,21(5):327-331.
    [7]唐延林,王秀珍,王福民,等.农作物LAI和生物量的高光谱法测定[J].西北农林科技大学学报(自然科学版),2004,32(11):100-104.
    [8]Rouse J W R H, Haas J A, Schell D W, et al. Monitoring the vernal advancement of retrogradation of natural vegetation. NASA/GSFC, Type III, Final Report, Greenbelt, MD, USA,1974.
    [9]Xue L H, Yang L Z. Recommendations for nitrogen fertilizer topdressing rates in rice using canopy reflectance spectra[J]. Biosystems Engineering,2008,100:524-534.
    [10]Kokaly R, Root R, Brown K, et al. Calibration of compact airborne spectrographic imager(CASI) data to surface reflectance at the Roosevelt National Park. Abstract:221 st Annual Meeting of the American Chemical Society. San Diego, CA.2001,4:1-5.
    [11]田永超,朱艳,姚霞,等.基于光谱信息的作物氮素营养无损监测技术[J].生态学杂志,2007,26(9):1454-1463.
    [12]Thomas J R, Gausman H W. Leaf reflectance vs leaf chlorophyll and carotenoid concentrations for eight crops. Agronomy Journal,1977,69:799-802.
    [13]Takebe M, Yoneyama T, Inada K, et al. Spectral reflectance ratio of rice canopy for estimating crop nitrogen status[J]. Plant and Soil,1990,122:295-297.
    [14]Choubey V K, Choubey R. Spectral reflectance, growth and chlorophyll relationships for rice crop in a semi-arid region of India[J]. Water resources management,1999,13:73-84.
    [15]唐延林,王人潮,王秀珍,等.水稻叶面积指数和叶片生化成分的光谱法研究[J].华南农业大学学报(自然科学版),2003,24(1):4-7.
    [16]张良培,郑兰芬,童庆禧.利用高光谱数据对生物变量进行估计[J].遥感学报,1997,1(2):110-113.
    [17]王渊,王福民,黄敬峰.油菜不同组分生物量光谱遥感估算模型[J].浙江农业大学学报,2004,16(2):79-83.
    [18]Flynn E S, Dougherty C T, Wendroth O. Assessment of pasture biomass with the normalized difference vegetation index from active ground-based sensors [J]. Agronomy Journal,2008,100(1): 114-121.
    [19]Govaerts B N, Verhulst K D, Sayre, et al. Evaluating spatial within plot crop variability for different management practices with an optical sensor?[J]. Plant and Soil,2007,299 (1-2):29-42.
    [20]王人潮,黄敬峰.水稻遥感估产[M].北京:中国农业出版社,2002
    [21]李开丽,蒋建军,毛荣止,等.叶面积指数遥感监测模型[J].生态学报,2005,25(6):1491-1496.
    [22]周冬琴,田永超,姚霞,等.水稻叶片全氮浓度与冠层反射光谱的定量关系[J].应用生态学报,2008,19(2):337-344.
    [23]薛利红,杨林章,范小晖.基于碳氮代谢的水稻氮含量及碳氮比光谱估测[J].作物学报,2006,32(3):430-435.
    [24]朱艳,李映雪,周冬琴.稻麦叶片氮含量与冠层反射光谱的定量关系[J].生态学报,2006,26(10):3463-3469.
    [25]王秀珍,黄敬锋,李云梅,等.水稻叶面积指数的高光谱遥感估算模型[J].遥感学报,2004,8(1):81-88.
    [26]田永超.基于冠层反射光谱的水稻水稻及稻麦生长监测[D].南京农业大学,硕士学位论文,2003.
    [27]周冬琴.基于冠层反射光谱的水稻氮素营养与籽粒品质监测[D].南京农业大学,博士学位论文,2008
    [1]Wang G, Dobermann A, Witt C et al. Performance of site-specific nutrient management for rice in southeast China[J]. Agron. J,2001,93:869-878.
    [2]凌启鸿,张洪程,苏祖芳,等.稻作新理论[M].北京:科学出版社,1992,287-307.
    [3]浙江农业大学主编.实用水稻栽培学[M].上海:上海科技出版社,1981,202-230.
    [4]范大泳,莫绍芬,蒋满英.氮肥运筹对晚稻产量和氮素利用率的影响[J].广西农业生物科学,2007,26(4):312-316.
    [5]陆顺生,曾林,万卫东,等.优质籼稻不同品种、密度对其产量及构成因素的影响[J].中国农学通报,2003,19(2):50-52.
    [6]张玉屏,陈穗哲,周爱珠,等.浙江省连作晚稻产量差异及其成因分析[J].中国稻米,2008,(4):43-45.
    [7]苏祖芳,周培南,徐乃霞.密肥条件对水稻氮素吸收和产量形成的影响[J].中国水稻科学,2001,15(4):281-286.
    [8]荆爱霞.移栽行距、密度对水稻超高产形成的影响[D].扬州:扬州大学,硕士学位论文,2008.
    [9]樊红柱,曾祥忠,张冀.移栽密度与供氮水平对水稻产量、氮素利用影响[J].西南农业学报,2010,23(4):1137-1141.
    [10]樊红柱,曾祥忠,吕世华.水稻不同移栽密度的氮肥效应及氮素去向[J].核农学报,2009,23(4):681-685.
    [11]周兵.氮肥运筹方式对早稻干物质积累和产量的影响[J].河北农业科学,2007,11(3):14-20.
    [12]张耀鸿,张亚丽,黄启为,等.不同氮肥水平下水稻产量以及氮素吸收、利用的基因型差异比较[J].植物营养与肥料学报,2006,12(5):616-621.
    [13]Zhang Y H, Fan J B, Zhang Y L, et al. N accumulation and translocation in four Japonica rice cultivars at different N rates[J]. Pedosphere,2007,17(6):792-800.
    [14]杨祥田,林贤青,曾孝元,等.水稻强化栽培下不同氮肥管理对产量与氮素利用的影响[J].土壤通报,2007,38(3):463-466.
    [15]吴文革,杨联松,苏泽胜,等.不同施氮条件下杂交中籼稻的群体质量与产量形成[J].中国生态农业学报,2008,16(5):1083-1089.
    [16]顾伟.云南涛源特殊生态区水稻超高产生理生态特征研究[J].南京农业大学,硕十学位论文,2009.
    [17]杨华文,汪丽,程秀萍,等.高产优质杂交中籼新两优6号栽插密度与施肥水平研究[J].安徽农业科学,2005,33(3):378-379.
    [18]赵乃轩,李必钦.施氮量和种植密度对中油杂11产量的影响[J].湖北农业科学,2006,45(6):724-726.
    [19]周江明,赵琳,董越勇,等.氮肥和栽植密度对水稻产量及氮素利用率的影响[J].植物营养与肥料学报,2010,16(2):274-281.
    [20]田永超,朱艳,姚霞,等.基于光谱信息的作物氮素营养无损监测技术[J].生态学杂志,2007,26(9):1454-1463
    [21]Rouse, J W, Haas R H, Schell J A, et al. Monitoring the vernal advancement of retrogradation of natural vegetation[J]. NASA/GSFC, Type III, Final Report, Greenbelt, MD, USA.1974.
    [22]Choubey V K, Choubey R. Spectral reflectance, growth and chlorophyll relationships for rice crop in a semi-arid region of India[J]. Water resources management,1999,13:73-84.
    [23]唐延林,王人潮,王秀珍,等.水稻叶面积指数和叶片生化成分的光谱法研究[J].华南农业大学学报(自然科学版),2003,24(1):4-7.
    [24]张良培,郑兰芬,童庆禧.利用高光谱对生物变量进行估计[J].遥感学报,1997,1(2):110-113.
    [25]王渊,王福民,黄敬峰.油菜不同组分生物量光谱遥感估算模型[J].浙江农业大学学报,2004,16(2):79-83.
    [26]Xue L H, Yang L Z. Recommendations for nitrogen fertilizer topdressing rates in rice using canopy reflectance spectra[J]. Biosystems Engineering.2008,100:524-534.
    [27]Flynn E S, Dougherty C T, Wendroth O. Assessment of pasture biomass with the normalized difference vegetation index from active ground-based sensors[J]. Agronomy Journal,2008,100(1): 114-121.
    [28]王人潮,黄敬峰.水稻遥感估产[M].北京:中国农业出版社,2002
    [29]李开丽,蒋建军,毛荣正,等.叶面积指数遥感监测模型[J].生态学报,2005,25(6):1491-1496.
    [30]周冬琴,田永超,姚霞,等.水稻叶片全氮浓度与冠层反射光谱的定量关系[J].应用生态学报,2008,19(2):337-344.
    [31]王秀珍,黄敬锋,李云梅,等.水稻叶面积指数的高光谱遥感估算模型[J].遥感学报,2004,8(1):81-88.
    [32]田永超.基于冠层反射光谱的水稻水稻及稻麦生长监测[D].南京农业大学,硕士学位论文,2003.
    [33]周冬琴.基于冠层反射光谱的水稻氮素营养与籽粒品质监测[D].南京农业大学,博士学位论文,2008.
    [34]松岛省三.稻作理论新技术[M],庞诚译.1979,农业出版社.
    [35]凌启鸿,张洪程,戴其根,等.水稻精确定量施氮研究[J].中国农业科学,2005(12):2457-2467.
    [36]全国农业技术推广服务中心.全国测土配方施肥技术规范(试行).中华人民共和国农业部,2005.
    [37]陈防,鲁剑巍.SPAD-502叶绿素计在作物营养快速诊断上的应用初探[J].湖北农业科学,1996,(2):31-34.
    [38]吴良欢,陶勤南.水稻叶绿素计诊断追氮法研究[J].浙江农业大学学报,1999,25(2):135-138.
    [39]王绍华,曹卫星,王强盛,等.水稻叶色分布特点与氮素营养诊断[J].中国农业科学,2002,35(12):1461-1466.
    [40]Lukina E V, Freeman K W, Wynn K J, et al. Nitrogen fertilization optimization algorithm based on in-season estimates of yield and plant nitrogen uptake[J]. Journal of Plant Nutrition,2001,24(6): 885-898.
    [41]凌启鸿.水稻精确定量栽培理论与技术[M].北京:中国农业出版社,2007:100-103.
    [42]郑永美,丁艳峰,王强盛,等.起身肥对水稻分蘖和氮素吸收利用的影响[J].作物学报,2008,34(3):513-519.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700