基于CASA模型的浙江省植被净初级生产力估算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植被净初级生产力的作为表征陆地植被动态变化质量的重要指标,在陆地生态系统碳平衡的调节中起着极其重要的作用。近年来伴随着城市化的进程,全球气候的恶化,人类也开始了对生态环境质量的关注。浙江省作为中国经济最为发达的省份之一,对改善区域生态环境的也投入了更多的关注。1999年开始在全省21个江河源头县市以及重点林区县市建设生态公益林试点。因此,本文利用CASA模型对浙江省2001年和2010年的陆地植净初级生产力进行估算,旨在进一步了解浙江省的区域植被资源质量,为浙江省生态建设提供数据支持以及参考建议。
     文章采用2001年和2010年的地面气象资料,利用多元回归和Co-Kriging插值法,对气象资料进行了插值,结合MODIS影像数据NDVI,在地理信息系统等技术的支持下,对浙江省近十年来的净初级生产力进行了估算,并利用植被覆盖数据和浙江省行政边界图对估算结果分别进行了统计分析。主要结论如下:
     (1)浙江省陆地植被NPP空间分异明显,总体上呈现出随着海拔的增高而逐渐增大的分布趋势,2001年及2010年浙江省植被净生产力总量分别约为5.262×10~7tC和4.895×10~7tC,平均值分别约为518.423g C/m~2和482.192g C/m~2,全省NPP总体上呈现出轻微下降,但基本上保持了相对稳定的态势;全省NPP季相变化明显,从3月份开始增长,并在7月份达到最高值,NPP均值分别约为116.578gC/m~2和75.517gC/m~2。
     (2)不同土地覆被类型NPP季相变化趋势相似,但NPP大小差异显著,NPP年平均值大小依次为森林(574.481gC/m~2)>草地(435.728gC/m~2)>农田(434.529gC/m~2)>水域(223.254gC/m~2)>近海湿地(183.803gC/m~2)>裸岩(171.033gC/m~2)>建设用地(157.825gC/m~2);森林和耕地NPP年总量均占全省年总量的90%以上,城镇用地、水域以及其它用地类型面NPP年总量约占全省年总量的10%以下。
     (3)各县市建设用地NPP均值差异不大,集中分布在中低和中高值区;森林NPP均值差异较大,并集中在高值区;各县市NPP总平均值集中在中高值区;各县市不同土地覆被类型的NPP均值分布总体表现为:浙东北及沿海发展较快的县市NPP较低,浙西南、西北山岭地区的NPP均值较高,同时少数沿海等城市发展较快县市NPP也较高。
     (4)各县市的建设用地NPP总量大小主要受建设用地面积的影响;各县市森林NPP总量则受其森林面积和NPP均值的共同影响;各县市NPP总体总量的分布则是受不同土地利用方式的综合影响的结果,其中森林NPP总量起着主导作用,而一些建设用地面积大的城市在其县市NPP总量上也起着非常重要的作用。
As an important quality indicator of the characterization of terrestrial vegetation dynamic changes,vegetation net primary productivity plays a significant role in the regulation of carbon balance ofterrestrial ecosystems. In recent years, along with the urbanization and the deterioration of the globalclimate,people began to concern on the quality of the ecological environment. Zhejiang,as one of themost economically developed provinces in China, has also put more attention to improve the regionalecological environment. In1999, they began the construction of ecological public welfare forest pilotin21counties in which are the sources of rivers and the major forest areas. In this paper, we estimatesthe net primary productivity of terrestial vegetation in Zhejiang Province of2001and2010based on theCASA model, in order to learn more about the quality of regional vegetation resources in ZhejiangProvince, and provide data support and reference proposal for the ecological construction of ZhejiangProvince.
     By using the multiple regression and Co-Kriging interpolation method, together with themeteorological data and the MODIS Image Data NDVI, an NPP simulation was performed forZhejiang Province in2001and2010, with results further analyzed by Geographic Information System(GIS)-based software. The main conclusions are as follows:
     (1) The terrestrial vegetation NPP showed a spatial heterogeneity which lying down within therelief over the study area, the total NPP in2001and2010were about65.262×10~7tC and4.895×10~7tC, and the average annual NPP were about518.423gC/m~2and482.192gC/m~2, NPP ofthe whole province showed a slight decrease, but basically maintained in a relatively stable situation;The NPP also showed a apparently seasonal changes which began increasing fast at Mar. and peaked inJul., and the highest values of NPP in July were about116.578gC/m~2and75.517gC/m~2.
     (2) NPP of different land use type turned out a similar seasonal change, but the values weredifferent significantly, which taken a order of the forest (574.481gC/m~2)> grasslands (435.728gC/m~2)>farmland (434.529gC/m~2)> waters (223.254gC/m~2)> coastal wetlands (183.803gC/m~2)> bare rock(171.033gC/m~2)> construction land (157.825gC/m~2); forests and arable land accountted for more than90percent of total NPP the whlole in the procince while less than10percent which was accounted forthe urban land, waters and other land use types.(3) The average value of NPP from different counties and cities of the construction land shows a slightly differences, and were concentrated in themoderately low and the moderately high value area; the average value of NPP of the forest were quitedifferent which concentrated in the high value areas; the average NPP of each city and each countywere both concentrated in high value area; the average of NPP in each counties and cities of differentland use types was distributed generally as follows: NPP was lower in northeast and coastal area ofZhejiang where the economic developed quikly, and was higher in southwest and northwest mountainareas of Zhejiang, while a small number of coastal urban development counties NPP is also higher.
     (4) The value of the total NPP in each counties and cities of the construction land is mainlyaffected by the construction area; the forest NPP total value is combined effected by the area and theNPP average value; and the NPP total value distribution of each counties and cities was a results of thecombined effects of different land use patterns while the forest total NPP plays a dominant role. Theconstruction also played a very important role in its NPP total value of some cities in which theconstruction land area is large
引文
[1]周广胜,张新时,高素华,等.中国植被对全球变化反应的研究[J]. Acta Botanica Sinica.1997(09).
    [2] Keeling C D. Climate change and carbon dioxide: an introduction[J]. Proc Natl Acad Sci U S A.1997,94(16):8273-8274.
    [3] Canadell J G M H A B. Carbon Metabolism of the Terrestrial biosphere: A multitechnique approach forimproved understanding[J]. Ecosystems.2000,3:115-130.
    [4] Cramer W, Kicklighter D W, Bondeau A, et al. Comparing global models of terrestrial net primaryproductivity (NPP): overview and key results[J]. Global Change Biology.1999,5(S1):1-15.
    [5] Weiss J L, Gutzler D S, Allred Coonrod J E, et al. Seasonal and inter-annual relationships betweenvegetation and climate in central New Mexico, USA[J]. Journal of Arid Environments.2004,57(4):507-534.
    [6]孙红雨,王常耀,牛铮,等.中国地表植被覆盖变化及其与气候因子关系_基于NOAA时间序列数据分析[J].遥感学报.1998,(3)(2):204-210.
    [7] Whittaker R H, Lieth H. Primary productivity of the biosphere[M]. New York: Springer-Verlag,1975:339.
    [8]方精云,虞静明,卢其瑶,等.全球生态学——气候变化与生态响应[M].北京:高等教育出版社海德堡施普林格出版社,2000.
    [9] Watson D J. The Physiological Basis of Variation in Yield[J].1952, Volume4:101-145.
    [10]埃塞林顿J. R.,曲仲湘.译.环境和植物生态学[M].北京:科学出版社,1989.
    [11]赵俊芳,延晓冬,朱玉洁.陆地植被净初级生产力研究进展[J].中国沙漠.2007(5):780-786.
    [12] Lieth H, Whittaker R H. Modeling the primary productivity of the world[J]. Nature of Resources.1972,2(8):5-10.
    [13] Whittaker R H, Lieth H. Primary productivity of the biosphere[M]. New York: Springer-Verlag,1975:339.
    [14] Igbp. The terrestrial carbon cycle: implication for the Kyoto protocol[J]. Science.1998,280:1393-1394.
    [15]中国森林生态系统的生物量和生产力[M].1999.
    [16]李文华.森林生物生产量的概念及其研究的基本途径[J].自然资源.1978,1(1):71-92.
    [17]李军.基于GIS的气候要素空间分布研究和中国植被净第一性生产力的计算[D].浙江大学,2006.
    [18]贺庆棠,Baumgartner A.中国植物的可能生产力农业和林业的气候产量[J].北京林业大学学报.1986(2):84-98.
    [19]侯光良,游松才.用筑后模型估算我国植物气候生产力[J].自然资源学报.1990(1):60-65.
    [20]张宪洲.我国自然植被净第一性生产力的估算与分布[J].自然资源.:15-21.
    [21]朱志辉.自然植被净第一性生产力估计模型[J].科学通报.1993(15):1422-1426.
    [22]刘世荣,徐德应,王兵.气候变化对中国森林生产力的影响Ⅱ.中国森林第一性生产力的摸拟[J].林业科学研究.1994(4):425-430.
    [23]刘世荣,徐德应,王兵.气候变化对中国森林生产力的影响Ⅰ.中国森林现实生产力的特征及地理分布格局[J].林业科学研究.1993(6):633-642.
    [24]周广胜,张新时.自然植被净第一性生产力模型初探[J].植物生态学报.1995(3):193-200.
    [25]孙睿,朱启疆.陆地植被净第一性生产力的研究[J].应用生态学报.1999(6):757-760.
    [26]郝永萍,陈育峰,张兴有.植被净初级生产力模型估算及其对气候变化的响应研究进展[J].地球科学进展.1998(6):55-62.
    [27]孙睿,朱启疆.中国陆地植被净第一性生产力及季节变化研究[J].地理学报.2000(1):36-45.
    [28]孙睿,朱启疆.气候变化对中国陆地植被净第一性生产力影响的初步研究[J].遥感学报.2001(1):58-61.
    [29]朴世龙,方精云,郭庆华.利用CASA模型估算我国植被净第一性生产力[J].植物生态学报.2001(5):603-608.
    [30]陈利军,刘高焕,励惠国.中国植被净第一性生产力遥感动态监测[J].遥感学报.2002(2):129-135.
    [31]朴世龙,方精云,郭庆华.利用CASA模型估算我国植被净第一性生产力[J].植物生态学报.2001(5):603-608.
    [32]朴世龙,方精云,郭庆华.1982—1999年我国植被净第一性生产力及其时空变化[J].北京大学学报(自然科学版).2001(4):563-569.
    [33]朴世龙,方精云.1982~1999年青藏高原植被净第一性生产力及其时空变化[J].自然资源学报.2002(3):373-380.
    [34]柯金虎,朴世龙,方精云.长江流域植被净第一性生产力及其时空格局研究[J].植物生态学报.2003(6):764-770.
    [35]卫亚星,王莉雯.应用遥感技术模拟净初级生产力的尺度效应研究进展[J].地理科学进展.2010(4):471-477.
    [36]李高飞,任海,李岩,等.植被净第一性生产力研究回顾与发展趋势[J].生态科学.2003(4):360-365.
    [37] Alexandrov G A, Oikawa T, Yamagata Y. The scheme for globalization of a process-based modelexplaining gradations in terrestrial NPP and its application[J]. Ecological Modelling.2002,148(3):293-306.
    [38] Agnès B. Leaf area index, intercepted photosynthetically active radiation, and spectral vegetation indices:A sensitivity analysis for regular-clumped canopies[J]. Remote Sensing of Environment.1993,46(1):45-59.
    [39] Cramer W, Kicklighter D W, Bondeau A, et al. Comparing global models of terrestrial net primaryproductivity (NPP): overview and key results.[J]. Global change biology.1999,5(1):1-15.
    [40] Ruimy A, Saugier B, Dedieu G. Methodology for the estimation of terrestrial net primary productionfrom remotely sensed data[J].1994,99:5263-5283.
    [41]陈利军,刘高焕,冯险峰.遥感在植被净第一性生产力研究中的应用[J].生态学杂志.2002(2):53-57.
    [42]王宗明,梁银丽.植被净第一性生产力模型研究进展[J].西北林学院学报.2002(2):22-25.
    [43] Melillo J M, Mcguire A D, Kicklighter D W, et al. Global climate change and terrestrial net primaryproduction[J].1993,363(6426):234-240.
    [44] Parton W J, Scurlock J M O, Ojima D S, et al. Observations and modeling of biomass and soil organicmatter dynamics for the grassland biome worldwide[J]. Global Biogeochem. Cycles.1993,7(4):785-809.
    [45] Band L E, Patterson P, Nemani R, et al. Forest ecosystem processes at the watershed scale:incorporating hillslope hydrology[J]. Agricultural and Forest Meteorology.1993,63(1–2):93-126.
    [46] Sellers P, Schimel D. Remote sensing of the land biosphere and biogeochemistry in the EOS era: sciencepriorities, methods and implementation—EOS land biosphere and biogeochemical cycles panels[J]. Globaland Planetary Change.1993,7(4):279-297.
    [47] Field C B, Randerson J T, Malmstr m C M. Global net primary production: Combining ecology andremote sensing[J]. Remote Sensing of Environment.1995,51(1):74-88.
    [48]朱文泉,陈云浩,徐丹,等.陆地植被净初级生产力计算模型研究进展[J].生态学杂志.2005(3):296-300.
    [49] Potter C S, Randerson J T, Field C B, et al. Terrestrial ecosystem production:A process model based onglobal satelliteand surface data[J]. GLOBAL BIOGEOCHEMICAL CYCLES.1993,7:811-841.
    [50] Goetz S J, Prince S D, Goward S N, et al. Satellite remote sensing of primary production: an improvedproduction efficiency modeling approach[J]. Ecological Modelling.1999,122(3):239-255.
    [51] Prince S D, Goward S N. Global Primary Production: A Remote Sensing Approach[J]. Journal ofBiogeography.1995,22:815-835.
    [52] W K, Heimannm. Impact of drought stress and other factors on seasonal land biosphere CO2exchangestudied through an atmospheric tracer transport model[J].1995,47:471-789.
    [53] Monteith J L. Solar Radiation and Productivity in Tropical Ecosystems[J]. Journal of Application Ecology.1972,9:747-766.
    [54] Heimann M, Keeling C D, Meteorologie M F. A three-dimensional model of atmospheric CO2transportbased on observed winds:2. model description and simulated tracer experiments[M]. Max-Planck-Institut fürMeteorologie,1989.
    [55] Kumar M, Monteith J L. Remote sensing of plant growth. In Plants and the Daylight Spectrum,(H.Smith, Ed.)[M]. London: Academic Press,1982:133-144.
    [56] Ruimy A, Saugier B. Methodology for the estimation of terrestrial net primary production from remotelysensed data[J]. Journal of Geophysical Research.1994(99):5263-5283.
    [57] Hatfield J L, Asrar G, Kanemasu E T. Intercepted photosynthetically active radiation estimated byspectral reflectance[J]. Remote Sensing of Environment.1984,14(1–3):65-75.
    [58] Los S, Justice C, Tucker C. A global1by1degreeNDVI dataset for climate studies derived from theGIMMS continental NDVI data[J].1994,15:3493-3518.
    [59] P. J. S. Canopy reflectance, photosynthesis, and transpiration, II. The role of biophysics in the linearityof their interdependence[J]. Remote Sensing of Environment.1987,21(2):143-183.
    [60]朱文泉,潘耀忠,何浩,等.中国典型植被最大光利用率模拟[J].科学通报.2006(6):700-706.
    [61]朱文泉,陈云浩,潘耀忠,等.基于GIS和RS的中国植被光利用率估算[J].武汉大学学报(信息科学版).2004(8):694-698.
    [62]张新时.植被的PE(可能蒸散)指标与植被-气候分类(一)——几种主要方法与PEP程序介绍[J].植物生态学与地植物学学报.:1-9.
    [63]彭少麟,郭志华,王伯荪.利用GIS和RS估算广东植被光利用率[J].生态学报.2000(6):903-909.
    [64]朱文泉,潘耀忠,张锦水.中国陆地植被净初级生产力遥感估算[J].植物生态学报.2007(3):413-424.
    [65] http://www.zj.gov.cn/gb/zjnew/node3/node6/node7/node25/index.html[Z].
    [66] http://www.zj.gov.cn/gb/zjnew/node3/node6/node7/node26/index.html[Z].
    [67] http://www.zj.gov.cn/gb/zjnew/node3/node6/node9/node68/index.html[Z].
    [68] http://www.zj.gov.cn/gb/zjnew/node3/node6/node9/node69/userobject1ai18484.html[Z].
    [69] http://www.tjcn.org/tjgb/201102/17820_4.html[Z].
    [70]谢云峰,张树文.基于数字高程模型的复杂地形下的黑龙江平均气温空间插值[J].中国农业气象.2007(2):205-211.
    [71]翁笃鸣,罗哲贤.山区地形气候[M].北京:气象出版社,1990:1-10.
    [72] Nalder I A, Wein R W. Spatial interpolation of climatic Normals: test of a new method in the Canadianboreal forest[J]. Agricultural and Forest Meteorology.1998,92(4):211-225.
    [73]陈冬花,邹陈,王苏颖,等.基于DEM的伊犁河谷气温空间插值研究[J].光谱学与光谱分析.2011(7):1925-1929.
    [74]侯景儒,黄竞先.地质统计学的理论与方法[M].1990:69-78.
    [75]刘登伟,封志明,杨艳昭.海河流域降水空间插值方法的选取[J].地球信息科学.2006(4):75-79.
    [76]彭晓芬,黄甫则,周汝良.云南省年均降雨量空间插值模拟方法比较[J].西南林学院学报.2010(5):25-28.
    [77] Penman H L. Natural evaporation from open water, hare soil and grass[J]. Proc R Soc Lond A MathPhys Sci.1948,193(1032):120-145.
    [78]和清华,谢云.我国太阳总辐射气候学计算方法研究[J].自然资源学报.2010(2):308-319.
    [79]苏志,涂方旭.广西太阳总辐射的计算及分布特征[J].广西气象.2003(4):32-34.
    [80]张海龙.近五年来中国陆地植被净第一性生产力时空变化特征分析[D].南京师范大学,2006.
    [81]偶星.基于CASA模型的平朔矿区复垦土地NPP研究[D].中国地质大学(北京),2009.
    [82]张笑鹤.西南地区NDVI和NPP时空动态及其与气候因子相关性分析[D].中国林业科学研究院,2011.
    [83]倪健.中国亚热带常绿阔叶林净第一性生产力的估算[J].生态学杂志.1996(6):2-9.
    [84]毛裕定,苏高利,李发东,等.气候变化对浙江省植物气候生产力的影响[J].中国生态农业学报.2008,16(2):273-278.
    [85]张茂震,王广兴,刘安兴.基于森林资源连续清查资料估算的浙江省森林生物量及生产力[J].林业科学.2009(9):13-17.
    [86]孙善磊,周锁铨,石建红,等.应用三种模型对浙江省植被净第一性生产力(NPP)的模拟与比较[J].中国农业气象.2010(2):271-276.
    [87]张骏.中国中亚热带东部森林生态系统生产力和碳储量研究[D].浙江大学,2008.
    [88]孙善磊,周锁铨,薛根元,等.环杭州湾地区近36年自然植被净初级生产力的变化特征[J].自然资源学报.2010(5):830-841.
    [89]蔡睿,徐瑞松,陈彧,等.广东省植被NPP时空特征变化分析[J].农机化研究.2009(2):9-11.
    [90]江洪,汪小钦,孙为静.福建省森林生态系统NPP的遥感模拟与分析[J].地球信息科学学报.2010(4):580-586.
    [91]董丹,倪健.利用CASA模型模拟西南喀斯特植被净第一性生产力[J].生态学报.2011(7):1855-1866.
    [92] http://www.zjqy.gov.cn/zjqy/qygl/tsjj/[Z].
    [93]高大伟,张小伟,蔡菊珍,等.浙江省植被覆盖时空动态及其与生态气候指标的关系[J].应用生态学报.2010,21(6):1518-1522.
    [94]刘其霞,常杰,江波,等.浙江省常绿阔叶生态公益林生物量[J].生态学报.2005,25(9):2139-2144.
    [95]沈琪,张骏,朱锦茹,等.浙江省生态公益林植被恢复过程中物种组成及多样性的变化[J].生态学报.2005,25(9):2131-2138.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700