井下作业油管环空防溢控制的理论与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环空防溢控制技术是解决带压起下井口控制的关键技术,也是目前国内外油田进行带压控制生产普遍使用的安全保障技术。防喷器是勘探开发高压油气田,实现带压起下井口控制,防止井喷事故发生和平衡压力钻井的关键钻井控井设备。在油田实际生产中,带压起下密封要求比较严格,而且原有的环空密封和内孔防溢控制技术已经不适应井口套压增高的生产现状,其关键部件、弹性密封元件——胶芯的特性研究对于解决带压密封技术难题,以及提高密封寿命、增强密封效果显得至关重要。
     过油管防喷器是油水井作业过程带压起下的井口防喷设备,它主要依靠弹性密封元件的密封作用来实现带压起下井口的控制。为了对过油管防喷器进行深入研究,建立起与实际结构一致的物理模型和符合有限元计算的有限元模型,以此为手段对胶芯进行结构仿真计算,寻找油管整体通过胶芯时的变形和接触压力变化规律。
     过油管防喷器在油管上下行程的密封过程中,密封胶芯承受着不同的控制压力作用,控制压力与密封压力的幅值变化,直接关系着胶芯密封质量和寿命,为探究胶芯疲劳破坏机理,需要获得系统控制压力对密封压力造成的影响与相互关系。
     用疲劳寿命理论对密封胶芯进行了疲劳寿命研究,根据理论计算结果对胶芯进行结构尺寸优化,以增大密封管径范围和提高整体密封质量。在实验室试验装置和油田数十口油井做了过油管防喷器带压过接箍试验,试验说明过油管防喷器这一环空防溢控制技术简便、灵活,是聚驱作业的一种有效措施,同时提高了作业井施工的环保水平。
     用有限元法对胶芯进行了计算和研究,计算结果为过油管防喷器胶芯寿命提高、成本节约和改型设计提供了理论指导,对油田现场生产具有很大的实际意义。
     模糊可靠性优化方法属于拓宽优化设计应用范畴,它能建立一种既能保留系统的复杂性、模糊性,又能正确描述系统可靠性和真实状态的优化模型,克服了常规优化设计的不足。本文根据胶芯带压密封起下井下管柱的工作特点,考虑应力与强度的随机性与模糊性,建立密封胶芯模糊可靠性优化设计的数学模型,采用最优化水平截集法完成求解,最终获得了符合要求的最优解。
Annular kick-control technology of through-tubing blowout preventer is a key way to realize wellhead pressure control while tripping in and out of tubing, which is also a safe-guarding technology prevalent in worldwide oil fields. A blowout preventer is the key equipment used to control wellhead pressure, avoid blowout accidents and realize balanced-pressure drilling. In oil fields’practice, it is strictly required to safely seal the annular while tripping in and out tubing. However, the old technologies of annular seal and kick-prevention can no longer meet the requirement of the status quo of increased casing pressure. The study on the rubber core, a key elastic component, is the key to solve the difficult problem of sealing under pressure, prolong the seal’s service life and improve the sealing effect.
     Through-tubing Blowout Preventer, a blowout prevention equipment of wellhead, depends on the elastic rubber core to realize the pressure control in tubing operation. In order to deeply study through-tubing blowout preventers, in this paper, a physical model, which is based on its practical structure has been established and finite element method is used to perform simulation calculation. Rules of the deformation and contact pressure of the rubber core are found while the tubings are going through.
     The rubber core of through-tubing blowout preventer is subject to varying control pressures in the course of the tripping in and out of tubing. The change of the values of control pressure and sealing pressure has a strong effect on the sealing quality and core’s life. In order to study the fatigue failure mechanism of rubber core, and the interaction and relationship between system pressure and contact pressure need to be known.
     Based on fatigue life theory, calculation about the rubber core’s fatigue life has been performed. On the basis of the calculation results, the rubber core’s structure dimensions are optimized in order to increase the diameter scope of the sealed tubings and improve the integral sealing qualities. Using laboratory facilaties and based on the practical data of over ten oil wells, experiments of through-tubing-coupling blowout preventer are performed. The results show that the pressure control technology of the through-tubing blowout preventer is simple and flexible, and is an effective pressure control measure for polymer flooding. It can also improve the level of environment protection at the same time.
     In this paper, finite element method has been used to calculate and study the rubber core which is made of composite material. The calculation results can give a good theoretical instruction to prolonging its service life, reducing cost and improving the design. It is also of practical significance to the production in oil fields.
     Fuzzy reliability optimization method, a practical application of optimization design theory, can be used to establish an optimized model which can reflect the complexity and fuzziness of the system, correctly describe the reliability and practical condition of the system, and get rid of the shortcoming of conventional optimum design methods. In this paper, based on the specific characteristics of rubber core in operation, a mathematic model has been established by fuzzy reliability optimization method considering the randomness and fuzziness of its stress and strength; optimum solution has been obtained by using the optimizing level set approach.
引文
[1]刘伟,陶冶,郑传义等.空气钻井设备配套技术[J].新疆石油科技, 2006,1(16):4-8
    [2]闫永宏,杨晓勇,庄明之.海洋钻井井下控制装置的研制与应用[J].石油机械, 2006,34(9):52-54
    [3]张根旺,李培梅.对《钻井井控装置组合配套、安装调试与维护》标准中有关问题的探讨[J].石油工业技术监督, 2007(1): 43-44
    [4]中国石油新闻中心.钻井防喷器的作用[Z].中国石油天然气集团公司门户网站, 2007
    [5]程波.井口防喷装置密封性试压工具的研制与应用[J].胜利油田职工大学学报, 2007,21(1):66-67
    [6]张慧,刘春全,艾志久.浅谈我国旋转防喷器技术的现状与发展[J].石油矿场机械, 2007,36(1):28-32
    [7]李三平.国产防喷器生产技术现状及发展趋势[J].石油科技论坛, 2006.(4):54
    [8]张春阳,杨志康,郭东.国内外石油钻采设备技术水平分析[M].石油工业出版社,2001第一版:52-58
    [9]陈雅溪,向兴华,于占江等.国外边喷边钻技术发展.钻采工艺[J]. 2000,25(5):8-14
    [10]苏尚文,许宏奇.我国防喷器技术进展及发展方向[J].石油机械, 2001,29(增刊): 101-107
    [11]马宗金,肖润德.现代欠平衡钻井技术[J].钻采工艺, 2000,23(3):1-4
    [12]李强,高碧桦.四川地区欠平衡钻井实践与认识[J].钻采工艺, 2000,23(4):1-6
    [13]郭良栋.欠平衡钻井技术在东北工区的应用[J].西北探矿工程, 2006(5):177-178
    [14]杨敬源,韩国友,邹龙庆等.石油钻井机械[M].北京:石油工业出版社,1994
    [15]宋忠坤,綦耀光,陈娟. 2FZ18-35型小修作业用双闸板防喷器壳体设计[J].石油矿场机械, 2007,36(5):43-46
    [16]杨长青,王琨琦.单闸板防喷器主壳体的有限元分析及结构优化[J].装备制造技术, 2007(2):20-24
    [17]张宝生,陈家庆,许宏奇等.可变径闸板防喷器前密封封井过程受力模拟研究[J].石油矿场机械, 2006,35(增刊):5-7
    [18]晏祥慧,齐明侠,陶云.双闸板防喷器壳体非线性有限元分析[J].石油矿场机械, 2006,35(6):30-32
    [19]任克忍,卢韵皎,张永泽.双闸板防喷器主壳体的有限元强度分析[J].石油矿场机械, 2005,34(1):50-53
    [20]肖力彤,宋振华,杨登树.特大型钻井单闸板防喷器的研制[J].石油机械, 2006,34(7):38-39
    [21]陈惠琴,唐波,何为.闸板防喷器密封失效原因及对策分析[J].天然气工业, 2006,26(11):80-82
    [22]郑勇. FZ18-35试修防喷器的数值分析[J].钻采工艺, 1991(2)
    [23]陈家庆,王颖君,赵增元.Williams高压旋转防喷器国产化要点浅析[J].石油矿场机械,2002,31(3):1-5
    [24]张国正.防喷器试压失效分析[J].石油矿场机械,1994,23(5):4-9
    [25]林军,伍远平.液压锥形防喷器胶芯抱紧力的计算[J].石油机械,1992,20(1)
    [26]崔岚.液压闸板防喷器胶芯的封井机理与结构参数设计[J].石油机械,1994,22(3):36-42
    [27]林军.液压闸板防喷器胶芯抱紧力分析计算[J].石油机械,1993,21(6)
    [28]张鹏,崔岚,林军.球形万能防喷器胶芯密封几何参数的计算[J].石油机械,1989,17(6)
    [29]林军,伍开松.球形防喷器胶芯支承筋的三维有限元分析[J].机械设计,1995,(12):44-46
    [30]张宝生,陈家庆.对Williams高压旋转防喷器用胶芯的分析研究[J].石油矿场机械.2004,33(增刊):21-24
    [31]伍开松,林军.闸板防喷器主要结构参数的优化设计[J].机械设计.1995,(12):48-49
    [32]林军.合理选取液压锥形防喷器胶芯锥形半角的力学条件[J].石油矿场机械.1991,19(2)
    [33]林军.球形防喷器胶芯失效的形式及原因[J].石油机械.1995,23(9):36-37
    [34]林军.液压球形防喷器胶芯骨架的力学分析[J].石油机械.1990,18(6)
    [35]林军,伍开松.闸板防喷器胶芯密封参数算法及结构优化[J].石油学报,1997,18(1):123-127
    [36]苏山林.防喷器控制系统发展趋势的探讨[J].胜利油田职工大学学报, 2005,19(3):45-46
    [37]李俊波,赵胜英.国内外欠平衡钻井装备发展及应用现状[J].石油机械,2003,31(增刊):93-95
    [38]历玉英,刘扬,彭敏.过油管防喷器胶芯的密封特性[J].大庆石油学院学报, 2006,30(2):51-53
    [39]朱雅红,马晓燕,颜红侠等.双酚A型腈酸酯/端羧基丁腈橡胶共混物的制备工艺和性能[J].航空学报, 2005,26(6):759-763
    [40]陈建业.作业井内孔与环空防溢控制技术研究总结报告[R].大庆油田有限责任公司, 2002
    [41]刘涛,杨凤鹏.精通ANSYS[M].北京:清华大学出版社, 2002,第一版
    [42]林小平,凌建明,苏华才.弯道水流的数值模拟及沿河路基冲刷机理分析[J].同济大学学报(自然科学版),2007,35(11):1492-1496
    [43]葛文杰,李夕兵.数值模拟在锚杆支护技术中的应用[J].江西有色金属, 2007,21(4):21-23
    [44]周建辉,杨春信.曲线型肋片放射状散热器形状设计与数值模拟[J].电子器件, 2007,30(6):2237-2242
    [45]郝树青,殷琨,王清岩等.基于fluent的钻头体内部流场数值模拟与实验研究[J].钻采工艺, 2007,30(6):39-43
    [46]倪栋,段进,徐久成.通用有限元分析ANSYS7.0实例精解[M].北京:电子工业出版社,2003
    [47]周长峰,张建润.橡胶缓冲器有限元分析[J].弹性体,2004,14(1):39-42
    [48]任全彬,蔡体敏,安春利.硅橡胶“O”形密封圈Mooney-Rivlin模型常数的确定[J].固体火箭技术, 2006,29(2):130-134
    [49]伍开松,袁新生,张元.合理选择丁腈橡胶胶筒本构模型探讨[J].西南石油大学学报, 2007,29(5):414-144
    [50]石琴,陈无畏,洪洋.基于有限元理论的轮胎刚度特性的仿真研究[J].系统仿真学报, 2006,18(6):1445-1449
    [51] YANG Shi-jun. Quadrature formulas for Fourier-Chebyshev coefficients[J]. Journal of Zhejiang University SCIENCE Vol.3,No.3(July-Aug.,2002), P.326-331
    [52] YU Feng, LUO Jing-gu. Travelling Waves in a Compressible Mooney-Rivlin Rod[J]. Journal of Shanghai University (English Edition), Vol.5, No.4(Dec.2001), P282-286
    [53]杨开云,李玉河,凌志飞.橡胶圆筒的大应变接触问题分析[J].水利水电技术, 2004,35(4):30-32
    [54]刘宇艳,谭惠丰,杜星文.单向帘线增强橡胶复合材料在周期载荷下的动态粘弹性[J].高技术通讯,2002.04:55-58
    [55] Beatty J R. Fatigue of rubber[J].Rubber Chemistry andTechnology,1964,37:1-341
    [56]刘宇艳,万志敏.橡胶疲劳性能研究进展[J].合成橡胶工业,2000,23(2):128-131
    [57]肖建斌,郭红革.炭黑/白炭黑补强硫化胶的疲劳过程及使用寿命预测[J].世界橡胶工业,2006,33(1):29-32
    [58]田振辉,谭惠丰,谢礼立.橡胶复合材料疲劳破坏特性[J].复合材料学报, 2005,22(1):32-34
    [59]肖建斌.炭黑/白炭黑补强硫化胶的疲劳破坏特性[J].橡塑技术与装备, 2006(32):39-41
    [60] Cadwell S M, Merrill R A, Sloman C M, et al. Dynamic fatigue life of rubber[J]. Rubber Chemistry and Technology, 1940, 13:304-315
    [61] Lake G J. Mechanical fatigue of rubber[J]. Rubber Chemistry and Technology, 1972, 45(1):307-328
    [62] Gent AN. Engineering with rubber [M]. New York: Hanser Publications,1992
    [63] Lee B L, Liu D S. Cumulative damage of fiber-reinforced elastomer composite under fatigue loading[J]. Journal of Composite Materials, 1994, 28(13):1261-1286
    [64] Liu Y Y, Wan Z M, Tian Z H, et al. Study on fatigue behavior of unidirectional polyester cord/rubber composites[J]. Acta Materiae Compositae Sinica,1998,15(4):97-101
    [65] Huang Y S, Yeoh O H. Crack initiation and propagation in model cord-rubber composites[J]. Rubber Chemistry and Technology, 1989, 62(4):709-714
    [66]黄莉茜,于伟东,杨旭红.芳纶帘线/橡胶复合材料粘合疲劳性能的研究[J].东华大学学报, 2001,27(2):87-90
    [67]右田哲彦(江伟译).橡胶的疲劳与疲劳破坏[M]..橡胶译丛, 1990(2):1-19
    [68]刘宇艳,田振辉,万志敏等.橡胶复合材料在循环载荷下的疲劳损伤特性[J].橡胶工业,2003(50):713-715
    [69]冯希金.轮胎疲劳寿命研究的进展[J].橡胶科技市场, 2005(6):8-12
    [70]林松,高庆,李映辉.丁基橡胶粘弹性材料的非线性蠕变行为[J].机工程材料械, 2007,31(7):35-37
    [71]刘礼华,熊威,张宏志.高水头闸门止水材料的粘弹性研究[J].工程力学, 2007,24(7):189-192
    [72]常俊杰,林成新,孙德平.橡胶摩擦材料粘弹性的超声评价[J].润滑与密封,2007,32(11):55-58
    [73]刘宇艳,谭惠丰,杜星文.橡胶复合材料疲劳性能研究进展[J].纤维符合材料,1997,1(20):20-24
    [74]刘宇艳,谭惠丰,杜星文.断裂力学方法在橡胶复合材料疲劳研究中的应用[J].轮胎工业,1998(18):404-407
    [75]刘宇艳,危银涛,杜星文.橡胶疲劳性能的研究方法[J].橡胶工业,1997(44):310-312
    [76]田振辉,万志敏,杜星文.橡胶复合材料疲劳损伤研究方法概述[J].橡胶工业,2001,48(10):628-631
    [77]深崛美英.弹性体疲劳寿命的预测[J].橡胶译丛, 1986,4(13):67-76
    [78]刘宇艳,万志敏,杜星文.周期载荷下聚酯/橡胶复合材料和人造丝/橡胶复合材料的热生成对疲劳行为的影响[J].复合材料学报, 2002,19(2):103-107
    [79] Camponeschi E T. An investigation of stiffness reduction as an indication of fatigue damage in graphite/epoxy composites [D]. Thesis M S. VPI, Blacksburg, Virginia. 1980,P98-108
    [80] Takahara A, Yamada K, Kajiyama T, et al. Variations of dynamic viscoelastic properties of dog compact bone during the fatigue process[J]. Journal of Materials Science, 1980, 15(11):P2653-2657
    [81]刘宇艳,万志敏,田振辉.单向聚酯帘线/橡胶复合材料的疲劳损伤机理[J].合成橡胶工业, 2000,23(4):234-236
    [82] Math N M, Bhowmick A K, De S K. Chemical and scanning electron microscopy studies on fatigue failure of natural rubber vulcanizates[J]. Rubber Chemistry and Technology, 1982, 55(1):P51-61
    [83] Williams K R, Hannell J W, Swanson J M. Characterization of cord fatigue intires[J]. Rubber Chemistry and Technology, 1963, 26(3):P696-706
    [84]刘宇艳,万志敏,杜星文.周期载荷下聚酯纤维/橡胶复合材料和人造丝/橡胶复合材料的疲劳行为[J].材料工程, 2000(10):29-32
    [85]刘宇艳,谭惠丰,万志敏.单向帘线增强橡胶复合材料在疲劳过程中的温升[J].宇航材料工艺,1999(5):30-33
    [86]余寿文,王建祥.大飞机研制中的若干复合材料力学问题[J].力学与实践, 2007,29(5):1-6
    [87]王立朋,燕瑛,曾东.混合机织复合材料低速冲击损伤有限元分析[J].航空学报, 2007,28(增刊):s121-s124
    [88]程永欣,王奇志.简单铆钉连接件疲劳寿命分析的损伤力学有限元[J].科技信息, 2007(33):17-18
    [89]李玲,李大纲,徐平.竹木复合层合板疲劳与循环蠕变的累积损伤研究[J].包装工程(第十一届全国包装工程学术会议论文专栏),2007:1-3
    [90] YANG JN. Residual Strength Degradation Model and Theory of Period proof Tests for Graphite/epoxy Laminates[J]. Journal of Composite Materials,1977,11(4):177-197
    [91] HAN K S. Fatigue Life Prediction and Failure Mechanisms of Composite Materials[J]. Advanced Composite Materials,1992,2(1):29-50
    [92] LEM A ITRE J. Application of Damage Concepts to Predict Creep-fatigue Failures[J]. Journal of Engineering Materials and Technology, 1979,(101):284-292
    [93] Ding Y Q, Yan Y, Mallhagger R. Effect of impact and fatigue loads on the strength of plain weave carbon-epoxy composites[J]. Materials Processing Technology,1995,55(3):58-62
    [94] Hosur M V, Alexander J, Jeelani S, et al. Impact response of affordable graphite/epoxy woven fabric composites[R].AIAA 2001-1192, A01-25012, 2001.
    [95] Kim J K, Sham M L. Impact and delamination failure of woven fabric composites[J].ComposSciTechnol,2000,60(55):745-61
    [96] Guan Z D, Yang C D. Low-velocity impact and damage process of composites laminate[J]. Journal of Composite Materials,2002,36(7):851-871
    [97]刘宇艳,万志敏,田振辉.单向帘线/橡胶复合材料的疲劳损伤模型与疲劳寿命预报[J].材料工程, 2003(4):27-29
    [98]邹龙庆,付海龙,彭敏. Kalsi型密封结构及其密封接触压力研究[J].润滑与密封, 2006(6):121-123
    [99]郑皓,阳宁.硝酸铵改性机中气流运动基于CosmosFloworks的有限元分析[J].矿冶工程, 2006,26(2):22-24
    [100]田振辉,苗常青,万志敏等.橡胶层合复合材料的疲劳损伤[J].合成橡胶工业, 2001, 24(13):166-168
    [101]金莉,刘易思. 140MPa气密封试验装置在采(油)气井口装置的应用[J].钻采工艺, 2005,28(5):85-86
    [102]唐高峰,崔玉海,刘海涛等. GZF高压注水井口测试防喷器的研究与应用[J].石油机械, 2003,31(11):35-36
    [103]曲绍刚.高温不压井作业工艺技术研究与试验[J].石油矿场机械, 2006,35(5):93-95
    [104]李宗清,宋林松,王岩鹏等.高压旋转防喷导流系统的试验研究[J].石油矿场机械, 2004,33(4):32-34
    [105]李震,李强.基于SolidWorks直齿圆锥齿轮参数化设计及有限元分析[J].组合机床与自动化加工技术, 2007(10):44-46
    [106]封隔器理论基础与应用.江汉石油管理局采油工艺研究所等编[M].北京:石油工业出版社, 1983
    [107]刘占芳,王江,张华.带预紧硅泡沫垫层减振结构的动力特性[J].中国机械工程, 2007,18(14):1668-1672
    [108]魏丕勇,闫清东,李宏才.履带式移动机器人车体跌落碰撞仿真分析[J].机械强度, 2005,27(1):12-16
    [109] Rivlin R S. Large Elastic Deformations of Isotropic Materials: Fundamental Concepts[C]. Phil. Trans. Roy Soc., 1948, A240:240-490
    [110] Yeoh O H. Some Forms of the Strain Energy Function for Rubber[J]. Rubber Chemical and Technology, 1993, 66(5):754-771
    [111] Aleksey D D. Constitutive Model for Nonlinear Viscoelastic Media[J]. Int. J. Solids and Structures, 1997, 34(21):2685-2707
    [112] Aleksey D D. Constitutive Model in Finite Visoelastoplasticity of Rubber Polymers[J]. Mechanics Research Communication,1999,26(1):39-44
    [113] Kalsi M S, Fa2ekas G A. Feasibility Study of a Slanted O-Ring as a High Pressure Rotary Seal. ASME Paper 72-WA/DE-14,1972
    [114] Wolf A, Mueller H K. Pressure Undulated Rotary Shaft Seals[A]. Paper K5, 11th International Conference on Fluid Sealing [C]|,R H.R.A., Cranfield, Eng1and,1987
    [115] Kalsi M S. Rotary Shaft Seal [P]. U.S. Patent No. 4484753, November 1984
    [116] Kalsi M S. Development of a New High Pressure Rotary Seal for Abrasive Environments. Paper H2, 12th International Conference on Fluid Sealing[C]. B.H.R.A., Granfleld, England,1989
    [117] Kalsi M S. A Nowel High-Pressure Rmary Shaft Seal Facilitates Innovations in Drillingand Production Equipment[C]. SPE/IADC 37627
    [118] Ted Belytschko, Wing Kam Liu, Brian Moran. Nonlinear finite element method of continuous body and structure[M]. Beijing: Tsinghua University Press,2002
    [119]刘扬,赵洪激,周士华.低渗透油田地面工程总体规划方案优化研究[J].石油学报, 2000,21(2):88-95
    [120]刘扬.石油工程优化设计理论及方法[M].北京:石油工业出版社, 1994
    [121]刘扬,魏立新,李长林.油气集输系统拓扑布局优化的混合遗传算法[J].油气储运, 2003,22(6):33-35
    [122]杨建军,刘扬.油田注水系统拓扑布局优化的混合遗传算法[J].数学的实践与认识, 2006,36(6):93-98
    [123]苏曙.机械优化设计中的可靠性与模糊性分析[J].河北建筑工程学院学报, 1999, 17(1): 22-26
    [124] Su Shu, Sun Xingxue. Fuzzy Optimal Design of Machine Elements[J]. CJISME96,1996
    [125]盛小明,章红梅,芮延年.基于模糊可靠性理论的高速线材轧辊优化设计研究[J].机电设备, 2005,22(1):1-3
    [126]彭程.基于模糊可靠性理论的双圆弧齿轮传动优化设计[J].现代设计,2006(2):13-14
    [127]章红梅,王贵成.基于模糊可靠性理论告诉线材轧辊优化设计的研究[J].机电产品开发与创新, 2003(6):28-29
    [128]彭程.基于模糊理论的滚子活齿行星传动可靠性优化设计[J].现代企业技术开发, 2006,25(8):24-26
    [129] Michalewicz Z. Genetic algorithms + data structures = evolution programs [M]. 2nd ed. Berlin: Springer Verlag, 1994. 77
    [130]赵万军,张大可. ANSYS中基于参数化的液压机结构优化设计[J].机械设计与制造, 2007(12):6-8
    [131]彭禹,郝志勇.基于仿真分析的曲轴平衡重动态优化设计[J].浙江大学学报, 2007,41(11):1893-1897
    [132]刘扬,陈琳,陈国华.套管头结构模糊可靠性分析[J].石油学报, 1994,15(1):120-126
    [133]赵刚.模糊可靠性优化理论[J].湖北工学院学报, 2003,18(2): 65-66
    [134]魏立新,刘扬.油气集输系统生产运行方案优化方法[J].大庆石油学院学报,2005,29(3):47-49
    [135]魏立新,刘扬,任志平.油气集输管网节点参数计算方法[J].大庆石油学院学报, 2003, 27(4):79-83
    [136]杨建军,刘扬,魏立新,战红.基于改进遗传算法的注水系统运行参数优化[J].石油矿场机械, 2005,34(1):35-38
    [137]彭程.基于模糊可靠性理论的双圆弧齿轮传动优化设计[J].现代机械, 2006(2):13-14
    [138]李舜酩.机械疲劳与可靠性设计[M].北京:科学出版社, 2006,164-168
    [139]姚英姿,樊俊星,莫云辉等.基于模糊理论和遗传算法的航空齿轮可靠性优化设计[J].上海大学学报, 2004,10(4):362-366

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700