微波宽带功率放大器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在军事领域,随着近年来雷达技术的飞速发展,许多新体制雷达不断出现,如多波束雷达、有源相控阵雷达、雷达‐电子战‐通信一体化雷达等,他们对微波固态功率放大器提出了更大输出功率、更宽宽带、更高线性、更高效率、更高功率增益等等需求,微波宽带功率放大器作为系统的核心部件,其性能好坏将影响整个雷达通信系统的性能;在民用领域,宽带技术也具有相当大的市场前景,宽带微波通信技术的高隐蔽性、高处理增益、高多径分辨能力、高传输速率、大空间容量、强穿透能力、便于多功能一体化的特点将带来一个全新的产业,大大增加了宽带微波功率放大器研究的需求。目前国内微波宽带功率放大器的设计还处于起步阶段。本课题就是在这种日益增长的需求下提出的,旨在研制一种S波段(1800MHz~4200MHz)宽带微波功率放大器。
     为了设计频率为1800MHz~4200MHz的大功率、高效率、高增益的宽带微波功率放大器,本文采用理论分析与微波电路仿真软件相结合的方法,对宽带功率放大器的电路拓扑结构、阻抗匹配网络设计方法以及宽带3dB耦合器设计等方面展开了广泛而深入的研究,探索宽带功率放大器的设计方法。最终采用平衡式放大器结构,设计出了一款基于GaN基的S波段宽带微波功率放大器电路系统,包括3dB Lange耦合器设计,驱动级放大器和末级功率放大器的设计。
     本文所设计的宽带微波功率放大器电路最终测试结果如下:最高输出功率达到8W,P1dB功率达到3W,增益平坦度为±1.1dB,输入驻波比小于2,输出驻波比小于1.2,3GHz处的二次谐波抑制超过40dBm,功率效率为31%,其性能基本达到设计要求,最终的测试结果与仿真设计结果基本吻合。
In the military field, with the rapid development of radar technology in recent years, many new system of radar are emerging, such as multi-beam radar, active phased array radar, radar-electronic warfare-communication integrated radar, etc. They raised more demand to microwave solid state power amplifier, such as high output power, wide bandwidth, high linearity, high efficiency, and high gain. As a core component of the system, its performance will affect the whole performance of the radar communication system. In civilian areas, wideband technology also has considerable market potential; its characteristics of high concealment, high processing gain, high multipath resolution capability, high transfer rate, large space capacity, strong penetrating power and easy integration of multi-functional will bring a new industry and this greatly increased the demand for microwave power amplifier research. At present, wideband microwave power amplifier design still in its infancy. The issue is raised under this growing demand, and aims to develop a S-band (1.8~4.2GHz) microwave power amplifiers.
     In order to design the 1.8~4.2GHz ultra band power amplifier, through theoretical analysis and microwave circuit simulation software, as broad and in-depth study in wideband power amplifier on circuit topology , impedance matching network and 3dB coupler design method. Finally, designed a S-band GaN-based ultra-broadband power amplifier system with balanced amplifier structure, including 3dB Lange coupler, the driver stage amplifier and the final stage power amplifier.
     This amplifier circuit is designed as the final test results: the maximum output power is 8W, P1dB is 3W, gain flatness is±1.1dB, input VSWR less than 2, output VSWR is less than 1.2, the second harmonic suppression is more than 40dBm at 3GHz, the PAE is 31%, the better performance meet the design requirements, the test results and simulation results are basically consistent.
引文
[1]葛利嘉、曾凡鑫、刘郁林等.超宽带无线通信.北京:国防工业出版社,2006.
    [2] Yong-Sub Lee, Mun-Woo Lee, Sang-Ho Kam, etc.“A High-Linearity Wideband Power Amplifier With Cascaded Third-Order Analog Predistorters”,IEEE Microwave and wireless components letters, Vol.20, No.2, Feb, 2010, pp.112-114.
    [3] L.F.Eastman,“High Power, Linear, Broadband Solid State Amplifiers”, ONR MURI program 1997 annual report.
    [4] Xu,J.J., Yi-Feng Wu, Keller,S., etc.“1-8GHz GaN-based power amplifier using flip-chip bonding”,IEEE Microwave and Guided Wave Letters, Vol.9, No.7, Jul. 1999, pp.277-279.
    [5] Xu,J.J., Keller,S., Parish, G., etc.“3-10GHz LCR-matched Power Amplifier using Flip-Chip Mounted GaN/AlGaN HEMTs”, 2000 IEEE MTT symposium, June, 2000.
    [6] Xu,J.J., Keller,S., Parish, G., etc.“GaN-based 8W 1-6GHz Flip-Chip Integrated Modified Traveling Wave Power Amplifier”IEEE optical Workshop on Power Amplifiers for Wireless Communications SanDiego, Sep, 2000.
    [7] J.Gassmann, P.Watson, L.Kehias, etc.“Wideband, High-Efficiency GaN Power Amplifiers Utilizing a Non-Uniform Ditributed Topology”IEEE /MTT-s International Digital Object Identifier, Sep, 2007.
    [8] Charles Campbell, Cathy Lee, Victoria Williams, etc.“A Wideband Power Amplifier MMIC Utilizing GaN on SiC HEMT Technology”IEEE Journal of solid-state circuits, Vol.44, No.10, Oct.2009.
    [9] Eli Reese, Donald Allen, Cathy Lee, and Tuong Nguyen.“Wideband Power Amplifier MMICs Utilizing GaN on SiC”IEEE /MTT-s Microwave Symposium Digest, Sep, 2010.
    [10]朱轩昂、林金庭、陈效建. 2~6GHz单片功率放大器.固体电子学研究与进展,2001,Vol.21,No.2, pp.119-125.
    [11]李文钊等,6~18GHz宽带功率放大模块.半导体情报, 1996,Vol.33,No.1, pp.1-8.
    [12]杨文昭,李振国. X波段宽带功放.半导体情报, 1998,Vol.35, No.3 pp.6-10.
    [13]赵夕彬.射频宽带功率放大器模块.半导体技术, 2003,Vol.28, No.2, pp.65-67.
    [14]张玉兴、赵宏飞.射频与微波功率放大器设计.北京:电子工业出版社,2006.4.
    [15]高葆薪,胡南山,洪兴南等.微波集成电路.北京:国防工业出版社,1995.
    [16] Jongsik Lim, Chunseon Park, Jakyung Koo, etc.“A Balanced Power Amplifier Utilizing the Reflected Input Power”, 2009 IEEE International Symposium on Radio-Frequency Integration Technology, Sep, 2009.
    [17] W.Kennan and N. K. Osbrink,“Distributed amplifiers: Their time comes again,”Microwaves & RF, pt. 1, pp. 119-127, Nov. 1984; pt. 11, pp. 126-132, Dec. 1984.
    [18] Inder Bahl著,郑新等译.微波固态电路设计(第二版).北京:清华大学出版社,2006
    [19] F. Ali, R. Ramachandran, and A. Podell,“Monolithic AlGaAs-GaAs HBT Single and Dual-stage Ultra-Broadband Amplifiers”, IEEE Microwave and Guide Wave Lett, Vol. 1, No.5, May 1991, pp. 107-109.
    [20] D. Costa and J. S. Harris Jr.,“Low-Frequency Noise Properties of N-P-N AlGaAdGaAs Hetemijunction Bipolar Transistors”,IEEE trans. Electron Devices, Vol.39, No.2, 1992, pp. 2283-2394.
    [21] Charles Campbell, Senior Member, Cathy Lee, etc.“A Wideband Power Amplifier MMIC Utilizing GaN on SiC HEMT Technology”, IEEE Journal of solid-state circuits, Vol.10, Oct, 2009, pp.2640-2647.
    [22]李宗谦,佘京兆,高葆薪.微波工程基础.北京:清华大学出版社,2004.
    [23] Inmaculada Malo-Gomez, Juan Daniel Gallego-Puyol, Garmen Diez-Gonzalez, etc.“Cryogenic Hybrid Coupler for Ultra-Low-Noise Radio Astonomy Balanced Amplifiers”, IEEE Transactions on microwave theory and techniques, Vol.57, No.12, Dec, 2009.
    [24] F.Ali, A.Gupta, M.Salib, B.W.Veasel, D.E.Dawson,“A 2 Watt,8-14GHz HBT Power MMIC with 20dB Gain and >40% Power-Added Efficiency”, IEEE Trans. Microwave Theory Tech. Vol.MIT-42, No.12, Dec,1994, pp.2635-2641
    [25] J. Gipprich, et al.“A Compact LTCC Multilayer Multiport Stripline Coupler Network for Low Loss Power Combining/Splitting”, IEEE 3th Topical Meeting on Electrical Performance of Electronic Packaging, Nov. 1994, pp.167-169
    [26] J. Gipprich, L.Dichens, R.Hayes, F.Sacks,“A Compact 8.0 to 14.0 GHz LTCC Strip line Coupler Network for High Efficiency Power Combining with Better Than 82% Combining Efficiency”, 1995 IEEE MITs International Microwave Symposium Digest.
    [27] Petrus P. Kruger, Barend Visser, Ocker C. de Jager,“Theory and Design of Low-Noise Multipath Amplifiers”, IEEE Transactions on Microwave Theory and Techniques, Vol.59, No.2, Feb. 2011, pp.414-424.
    [28] R.M.Fano, Theoretical Limitation on The Broadband Matching of Arbitrary Impedances,Journal of Franklin Institute, Vol.429, 1950, pp.57~83,139~154.
    [29]宋丽川,网络综合与宽带匹配,北京:国防工业出版社,1981.
    [30]黄香馥,宽带匹配网络,陕西:西北电讯工程学院出版社,1986.
    [31] Q.Z.Zha, W.K.Chen, Synthesis of an n-Port Matching Network, IEEE International Symposium on Circuits and Systems, Vol.2, pp.1259-1262,1991.
    [32] W.K.Chen, Explicit Formulas for the Synthesis of Optimum Broad-Band Impedance-Matching Networks, IEEE Trans. On Circuits and Systems, Vol.24, No.1977, pp.157-169.
    [33] P.W.vanderwolt, On Optimum Chebyshev Broad-Band Impedance-Matching Networks, IEEE Trans. On Circuits and Systems, Vol.33, Oct.1986, pp.1010-1012.
    [34] B.J.Bennett, Broad-Band Impedance Matching of Ladder Loads, IEEE Trans. On Circuits and Systems, Vol.32, Dec.1985, pp.1201-1208.
    [35] W.K.Chen, T.Chasirekeo, Explicit Formulas for the Sythesis of Optimum Bandpass Butterworth and Chebyshev Impedance-Matching Networks, IEEE Trans. On Circuits and Systems, Vol.27, Oct.1980, pp.928-942.
    [36]程文芳,盛柏桢.微波半导体功率器件及其应用.电子与封装, Vol.3, No.1, 2003, pp26-33.
    [37]徐兴福,ADS2008射频电路设计与仿真实例,北京:电子工业出版社,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700