磁共振图像处理中若干问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁共振成像以其对人体无损害、可以采用多种参数成像和能够反映器官或组织的生化特征等特点,成为科研和医学临床诊断的重要手段之一。本论文围绕磁共振成像中的几个突出问题:磁共振图像截断伪影去除、磁共振图像去噪和磁共振图像与其它模态医学图像的融合为主题,开展一系列的研究工作。
     减少相位编码数量导致的磁共振图像截断伪影只沿图像的一个方向(水平方向),利用二进小波变换将含截断伪影的图像分解为近似子图和水平及垂直细节子图,充分利用磁共振图像截断伪影是由垂直细节子图中的某些频率分量决定的这一特点,为尽可能地保持图像的细节特征,只对含截断伪影的垂直细节子图进行处理(现有文献都是对所有细节子图进行全局处理,因而损失了图像的细节特征。)而其它子图不受损伤。具体在处理时又采用了三种方案:(1) 利用近似子图和各级水平细节子图构造平滑图像,然后按特定的准则向平滑图像添加高频成分以提高图像的空间分辨率。(2) 只对垂直细节子图进行阈值收缩去除截断伪影,然后进行图像重建。(3) 对垂直细节子图进行多分辨率小波分解,去除导致截断伪影的主要信号分量之后进行图像重建。
     小波变换和偏微分方程在图像处理中的应用是近年来图像处理中的两个最新进展。在磁共振图像去噪方面,我们提出了一个基于二进小波变换的直接对复数磁共振图像数据去噪的算法,与传统的Wiener去噪相比该算法具有更好的去噪效果。传统的各向异性扩散去噪是利用图像梯度构造控制扩散滤波的扩散张量,我们基于小波变换提取的图像特征构造扩散张量,取得了更好的去噪效果。
     图像融合是图像处理中的关键技术之一。它在军事和民用图像处理领域获得了
Magnetic resonance imaging technique has become one of the important tools in scientific research and clinic for its non-invasive, imaging with several parameters and reflecting biochemistry characterizations etc. This dissertation is focused on several important issues in magnetic resonance (MR) image processing. We did some studies on truncation artifact removal, MR image denoising and MR image fusion.
    Since the truncation artifact appear only in one of the two spatial directions, we decomposed the image with truncation artifact into approximate sub-images and vertical and horizontal detailed sub-images. We found that the truncation artifact caused by reducing the number of phase-coded signals were determined by some frequency components in vertical sub-images. In order to reduce the truncation artifact efficiently and preserve the details of the image as much as possible, we only manipulated operation to the vertical sub-images. The sub-images which had no relation with truncation artifact and the components with less truncation artifact are intact in image reconstruction. In this dissertation , we proposed three schemes for truncation artifact removal. We constructed smooth image with approximate sub-image and all parallel detailed sub-images. Then we reconstructed final image by adding details following a special rule. We only did artifact reduction to the vertical sub-images via wavelet shrinkage, then reconstructed the image with inverse dyadic wavelet transform. We decomposed the vertical sub-images further, retained the components which had less artifact
引文
[1] Purcell E M, Torrey H C and Pound R V.Resonance Absorption by Nuclear Magnetic Moments in a Solid [J].Phys.Rev.1946, 69: 37-38.
    [2] Bloch F, Hassen W W, Packard M.Nuclear Induction [J].Phys.Rev.1946, 69: 12.
    [3] Lauterbur P C.Image Formation by Induction Local Interactions: Examples Employing Nuclear Magnetic Resonance [J].Nature, 1973, 242:190-191.
    [4] Mansfield P, Grannell P K.NMR 'diffraction' in solids? J.Phys.1973, C6: L422-L426.
    [5] 罗时葆,核磁共振CT[M],东南大学出版社,1989.
    [6] Callaghan P T.Principles of Nuclear Magnetic Resonance Microscopy [M].Oxford: Clarendon Press, 1991.
    [7] 裘祖文,裴奉奎.核磁共振波谱[M].科学出版社,1992.
    [8] Wood W L, Bronskill M J,Mulkern R V, et al.Physical MR desktop data[J].J.Mang.Reson.Imag, 1994, (3): 19-26.
    [9] 黄世亮,裘鉴卿,叶朝辉.功能磁共振图像处理的小波域方法[J].中国医学影像技术,2006,Accepted.
    [10] Dym H, McKean H P.Fourier Series and Integrals[M].New York: Academic, 1972, 43-44.
    [11] Wood M L, Henkelman R M.Truncation artifacts in magnetic resonance imaging[J].J.Magn.Reson.Med, 1985, (2): 517-526.
    [12] Smith M R,et al.Applications of autoregressive moving average parametric modeling in magnetic resonance imaging reconstruction[J].IEEE Trans.Med.Imaging, 1986, (MI-5): 132-139.
    [13] 黄世亮,吴光耀,裘鉴卿.基于平稳小波变换的减小MR图像截断伪影的方法[J].中国医学影像技术,2005,3:472-474.
    [14] 黄世亮,裘鉴卿.基于小波收缩减小磁共振图像截断伪影的方法[J].中北大学学报,2006,Accepted。
    [15] 黄世亮,裘鉴卿.基于多尺度分析减小磁共振图像截断伪影的方法[J].submitted..
    [16] Sijbers J, Dekker A D, Linden A V D, et al.Adaptive anisotropic noise filtering for magnitude MR data [J].Magnetic Resonance Imaging, 1999, 17(10): 1533-1539.
    [17] 赵喜平.磁共振成像[M].科学出版社,2004.
    [18] 黄世亮,裘鉴卿,叶朝辉.基于小波变换的MRI图像去噪方法[J],波谱学杂志,2006,23(4).
    [19] Ching P C, So H C, Wu S Q.On wavelet denoising and its applications to time delay estimation [J].IEEE Trans.Signal Processing, 1999, 47(10): 2879-2882.
    [20] Pizurica A, Philips W, Lemahieu I, et al.A versatile wavelet domain noise filtration technique for medical imaging [J].IEEE Trans Medical Imaging, 2003, 22(3): 323-331.
    [21] Bao P, Zhang L.Noise reduction for magnetic resonance images via adaptive multiscale products thresholding [J].IEEE Trans.Medical Imaging, 2003, 22(9): 1089-1099.
    [22] Xu Y, Weaver J B, Healy Jr D M, et al.Wavelet transform domain filters: A spatially selective noise filtration technique [J].IEEE Trans.Image Processing, 1994, 3: 747-758.
    [23] Claudio R J, Scharcanski J.Wavelet transform approach to adaptive image denoising and enhancement [J].Journal of Electronic Imaging, 2004, 13(2): 278-285.
    [24] Chang S G, Yu B, Vetterli M., Adaptive wavelet thresholding for image denoising and compression [J]., IEEE Trans.Image.Proc., 2000, 9(9): 1532-1546.
    [25] Malfait M, Roose D.Wavelet based image denoising using a Markov Random Field a priori model [J]., IEEE Trans.on Image Processing, 1997, 6(4): 549-565.
    [26] Nowak R D. Wavelet-based Rician noise removal for magnetic resonance [J]. IEEE Trans. Image Processing, 1999, 8 : 1408-1419.
    [27] Alexander M E, Baumgartner R, Summers A R, et al., A wavelet-based method for improving signal-to-noise ratio and contrast in MR images [J]. Magn. Reson. Imag., 2000,18(2) : 169-180.
    [28] Gerig G, Kikinis K, Kubler O, et al. Nonlinear anisotropic filtering of MRI data [J]. IEEE Trans, on medical imaging, 1992,11(2) : 221-232.
    [29] Brox T, Weickert J, Burgeth B,et al. Nonlinear structure tensors [J]. Image and Vision Computing, 2006, 24(1): 41-55.
    [30] Gilboa G Super-resolution algorithms based on inverse diffusion-type processes [D]. 2004.
    [31] Lysaker M, Lundervold A, Xue-Cheng Tai. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time [J]. IEEE Trans, on Image Processing, 2003,12(12) : 1579 - 1590.
    [32] Lauze F B, et al. Adaptive structure tensors and their applications [M]. Weickert J and Hagen H (Eds.) Visualization and Processing of Tensor Fields, Springer, 2006, 17-47.
    [33] Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion[J]. IEEE Trans. Pattern Anal. Machine Intell.,1990, 12(7): 629-639.
    [34] You Y L, Kaveh M. Fourth-order partial differential equations for noise removal[J].IEEE Trans.Imag.Proc.,2000, 9(10): 1723-1730.
    [35] You Y L, Xu W Y.Tannenbaum A.Behavioral Analysis of anisotropic diffusion in image processing[J].IEEE Trans.Imag.Proc., 1996, 5(11): 1539-1552.
    [36] Weickert J.Anisotropic diffusion in image processing[D].Ph.D.thesis, 1996.
    [37] Guo W W.Generalized Perona-Malik equation for image restoration [J].IEEE Signal processing letters, 1999, 6(7): 165-167.
    [38] Yongjian Yu, Scott T A.Speckle reducing anisotropic diffusion [J].IEEE Trans.on image processing, 2002, 11(11): 1260-1270.
    [39] Gilboa G, Sochen N, Yehoshua Y Z.image enhancement and denoising by complex diffusion processes [J].IEEE Transactions on pattern analysis and machine intelligence, 2004, 26(8): 1020-1036.
    [40] 黄世亮,王旭霞,裘鉴卿.基于小波变换的磁共振图像的非线性各向异性扩散降噪,submitted.
    [41] 黄世亮,裘鉴卿.基于小波变换多尺度积的图像融合算法[J].红外与激光工程,2006,Accepted.
    [42] 黄世亮,裘鉴卿.一种新的小波域医学图像融合算法.submitted.
    [1] Mallat S.A Wavelet Tour of Signal Processing [M].Academic Press, 1999.
    [2] Daubechies.Ten lectures on wavelet [M].Capital City Press, 1992.
    [3] Chui C K.An Introduction to Wavelet [M].Academic Press, 1992.
    [4] 孙延奎.小波分析及其应用[M].机械工业出版社,2004.
    [5] Mallat S, Zhong S.Characterization of signals from multiscale edges [J].IEEE Trans.Pattern Anal.Machine Intell., 1992, 14: 710-732.
    [6] Mallat S.A Theory for Multiresolution Signal Decomposition: The Wavelet Representation.IEEE Trans.Pattern Analysis and Machine Intelligence, 1989, 11(7): 674-693.
    [7] Perona P, Malik J.Scale-space and edge detection using anisotropic diffusion [C].Proc.IEEE Comp.Soc.Workshop on computer vision (Miami beach, Nov.30-Dec.2, 1987), IEEE Society Press, Washington, 1987, 16-22.
    [8] Perona P, Malik J.Scale-space and edge detection using anisotropic diffusion [J].IEEE Trans.Pattern Anal.Machine Intell.,1990, 12(7): 629-639.
    [9] Weickert J.A review of nonlinear diffusion filtering [M].B.ter Haar Romeny, L.Florack, J.Koenderink, et al.Scale-space theory in computer vision, Lecture notes in computer science, 1997, 1252: 3-28.
    [10] Pal N R, Pal S K.A review on image segmentation techniques [J].Pattern Recognition, 1993, 26: 1227-1249.
    [11] Parker J R. Gray level thresholding in badly illuminated images [J]. IEEE Trans. Pattern Anal. Mach. Intel., 1991,13(8): 813-819.
    [12] You Y L, Xu W Y, Tannenbaum A. Behavioral Analysis of anisotropic diffusion [C] in image processing. IEEE Trans. Imag. Proc, 1996, 5(11): 1539-1552.
    [13] You Y L, Xu W Y, Kaveh M, et al. On ill-posed anisotropic diffusion models [C]. In Proc. IEEE Conf. Imag. Proa, Washington, DC , USA, Oct. 1995, 2 : 268 -271.
    [14] Solo V. Automatic stopping criterion for anisotropic diffusion [C]. In Proc. IEEE Conf. Acoustics, Speech, and Signal Processing, Salt Lake City, UT, USA, 2001,6:3929-3932.
    [15] Whitaker R T, Pizer S M. A multi-scale approach to nonuniform diffusion [C]. Comput. Vis. Graph. Imag. Proc.:Image Understand, 1993, 57 : 99-110.
    [16] You Y L, Kaveh M. Image enhancement using fourth order partial differential equations [C]. Signals, In Proc. IEEE Conf. Systems & Computers, Pacific Grove, CA, USA, 1998, 2 : 1677-1681.
    [17] Mrazek P, Navara M. Selection of optimal stopping time for nonlinear diffusion filtering [J]. Int. J. Computer Vision, 2000, 52(2/3) : 189-203.
    [18] Rao AR, Schunck B G Computing oriented texture fields [J]. CVGIP:Graphical Models and Image Processing, 1991, 53 : 157-185.
    [19] Jahne B. Spatio-temporal image processing. Lecture Notes in Computer Science [M]. Springer, Berlin, 1993.
    [20] Weickert J. Coherence-enhancing diffusion filtering [J]. Int. J. Computer Vision, 1999, 31 : 111-127.
    
    [21] Pollak I., Willsky AS, Krim H. Image segmentation and edge enhancement with stabilized inverse diffusion equations [J]. IEEE Trans. Imag. Proa, 2000, 9(2) : 256-266.
    [1] Wood W L, Bronskill M J, Mulkem R V, et al.Physical MR desktop data [J].J.Mang.Reson.Imag, 1994, (3):19-26.
    [2] Dym H, McKean H P.Fourier Series and Integrals [M].New York: Academic, 1972, 43-44.
    [3] Wood M L, Henkelman R M. Truncation artifacts in magnetic resonance imaging [J], J. Magn. Reson. Med, 1985, (2): 517-526.
    [4] Smith M R, Nichols S T, Henkelman R, et al. Applications of autoregressive moving average parametric modeling in magnetic resonance imaging reconstruction [J]. IEEE Trans. Med. Imaging,1986, (MI-5) : 132-139.
    [5] Papoulis A. A new algorithm in spectral analysis and band-limited extrapolation [J]. IEEE Trans. Circuits Syst.,1975, CAS-22 (9): 735-742.
    [6] Sebastiani S, Barone P. Truncation artifact reduction in magnetic resonance imaging by Markov random field methods [J]. IEEE Trans. Med. Imaging, 1995, (MI-14): 434-441.
    [7] Hong Yan, Jintong Mao. Data truncation artifact reduction in MR imaging using a multiplayer neural network [J]. IEEE Trans. Med. Imaging,1993,12(1): 73-77.
    [8] Hui Y, Smith M R. MRI reconstruction from truncated data using a complex domain back-propagation neural network [C]. Communications, Computers, and Signal Processing, 1995. Proceedings. IEEE Pacific Rim Conference on 17-19 1995 : 513-516 Digital Object Identifier 10.1109/PACRIM. 1995, 519-582.
    [9] Y Hui, Smith M R. Comment on 'Data Truncalion Artifact Reduction in MR imaging Using a Multilayer Neural Networks' [J]. Medical Imaging, IEEE Trans, on 1995, 14(2) : 409 - 412.
    [10] Smith M R, Yan Hui. A data extrapolation algorithm using a complex domain neural network [C]. Circuits and Systems II: Analog and Digital Signal Processing, IEEE Trans, on [see also Circuits and Systems II: Express Briefs, IEEE Trans, on] 1997, 44(2): 143- 147.
    [11] Smith M R, Yan Hui.A data extrapolation algorithm using a complex domain neural network [C].Circuits and Systems Ⅱ: Analog and Digital Signal Processing, IEEE Trans.on [see also Circuits and Systems Ⅱ: Express Briefs, IEEE Trans.on 1997, 44(2): 143 - 147.
    [12] Chen L, Smith M R, Hui Y.Comparing the performance of two feedforward neural network training algorithms in MRI reconstruction [C].Electrical and Computer Engineering, 1996.Canadian Conference on 1996, 1: 362 - 364.
    [13] Yan H, Mao J, Chen B.MR image resolution enhancement using a multi-layer neural network [C].Computer-Based Medical Systems, 1992.Proceedings., Fifth Annual IEEE Symposium on 1992, 14-17: 624 - 632.
    [14] Soo-Jin Lee.An Improved Mathod for Reduction of Truncation Artifact in Magnetic Resonance Imaging [J].Proc.SPIE 1998, (3460): 587-598,Applications of Digital Image Processing ⅩⅪ.
    [15] 骆建华,楼正国.模糊多准则磁共振缺损频谱图象重建技术[J].中国生物医学工程学报,1998,3:232-238.
    [16] 骆建华,吕维雪.模糊多准则核磁共振图象重建技术[J].电子学报,1996,24(7):1—6.
    [17] 骆建华,吕维雪.模糊多准则图象重建技术[J].计算机学报,1996,19(8):609-616.
    [18] 骆建华,姚敏.B小波和阶跃谱分析在缺损频谱成像中的应用[J].软件学报,1999,3:317—323.
    [19] 骆建华,楼正国.磁共振截断频谱信号重建的奇异谱分析法[J].电子与信息学报,1999,3: 398—403.
    [20] Jianhua Luo, Tiange Zhuang.Signal reconstruction from MR truncated data using singularity spectrum analysis [C].Engineering in Medicine and Biology Society, 1998.Proceedings of the 20th Annual International Conference of the IEEE 1998, 2(29): 652 - 655.
    [21] 王卫东,包尚联,俎栋林.利用信号外推实现磁共振快速成像[J].中国生物医学工程学报,2000,19(1):78—83.
    [22] Cadzow J.An extrapolation procedure for band-limited signal [J].IEEE Trans.on ASSP 1979, 27(3): 4-12.
    [23] Smith M R, Nichols S T, Henkelman R M, et al.Application of autoregressive moving average parametric modeling in magnetic resonance image reconstruction [J].IEEE Transactions on medical imaging, MI-5(3): 132-139.
    [24] Barone P, Sebastiani G.A new method of magnetic resonance image reconstruction with short acquisition time and truncation artifact reduction [J].IEEE Trans.Med.Imaging 1992, 11(2): 250-259.
    [25] Placidi G., Sotgiu A.A novel algorithm for the reduction of undersampling artefacts in magnetic resonance images [J].Magn.Reson.Imaging, 2005, 22(9): 1279-1287.
    [26] Hu X P, Stillman A E.Technique for reduction of truncation artifact in chemical shift images [J].IEEE Trans.Med.Imaging, 1991, 10(3): 290-294.
    [27] Patel M A S, Hu X P, A robust algorithm for reduction of truncation artifact in chemical shift images [J].IEEE Trans.Med Imaging, 1993, 12(4): 812-818.
    [28] Harris F J.On the use of windows for harmonic analysis with the discrete Fourier transform [J].Proc.IEEE,1978, 66 51-83.
    [29] Kok C W, Y.Hui, Nguyen T Q.MRI truncation artifact reduction via wavelet shrinkage[J].Proc.SPIE Wavelet Applications Ⅳ, 1997, (3078): 301-311.
    [30] Jiang M Y, Zhu D M, Lei P.The new method of reducing the NMR image's ringing artifacts by wavelet transform[C].Signal Processing Proceedings, 2000.WCCC-ICSP 2000.5th International Conference 2000, 2: 930 - 933.
    [31] 林宙辰,石青云.用二进小波消除磁共振图像中的振铃效应[J].模式识别与人工智能,1999,12(3):320-324.
    [32] 黄世亮,吴光耀,裘鉴卿.基于平稳小波变换的减小MR图像截断伪影的方法[J].中国医学影像技术,2005,3:472-474.
    [33] 黄世亮,裘鉴卿.基于小波收缩减小磁共振图像截断伪影的方法[J].中北大学学报,Accepted.
    [34] 黄世亮,裘鉴卿.基于多尺度分析减小磁共振图像截断伪影的方法[J].submitted.
    [35] Sebastiani G, Barone P.Mathematical principles of basic magnetic resonance imaging in medicine [J].Signal Processing, 1991, 25(2): 227-250.
    [36] Wainstein L A, Zubakov V D.Extraction of Signals from Noise.Englewood Cliffs, NJ: Prentice-Hall, 1962.
    [37] Gudbjartsson H, Patz S.The Rician distribution of noisy MRI data[J].Magn.Reson.Med., 1995, 34(6): 910-914.
    [38] Wood W L, Bronskill M J, Mulkern R V, et al.Physical MR desktop data [J].J. Mang. Reson. Imag., 1994, 3 : 19-26.
    [39] Alexander M E, Baumgartner R, Summers A R, et al. A wavelet-based method for improving signal-to-noise ratio and contrast in MR images [J]. Magn. Reson. Imag., 2000,18 : 169-180.
    [40] Nowak R D. Wavelet-based Rician noise removal for magnetic resonance [J]. IEEE Trans. Image Processing, 1999, 8 : 1408-1419.
    [41] Z Q Wu, Ware J A, Jiang J. Wavelet-based Rayleigh Background Removal in MRI [J]. IEE Electronic Letters, 2003, 39(7): 603-605.
    [42] Gamier S J, Bilbro G L. Magnetic Resonance Image restoration [J]. Journal of Mathematical Imaging and Vision, 1995, 7 : 7-19.
    [43]Henkelman R M. Measurement of signal intensities in the presence of noise in MR images [J]. Med. Phys. 1985, 12 : 232-233.
    [44] Alexander M E. Baumgartner R, Somorjai R L, et al. De-noising of MR images to improve signalto- noise ratio [C]. Proc International Soc Magn Reson In Med, 7th Scientific Meeting, Philadelphia, 1999.
    [45] Gregg R L, Nowak R D. Noise removal methods for high resolution MRI [C]. IEEE Nuclear Science Symposium, 1997, 2 : 1117 - 1121.
    [46]Donoho D L,Johnstone I M. Ideal spatial adaptation via wavelet shrinkage [J]. Biometrika, 1994, 81 : 425-55.
    [47]Donoho D L. De-noising by soft-thresholding [J]. IEEE Trans, on Inform. Theory, 1995, 41 : 613-627..
    [48]Mallat S, Hwang W L. Singularity detection and processing with wavelets [J]. IEEE Trans. Inform. Theory, 1992,32 : 617-643.
    
    [49]Mallat S, Zhong S. Characterization of signals from multiscale edges [J]. IEEE Trans. Pattern Anal. Machine Intell., 1992,14 : 710-732.
    [1] Wood W L, Bronskill M J, Mulkern R V, et al., Physical MR desktop data [J].J.Mang.Resort.Imag., 1994, 3: 19-26.
    [2] Edelstein W A, Glover G, Hardy C, et al.The intrinistic signal-to-noise ratio in NMR imaging [J].Magnetic Resonance in Medicine,1986,3: 604-618.
    [3] Alexander M E, Baumgartner R, Summers A R, et al.A wavelet-based method for improving signal-to-noise ratio and contrast in MR images [J].Magn.Reson.Imag., 2000, 18(2): 169-180.
    [4] Sijbers J, den Dekker A J, der Linden A V, et al.Adaptive anisotropic noise filtering for magnitude MR data [J].Magn.Resort.Imag., 1999, 17: 1533-1539.
    [5] Mallat S G.A theory for multiresolution signal decomposition: The wavelet representation [J].IEEE Trans.PAMI, 1989, 11(7): 674-693.
    [6] Mallat S.A Wavelet Tour of Signal Processing [M].Academic Press, 1998.
    [7] Daubechies I.Ten Lectures on Wavelets [M].Society for Industrial and Applied Mathematics, Phildelphia, PA, 1992.
    [8] Mallat S, Hwang W L. Singularity detection and processing with wavelets [J]. IEEE Trans. Inform. Theory, 1992, 32 : 617-643.
    [9] Mallat S, Zhong S. Characterization of signals from multiscale edges [J]. IEEE Trans. Pattern Anal. Machine Intell., 1992,14 : 710-732.
    [10] Macovski A. Noise in MR [J]. Magnetic Resonance in Medicine, 1996, 36 : 494-497.
    [11] Nowak R D. Wavelet-based Rician noise removal for magnetic resonance [J]. Image Processing, IEEE Trans, on, 1999, 8 : 1408-1419.
    [12] Berstein M A. Thomasson D M, Perman W H. Improved detectability in low signal-to-noise ratio magnetic resonance images by means of a phase-corrected real reconstruction [J]. Med. Phys., 1989,16 : 813-817.
    [13] Papoulis A. Probability, random variables, and stochastic processes [M]. McGraw-Hill, 1984.
    [14] Gudbjartsson H, patz S. The Rician distribution of noisy MR data [J]. Magnetic Resonance in Medicine, 1995, 34 : 910-914.
    [15] Wu ZQ, Ware J A, Jiang J. Wavelet-based Rayleigh Background Removal in MRI [J]. IEE Electronic Letters, 2003, 39 (7): 603-605.
    
    [16] Gamier S J, Bilbro G L. Magnetic Resonance Image restoration [J]. Journal of Mathematical Imaging and Vision, 1995, 5 : 7-19.
    [17] Henkelman R M. Measurement of signal intensities in the presence of noise in MR images [J]. Med. Phys., 1985, 12 : 232- 233.
    [18] Alexander M E, Baumgartner R, Somorjai R L, et al., De-noising of MR images to improve signal to noise ratio [C]. Proc International Soc Magn Reson In Med, 7th Scientific Meeting, Philadelphia, 1999.
    [19] Gregg R L, Nowak R D. Noise removal methods for high resolution MRI [J]. Nuclear Science Symposium, 1997. IEEE Volume 2, 9-15 Nov. 1997, 2 :1117 - 1121.
    [20] Weaver J B, Xu Y, et al. Filtering noise from images with wavelet transforms [J]. Magn. Reson. Med., 1991, 21 : 288-295.
    [21] Xu Y, Weaver J B, Healy Jr D M, et al. Wavelet transform domain filters: A spatially selective noise filtration technique [J]. Image Processing, IEEE Trans, on, 1994, 3 : 747-758.
    [22] Cláudio R J, Scharcanski J. Wavelet transform approach to adaptive image denoising and enhancement [J]. Journal of Electronic Imaging, 2004, 13(2) : 278-285.
    [23] Jung C R, Scharcanski J. Adaptive Image Denoising in Scale-Space using the wavelet transform [C]. Computer Graphics and Image Processing, 2001 Proceedings of XIV Brazilian Symposium on 15-18 : 172 - 178.
    [24] Giuseppe Placidi, Marcello Alecci, Antonello Sotgiu. Post-processing noise removal algorithm for magnetic resonance imaging based on edge detection and wavelet analysis [J]. Phys. Med. Biol., 2003, 48 : 1987-1995.
    [25] Wood.J C, Johnson M K. Wavelet packet denoising of magnetic resonance images: importance of Rician noise at low SNR [J]. Magnetic Resonance in Medicine, 1999, 41(3) : 631-635.
    [26] Saleem Zaroubi, Gadi Goelman. Complex denoising of MR data via wavelet analysis: Application for functional MRI [J]. Magn. Reson. Imag., 2000, 18 : 59-68.
    [27] Bao P, Zhang L. Noise reduction for magnetic resonance images via adaptive multiscale products thresholding [J]. IEEE Trans. Medical Imaging, 2003, 22(9) : 1089-1099.
    [28] Scharcanski J. Cláudio R J, Clarke R T., Adaptive Image Denoising Using Scale and Space Consistency [J]. Image Processing, IEEE Trans, on, 2002, 11(9) : 1092-1101.
    [29] Pizurica A, Philips W, Lemahieu I, et al. A versatile wavelet domain noise filtration technique for medical imaging [J]. IEEE Trans. Medical Imaging, 2003, 22(3) : 323-331.
    [30] Chang S G, Vetterii M. Spatial adaptive wavelet thresholding for image denoising [C]. in 1997 International Conference on Image Processing (ICIP97), 1997, 374-377.
    [31] Chang S G, Yu B, Vetterii M. Spatially adaptive wavelet thresholding with context modeling for image denoising [J]. Image Processing, IEEE Trans, on, 2000, 9: 1522-1531.
    [32] Moulin P, Liu J. Analysis of multiresolution image denoising schemes using generalized Gaussian and complexity priors [J]. IEEE Trans. Inform. Theory, 1999, 45 : 909-919.
    [33] Achim A, Bezerianos A, Tsakalides P. Novel Bayesian multiscale method for speckle removal in medical ultrasound images [J]. IEEE Trans. Medical Imaging, 2001, 20(8) : 772-783.
    [34] Achim A, Tsakalides P, Bezerianos A. SAR image denoising via Bayesian wavelet shrinkage based on heavy-tailed modeling [J]. IEEE Trans. Geosc. and Remote Sensing, 2003, 41(8) : 1773-1784.
    [35] Simoncelli E P, Adelson E. Noise removal via bayesian wavelet coring [C]. in IEEE International Conference on Image Processing, (Lausanne, Switzerland), 1996, 279-382.
    [36] Mihpk M K, Kozintsev I, Ramchandram K, et al. Low-complexity image denoising based on statistical modeling of wavelet coefficients [J]. IEEE Signal Processing Letters, 1999, 6 : 300-303.
    [37] Strela V, Portilla J, Simoncelli E P. Image denoising via a local gaussian scale mixture model in the wavelet domain [C], in SPIE 45th Annual Meeting, (San Diego, CA), August 2000.
    [38] Portilla J, Strela V, Wainwright M, et al. Adaptive wiener denoising using a Gaussian scale mixture model [C]. in Proc, int. Conf. Image Process.,2001.
    [39] Vidakovic B. Nonlinear wavelet shrinkage with Bayes rules and Bayes factors [J]. J. of the American Statistical Association, 1998, 93 :173-179.
    [40] Vidakovic B. Wavelet-based nonparametric Bayes methods [M]. in Practical Nonparametric and Semiparametric Bayesian Statistics, ser. Lecture Notes in Statistics, D. D. Dey, P. Muller, and D. Sinha, Eds., vol. 133. Springer Verlag, New York, 1998,133-155.
    [41] Abramovich F, Sapatinas T, Silverman B. Wavelet thresholding via a Bayesian approach [J]. J. of the Royal Statist Society B, 1998, 60 : 725-749.
    [42] Leporini D, Pesquet J C, Krim H. Best basis representation with prior statistical models [M]. in Lecture Notes in Statistics, Springer Verlag, 1999.
    [43] Chipman H A, Kolaczyk E D, McCulloch R E. Adaptive Bayesian wavelet shrinkage [J]. J. of the American Statistical Association, 1997, 92 : 1413-1421.
    [44] Mclyde M, Parmigiani G, Vidakovic B. Multiple shrinkage and subset selection in wavelets[J]. Biometrika, 1998, 85(2): 391-401.
    [45] Crouse M, Nowak R, Baraniuk R. Wavelet-based statistical signal processing using hidden Markov models [J]. IEEE Trans. Signal Proc, 1998, 46(4): 886-902.
    [46] Romberg J, Choi H, Baraniuk R. Bayesian tree structured image modeling using wavelet-domain hidden Markov models [C]. in Proc. SPIE Technical Conf. on Mathematical Modeling, Bayesian Estimation, and Inverse Problems, Denver, CO, 1999.
    [47] Fan G, Xia X G. Image denoising using local contextual hidden Markov model in the wavelet domain [J]., IEEE Signal Processing Letters, 2001, 8(5) : 125-128.
    [48] Lu J, Weaver J B, Healy D M et al. Noise reduction with multiscale edge representation and perceptual criteria [C]., in Proc. Of IEEE-SP Intl. Symp. On Time-Frequency and Time-Scale Analyisi, Victoria, BC, 1992, 555-558.
    [49] Malfait M, Roose D. Wavelet based image denoising using a Markov Random Field a priori model [J]. Image Processing, IEEE Trans, on, 1997, 6(4) : 549-565.
    [50] Jansen M, Bultheel A. Geometrical priors for noisefree wavelet coefficients in image denoising [M],. in Bayesian inference in wavelet based models, ser. Lecture Notes in Statistics, P. Muller and B. Vidakovic, Eds., vol. 141. Springer Verlag, 1999, 223-242.
    [51] Jansen M, Bultheel A. Empirical Bayes approach to improve wavelet thresholding for image noise reduction [J]., J. Amer Stat Assoc, 2001, 96(454) : 629-639.
    [52] Pizurica A, Philips W, Lemahieu I, et al. A joint inter- and intrascale statistical model for wavelet based Bayesian image denoising [J]. Image Processing, IEEE Trans, on, 2002, 11(5): 545-557.
    [53] Donoho D L, Johnstone I M, Ideal spatial adaptation via wavelet shrinkage [J] Biometrika, 1994, 81 : 425-455.
    [54] Donoho D L., Nonlinear wavelet methods for recovery of signals, densities and spectra from indirect and noisy data [C]. in Proc. Symp. Appl. Math. (I.Daubechies, ed.), (Providence, RI), 1993.
    [55] Donoho D L, Johnstone I M., Adapting to unknown smoothness via wavelet shrinkage [J]. J. Amer. Statist. Assoc, 1995, 90 : 1200-1224.
    [56] Chang S G, Yu B, Vetterli M., Adaptive wavelet thresholding for image denoising and compression [J]., Image Processing, IEEE Trans, on, 2000, 9(9): 1532-1546.
    [57] Pan Q, Zhang L, Guangzhong Dai, et al., Two denoising methods by wavelet transform [J]. IEEE Trans. Signal Processing, 1999, 47 : 3401-3406.
    [58] Sapiro G Geometric partial differential equations and image analysis [M]. Cambridge:Cambridge University Press, 2001.
    [59] Perona P, Malik J.Scale-space and edge detection using anisotropic diffusion [J].IEEE Trans.PAMI, 1990, 12 (7): 629-639.
    [60] Catte F, Coll T, Lions P L, et al.Image selective smoothing and edge detection by nonlinear diffusion [J].SIAM J Numerical Analysis, 1992, 29 (1): 182-193.
    [61] Whitaker R T, Pizer S M.A multiscale approach to nonuniform diffusion [J].CVGIP: Image Understanding, 1993, 57 (1): 99-110.
    [62] Alverz L, Lions P L, Morel J M.Image selective smoothing and edge detection by nonlinear diffusion Ⅱ.SAIM Numerical.Analysis, 1992,29(3): 845-866
    [63] Segall C A, Acton S T.Morphological anisotropic diffusion [C].Proceedings of International Conference on Image Processing, 1997:348-351.
    [64] Gerig G, Kikinis K, Kubler O, et al.Nonlinear anisotropic filtering of MRI data [J].IEEE Trans.on medical imaging, 1992, 11(2): 221-232.
    [65] 王利生,徐宗本.偏微分方程在生物医学图像分析中的应用[J].工程数学学报,2004,21(4):475—490.
    [66] 梁晓云,曾卫明,罗立民.基于偏微分方程的医学磁共振图像去噪[J].信号处理,2004,20(3):318—321.
    [67] Weickert J.A review of nonlinear diffusion filtering [M].B.ter Haar Romeny, L.Florack, J.Koenderink, etal.Scale-space theory in computer vision, Lecture notes in computer science, 1997, 1252, 3-28.
    [68] You Y.L, Kaveh, M., Fourth-order partial differential equations for noise removal[J].IEEE Trans.Imag.Proc.,2000,9(10):1723-1730.
    [69] Chambolle A, Lions P L. Image recovery via total variation minimization and related problems[J]. Numer. Math., 1997, 76(2): 167-188.
    [70] Chan T, Marquina A, Mulet P. High-order total variation-based image restoration[J]. SIAM Journal on Scientific Computing, 2000, 22(2): 503-516.
    [71] Sapiro G, Ringach D L. Anisotropic diffusion of multivalued images with applications to color filtering[J]. IEEE Trans, on Image Processing, 1996, 5 : 1582-1586.
    [72] Lysaker M, Lundervold A, Xue-Cheng Tai. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time [J]. IEEE Trans, on Image Processing, 2003, 12(12) : 1579 - 1590.
    [73] Weickert J. Multiscale texture enhancement [ R ]. In: Hlavac V, Sara R ed. Computer analysis of images and patterns, Lecture Notes in Computer Science.Berlin.Springer, 1995,970:230-237.
    [74] Weickert J. Nonlinear diffusion filtering. In: Jahne B, Hauβecker H,ed. Handbook of Computer Vision and Applications[M],San Diego: Academic Press, 1999 :423-450.
    
    [75] Weickert J, Nonlinear diffusion filtering: theory, algorithms,and applications, lecture notes[EB/OL]. Dept. of Computer Science, Copenhagen, 1998,http://www.cvgpr.unimannheim.de/weickert/course.html.
    
    [76] Brox T, Weickert J, Burgeth B, et al. Nonlinear structure tensors [J]. Image and Vision Computing, 2006, 24(1): 41-55.
    [77] Brox T, Boomgaard R V D, Lauze F B, J, et al. Adaptive structure tensors and their applications [M]. J. Weickert and H. Hagen (Eds.) Visualization and Processing of Tensor Fields, Springer, 2006,17-47.
    [78] Weickert J.Coherence-enhancing diffusion filtering[J]. International journal of Computer Vision,1999,31(2-3):111-127.
    [79] Weickert J.Theoretical foundations of anisotropic diffusion in image processing[J]. Computing Suppl., 1996,11:221—236.
    [80] Weickert J. Consortium Anisotropic Diffusion in Image Processing[C]. European for Mathematics in Industry,B.G.Teubner Stuttgart,1998.
    [1] 郁文贤,雍少为,郭桂蓉.多传感器信息融合技术述评[J].国防科技大学学报,1994,16(3):1-11.
    [2] Pinz A, Bartl R.Information fusion in image understanding [J].IEEE Trans.Med.Image.,1992,12: 234 - 255.
    [3] Roolker W,Buul M M, Broekhuizen AH,et al.Improved wrist fracture localization with digital overlay of bone scintigrams and radiographs [J].J.Nucl.Med.,1997,38: 1600 - 1603.
    [4] Hawkes D J, Robinson L, Crossman J E ,et al.Registration and display of the combined bone scan and radiograph in the diagnosis and management of wrist injuries [J].Eur.J.Nucl.Med.,1991,18: 752 - 756.
    [5] Hall D L, Llinas J.An introduction to multisensor data fusion [J].Proc.IEEE, 1997,85(1):6—23.
    [6] 王建卫.基于小波变换的数字图像融合[J].情报指挥控制系统与仿真技术, 2000, (6):51-56.
    [7] Pohjonen H.Image fusion in open-architecture PACS environment [J] Computer Methods and Programs in Biomedicine, 2001, (66):69-74.
    [8] Pattichis C S , Pattichis M S , Micheli Tzanakou E.Medical imaging fusion applications: an overview [C].Pacific Grove CA: 35th Asilomar Conference on Signals, Systems, and Computers, 2001.1263—1267.
    [9] 舒小华,沈振康.一种新的基于小波变换的医学图像融合方法[J].计算机工程与应用,2005,23:213-214.
    [10] Hill D L.Medical image registration.Phys.Med.Biol., 2001,46 (3): 1-45.
    [11] Lewis P J, Siegel A, Siegel A M, et al.Does performing imaging registration and subtraction in ictal brain SPECT help localize neocortical seizures [J].Nucl.Med., 2000,41 (6):1619-1627.
    [12] OBrien T J, Soel, Mullan B P, et al.Subtraction ictal SPECT co - registered to MRI improves clinical usefulness of SPECT in localizing the surgical seizure focus.Neurology, 1998,50 (2): 445-450.
    [13] Yu C, Petrovich Z, Apuzzo M L, et al.An image fusion study of the geometric accuracy of magnetic resonance imaging with the leksell sterotactic localization system.J.Appl.Clin.Med.Phys., 2001,2 (1): 42-47.
    [14] Chen Y T, Wang M S.Three - dimensional reconstruction and fusion for multimodality spinal images.Comput.Med.Imaging Graph., 2004,28 (1): 21-25.
    [15] 张煜,刘哲星,李树祥,等.医学图像信息融合技术的发展[J].国外医学. 生物医学工程分册,2000,23(4):202—205.
    [16] 李伟,朱学峰.医学图像融合技术及其应用[J].中国医学影像技术,2005,21(7):1126—1129.
    [17] 邱明国,巫北海,王健.医学图像融合[J].国外医学.临床放射学分册,2005,28(1):56—59.
    [18] 杨恒,杨万海,裴继红.基于小波分解的不同聚焦点图像融合方法[J].电子学报,2001,29(6):846—8481.
    [19] 崔岩梅,倪国强,等.一种基于小波变换的多尺度多算子图像融合方法[J].光学技术,1999(4):37—391.
    [20] 陈树刚,张学杰.一种基于小波系数自适应加权平均的解剖和功能医学图像融合算法[J].云南大学学报,2005,27(3):200—205.
    [21] 舒小华,沈振康.一种新的基于小波变换的医学图像融合方法[J].计算机工程与应用,2005,23:213—214.
    [22] 张洁,蒋宁,浦立新.基于小波变换的医学图像融合技术[J].电子科技大学学报,2005,34(6):839-842.
    [23] 吴疆,张泾周,张佳.医学图像融合方法研究[J].中国医疗器械杂志,2005,29(6):435—438.
    [24] 那彦,杨万海,李勇朝.图像信息融合与医学图像综合显示[J].西安电子科技大学学报,2004,31(1):21—24.
    [25] 那彦,杨万海,张强.一种基于多小波变换的医学图像融合方法[J].信号处理,2004,20(6):642—645.
    [26] 基于小波变换极大模的多模医学图像融合[J].中国体视学与图像分析,
    [27] 李海云,王筝.基于小波变换模极大值特征的多模医学图像融合算法研究[J].计算机工程与应用,2004,40(16):221—229.
    [28] 曾竞,徐邦荃,林家瑞,黄敏.基于小波分解的多尺度医学图像融合技术[J].生物医学工程研究,2003,22(3):23-25.
    [29] 陈洪波,王强,张孝飞,韦春荣,张超英.基于小波系数邻域特征的图像融合[J].光学精密工程,2003,11(5):516-522.
    [30] 周礼,王章野,金剑秋,彭群生.基于HVS的小波图像融合新算法[J].中国图象图形学报,2004,9(9):1088-1095.
    [31] 李海云,于红玉.基于小波多尺度分辨的多模医学图像融合算法研究[J].中国医疗器械杂志,2004,28(2):115-117.
    [32] 刘刚,敬忠良,孙韶媛,等.基于多孔小波和模糊区域特征的图像融合方法[J].计算机工程,2005,31(16):33-35.
    [33] 蒋晓瑜,高稚允,周立伟1基于小波变换的多分辨图像融合[J].北京理工大学学报,1997,7(4):458-4631.
    [34] 陈勇,皮德富,周士源,等1基于小波变换的红外图像融合技术研究[J].红外与激光工程,2001,30(1):15-171.
    [35] 李树涛,王耀南.基于树状小波分解的多传感器图像融合[J].红外与毫米波学报,2001,20(3):119-2221.
    [36] 蒲恬,方庆吉,倪国强.基于对比度的多分辨图像融合[J].电子学报,2000,28(12):116-118.
    [37] Ahmet M, Eskicioglu, fisher P S. Image quality measures and Their Perfarmance [J]. IEEE Trans. on communications. 1995, 43(12): 2959-2965. ∧
    [38] 李弼程,罗建书.小波分析及其应用[M].电子工业出版社,2003.
    [39] Mallat S, Hwang W L. Singularity detection and processing with wavelets [J]. IEEE Trans. Inform. Theory, 1992, 32: 617-643. ∧
    [40] Mallat S, Zhong S. Characterization of signals from multiscale edges [J]. IEEE Trans. Pattern Anal. Machine Intell., 1992, 14: 710-732. ∧
    [41] Y. Xu, Weaver J B, Healy D M, et al. Wavelet transform domain filters: A spatially selective noise filtration technique [J]. IEEE Trans. Image Processing, 1994, 3: 747-758. ∧
    [42] Brian M. Sadler, Ananthram Swami. Analysis of Multiscale Products for Step Detection and Estimation [J]. IEEE Trans. on Inform. Theory. Date: 1999, 45(3): 1043-1051. ∧
    [43] Bao P, Zhang L. Noise reduction for magnetic resonance images via adaptive multiscale products thresholding [J]. IEEE Trans. Medical Imaging, 2003, 22(9): 1089-1099. ∧
    [44] 蒋晓瑜,高稚允.像素级多分辨图像融合若干问题分析及实验[J].红外技术,2003,25(4):49-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700