IPv6网络协议栈的模块化设计及在无线传感器上的超轻量化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在不同的LCNA微小设备上实现IPv6协议栈时,很多情况下都不必实现IPv6协议簇定义的所有功能,为适应设备的硬件资源和功耗要求,需要对协议进行有针对性地裁剪。这就必须在不同LCNA微小设备上移植IPv6协议栈。为了简化移植,本文分析了IPv6核心协议功能的可裁剪性,然后模块化设计IPv6网络协议栈的功能模块,给出基本的接口函数,设计出一个可裁剪的基本框架。之后,通过在无线传感器节点上实现超轻量化的IPv6协议栈,验证设计思想和方法的合理性。
     在无线传感器网络中,通信节点的硬件资源极其稀少,并且要求功耗超低以在电池供电的情况下维持较长的生命期。本文通过分析无线传感器网络的特征,在适配层的基础上,合理地大幅度裁剪不适用于无线传感器网络的IPv6核心协议簇的功能,以满足无线传感器节点的各种需求。裁剪工作主要是:与IPv6扩展头部对应的功能,与ICMPv6差错报文对应的功能,以及IPv6邻居发现协议中的协议行为等。
     在分析了IPv6邻居发现协议的适用环境后,本文提出了一种为无线传感器网络量身定做的在适配层上实现的适配层邻居发现协议的设计思想。它对IPv6核心协议簇的协议做了合理的改进,可以大幅度降低协议自身的通信量和节点的功耗,满足无线传感器节点对超低功耗的需求;通过适配层来实现必要的IPv6邻居发现协议的功能,代价低,可更大程度地减小代码空间。这种改进保持了无线传感器节点对IPv6的支持力度。
When IPv6 protocol stack is implemented in various embedded equipments of low cost network applications, it ought to tailor useless functions defined in IPv6 protocols. One maybe tailor some functions, and another maybe tailor else functions. So, IPv6 protocol stack must migrate to an embedded- equipments for every low cost network applications. In this paper, Firstly, the functions which are permitted to be cut are listed, and the reasons are given. Secondly, IPv6 protocol stack is modularized, and a frame easily to migrate is designed. Finally, an ultra-lightweight IPv6 protocol stack is implemented for wireless sensor network, and it prove that the frame is work.
     Communication node of wireless sensor network lacks hardware resources, such as memory spaces and power of MCU. And energy proved for it by battery is a very little. This paper study the feature of the node in wireless sensor network, such as tree topology and the functions of adaptation between IPv6 protocol stack and MAC defined by IEEE-802.15.4 standard, and design an ultra-lightweight IPv6 protocol stack which is greatly tailored for wireless sensor networks according to 6L0WPAN drafts. The functions tailored include some of IPv6 extension headers, some of ICMPv6 error messages and information messages, and some of functions of neighbor discovery protocol. Thus, the ultra-lightweight IPv6 protocol stack has maximally reduced the codes space and the overheads of the communication among the nodes just for IPv6 protocols, and it's fit for the communication node of wireless sensor network.
     More, the new neighbor discovery applied to adaptation is present after contrasting between the neighbor features of IPv6 neighbor discovery and the neighbor features of wireless sensor network. This technique can more reduce the codes space and the overheads of communication among the nodes just for network protocols, and it can't minify the node's IPv6 function.
引文
[1] LwIP, http://www.sics.se/~adam/lwip/index.html
    [2] JOSEPH DAVIES. Understanding IPv6[M]. Microsoft Press, 2003.
    [3] J. Loughney, Ed, Nokia. IPv6 Node Requirements. RFC4294, April 2006.
    [4] Nobuo Okabe, Shoichi Sakane. Host Requirements of IPv6 for Low Cost Network Appliances. Draft, December 2002.
    [5] R. Draves, Microsoft Research. Default Address Selection for Intemet Protocol version 6 (IPv6). RFC3484, February 2003.
    [6] R. Hinden, S. Deering. IP Version 6 Addressing Architecture. RFC2373, July 1998.
    [7] S. Deering, R. Hinden. Internet Protocol, Version 6 (IPv6) Specification. RFC2460, December 1998.
    [8] Conta, S. Deering. Interact Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification. RFC 2463, December 1998.
    [9] S. Thomson, T. Narten. IPv6 Stateless Address Autoconfiguration. RFC 2462, December 1998.
    [10] T. Narten, E. Nordmark, W. Simpson. Neighbor Discovery for IP Version 6 (IPv6). RFC 2461, December 1998.
    [11] J. McCann, S. Deering, J. Mogul. Path MTU Discovery for IP version 6. RFC 1981, August 1996.
    [12] MONTENERGRO G. Transmission of IPv6 Packets over IEEE 802.15.4 Networks[S]. draft-ietf-61owpan-format-05, October 2006.
    [13] Computing the Internet Checksum, RFC 1071.
    [14] Karl Mayer, Wolfgang Fritsche. IP-enabled Wireless Sensor Networks and their integration into the Internet, ACM International Conference Proceeding Series, Vol. 138, 2006.
    [15] "GUIDELINES FOR 64-BIT GLOBAL IDENTIFIER (EUI-64) REGISTRATION AUTHORITY", IEEE http://standards.ieee.org/regauth/oui/tutorials/EUI64.html.
    [16] WSN(wireless sensor network), http://www.ececs.uc.edu/~njain/research.html
    [17] IEEE 802.15.4-2003, Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs)[S].
    [18] IPv6 over Low power WPAN (6lowpan), http://www.ietf.org/html.charters/6lowpan-charter.html.
    [19] N. Kushalnagar, G. Montenegro, 6LowPAN: Overview, Assumptions, Problem Statement and Goals, draft-ietf-6LowPAN-problem-00.txt, July 12, 2005.
    [20] 李海,6LoWPAN适配层的研究与实现,2007年1月.
    [21] 毛妙,《6LoWPAN适配层与ND协议的研究和实现》,2007年1月。
    [22] Freescale Tree Mode Design Specification, Extension to the IEEETM 802.15.4 MAC. Freescale Corporation, 2nd July 2006.
    [23] K. Kim, Ed., S. Daniel Park, Ed., G Montenegro, S. Yoo, N. Kushalnagar, "6LowPAN Ad Hoe On-Demand Distance Vector Routing (LOAD)", draft-daniel-6LowPAN-load-adhoc-routing-02.txt, March 05, 2006
    [24] CHAKRABARTI S, NORDMARK E. LowPan Neighbor Discovery Extensions[S]. draft-chakrabarti-61owpan-ipv6-nd-02.txt, June 2006.
    [25] S. Yoo, S. Daniel Park, "Interoperability of 6LoWPAN", draft-daniel-6lowpan-interoperability-01.txt, July 2005.
    [26] PERKINS CE, BELDING-ROYER E, DAS S, et al. Ad hoe on demand distance vector (AODV) routing[C] POSTEL J. Kequest for Comments. INTERNET: IETF, 2003.
    [27] K. Kim, Ed., S. Daniel Park, Ed., G Montenegro, S. Yoo, N. Kushalnagar, "6LowPAN Ad Hoc On-Demand Distance Vector Routing (LOAD)", draft-daniel-6LowPAN-load-adhoe-routing-02.txt, March 05, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700