CH_4-CO_2低温转化合成含氧有机物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CH_4-CO_2低温转化直接合成含氧有机物是C_1研究领域最具挑战性的课题之一。本文综述了CH_4在催化剂表面的活化,低碳烷烃的羰基化和羧基化,CO_2的活化与转化,CH_4与CO_2的共活化及相互反应等研究进展,并以此为基础设计了CH_4-CO_2低温转化直接合成含氧有机物的催化剂及反应的进料方式,利用扫描电镜,红外,热分析,比表面测定等分析手段,结合催化剂的活性评价,对所设计催化剂进行了基础性研究,对反应的进料方式做了初步探讨,通过研究得出如下结论:
     (1)本文所研究的CuCo,CuCoZr及RuCo三种类型催化剂对CH_4-CO_2低温转化合成含氧有机物均有活性,在这些催化剂表面,CO_2与CH_4活化后所生成的表面碳物种反应可生成乙酸,乙醇,丙酮等两个以上碳的含氧有机物。其中乙酸的选择性最高。反应后三种催化剂表面均较少积碳。
     (2)三种催化剂中CuCoZr类催化剂尤其是低Cu/Co比的CuCoZr类催化剂由于具有较大的活性比表面积,低的产物吸附性能而显示较高的活性。
     (3)催化剂使用过程中结构及表面形态发生了很大的变化,表面由疏松多孔变得较为致密,催化剂颗粒团聚,孔数目减少,从而导致催化剂的比表面积大大下降。
     (4)离子交换法制备的RuCo分子筛载体催化剂,使用后的催化剂上可观察到邻羟基苯乙酮的官能团。
     (5)在CH_4/CO_2交替进料方式下,在较高温度下反应生成有机物的总碳转化率要高于低温的情况。
     (6)与CH_4/CO_2交替进料方式相比,混氢及加氧进料方式都
    
    太原理工大学硕士学位论文
    能提高乙酸收率,其中混氢比例合适的cH4/C 02+HZ与
    CH4+CoZ/H:方式最具潜力,但需要很好地控制CO:加氢.
     (7)催化剂及进料方式对产物分布都有影响,贵金属催化剂
    可以在一定程度上抑制C02加氢.
     (8)热力学最有利的加氧方式由于本文所研究的催化剂体系
    不合适而未能收到预期的效果.
     (9)CH4+C02/H:进料方式较有利于乙醇的生成.CH4/CoZ+HZ
    进料方式则对丙酮的生成较有利.
     (l0)在CH4活化过程中混氢,可以抑制CH4的深度脱氢,从
    而提高甲烷的转化率及乙酸的收率,13.8%的混氢比例对cH4
    的转化最有利,此时乙酸的收率达最大值.但选择性却最小.
     (11)在二氧化碳反应的过程中混氢可以提高乙酸收率,当混
    氢比例为50%时乙酸收率达最大,但此时乙酸的选择性最小.
It is one of the most challenging subjects to form oxygenate compounds directly from methane and carbon dioxide at low temperature in the C, field. In this paper, the activation and conversion of methane and carbon dioxide, the functionalization of alkanes, the mutual activation and conversion of methane and carbon dioxide are reviewed. Based on the review, some processes of direct converting CHx and CO2 to oxygenate compounds at low temperature are suggested and some catalysts used in these processes are designed. The catalysts have been studied here using the SEM, FTIR,TG-DTA, and BET analytical methods combined with the reactivity evaluation ; the processes have also been principally probed. Here are some conclusions:
    (1)The three kinds of CuCo,CuCoZr and RuCo catalysts all have reactivity for the low temperature conversion of methane and carbon dioxide. On the surface of these catalysts some ethanol, acetic acid, acetone and so on have been observed. Of all these substances, acetic acid's selectivity is the highest. All these catalysts have little carbon deposition after reaction.
    (2)As the CuCoZr catalysts especially the low Cu/Co ratio catalysts have relatively big specific surface area, low ability of adsorbing products, their reactivity are higher.
    (3)During the catalytic reaction , the catalysts' structure and configuration have been changed a lot. The surface has become compacted and the number of the pores has decreased. These lead to
    
    
    the reduction of the specific surface area.
    (4)Some functional groups of o-hydroxyl phenyl acetone have been observed by FTIR analysis on RuCo catalyst after reaction.
    (5)In the CH4/CO2 process, the convertion of total carbon is higher at higher temperature.
    (6)Compared with CH4/CO2 process the processes of mixing hydrogen or oxygen with the feed gas all can improve the yield of acetic acid. The CH4/CO2+H2 process with suitable hydrogen proportion and the CH4+CO2/H2 process are more favorable. But some methods should be adopted to control the carbon dioxide's hydrogenation.
    (7)The catalysts and the processes all have influence on the products' distribution. The novel metal can control the carbon dioxide's hydrogenation to some extend.
    (8)As the catalysts are unsuitable for the reaction under oxygenate atmosphere, the CH4+CO2+O2 process has not got the expected result in present work.
    (9)The CH4+CO2/H2 process is more favorable for the formation of ethanol. The CH4/CO2+H2 process is more favorable for the formation of acetone.
    (10)When the proportion of hydrogen in the mixture of
    hydrogen and methane reaches 13.8 %,the yield of acetic acid reaches the highest, but its selectivity is the lowest.
    (11)When the proportion of hydrogen in the mixture of
    
    hydrogen and carbon dioxide reaches 50 %,the yield of acetic acid reaches the highest and its selectivity is the lowest.
引文
1 李春鞠,顾国维.环境保护科学,1999,26(总98):13
    2 肖亚平,贝浼智.现代化工,1995,9:34
    3 孙茂远,黄盛初.朱超.中国煤炭,1996,04:51
    4 黄伟,王晓红,谢克昌等.煤碳转化,2000,(3):32
    5 黄伟,王晓红,谢克昌等.催化学报,2001,22(4):321
    6 M.Belued, H.Amariglio, P. Pare/ja, A.Amariglio et al.Catal.Today, 1992, 13: 437
    7 Tijs Koerts, Marc J.A.G.Deelen, and Rutger A.van Santen. J.Catal., 1992, 138: 101
    8 Michael C.J.Bradford. Journal of Catalysis, 1999,189,238
    9 Kuijpers,E.G.M.,Jansen,J.W.,van Dillen ,A.J.and Geus,J.W.. J.Catal.1981,72:75
    10 Kuijpers,E.G.M.,Breedijk,A.K.,van Der Wal,W.J.J.and Geus,J.W.. J.Catal.,1983,81:429
    11 G.H.Yokomizo and A.T. Bell. J.Catal.,1989,119:467
    12 Jason N.Carstens and Alexis T. Bell. Journal of catalysis, 1996,161:423
    13 L.Guczi etal.. Catal.lett. 1998,54:33
    14 Laszlo Guczi etal.. Catal.today. 2001,64:91
    15 Keller G E,Bhasin M M. J.Catal.,1982,73:9
    16 Wang J X,Lunsford J H. J.Phys. Chem.,1986,90:3890
    17 Tanaka,K.I.,Yaegashi,I. and Aomura,K..J.Chem. Soc.Chem. Communic., 1982,938
    18 Masanobu Kurioka,Kazuyuki Nakata,Tetsuro Jintoku et al..
    
    Chem. Lett.,1995,244
    19 Yuzuo Fujiwara,Tsugio Kitamura,Yuki Taniguchi etal.. Natural Gas Conversion 1998.,119:349
    20 Donald P. and Katherine B.Loker. J.Org. Chem.,1990,55:4284
    21 阎子峰,薛锦珍,沈师孔等.分子催化,1996,10(6):440
    22 阎子峰,薛锦珍,沈师孔等.化学物理学报,1996,9(5):464
    23 黄仲涛等译,W.凯姆编,C1化学中的催化,化学工业出版社,北京,1989
    24 Lizuka T.J.catal.,1981,70:449
    25 Zagli E.J..Catal.,1981,69:1
    26 Weatherbee G D.. J.Catal.,1982,77:460
    27 Amebomiya Y..8th I.C.C.P.(Ⅱ),1984:557
    28 Chinchen C.J.Chem. Soc.,Fraday Trans. I.,1987,83:2193
    29 Waches I E,Madix R. J..J.Catal.,1978,53:208
    30 Kinnaird S,Wabb G,Chinchen G C..J.Chem. Soc.Fraday Trans. I., 1987,83:3339
    31 Hadden R E,Vandervell H d,Waugh K C et al..Proc.9th Int. Congr. Catal.,Calgary, 1988,1835
    32 Jackson S D..J.Catal.,1989,115:247
    33 Copperthwaite R G,Caral. Lett.,1988,1:11
    34 S.Sugawa,K.Sayama,and H.Arakawa. Energy Convers,Mgmt., 1995, 36:665
    35 Ertl G,Bunsenges B,Phys. Chem.,1982,86:425
    36 Tully J C..Advan. Chem. Phys.,1980,42:63
    37 Ross. J.R.H., van Keulen, A.N.J., Hegarty, M.E.S., and Seshan
    
    ,K.. Catal.today, 1996,30(1-3) : 193
    38 Bitter,J.H.,Seshan,K.,and Lercher,J.A.J.Catal,1997,171:279
    39 LercherJ. A.,Bitter,J.H.,Rally, W.,Niessen,W.,andSeshan,k.,Stu d.Surf.Sci.Catal, 1996,101:403
    40 Erdohelyi A,Cserenyi J,et al. Appl. Catal..1994, 108:205
    41 Sodesawa T.,Dobashi A.,Nozaki F.etal. Catal.lett.,1979, 12:107
    42 N.Ikehara,K.Hara,A.Satsuma,T.Hattori and S.Komiya, Chem. Lett.,1995,567
    43 Kusama, K. Okabe, K. Sayama, H. Arakawa,Catal. Today, 1996, 8:261
    44 YukiT aniguchi,Taizo Hayashida,Tsugio Kitamura,and Yuzo Fujiwara. Advances in Chemical Conversions for Mitigating Carbon Dioxide Studies in Surface Science and catalysis,1998,114:439
    45 Rasko J.,Solymos F.. Catal.Lett.,1999,46:153
    46 Rasko J.,Solymos F.. Catal.Lett, 1998,54:49
    47 Solymosi F,Kutsan gy and Erd 6 helyi A.. Catal. L-ett.,1991,11:149
    48 Erdohelyi A,Cserenyi J AND Solymosi F..J. Catal., 1993, 141:287
    49 M.Bowker. Catal.Today,1992,15:77
    50 C.Mazzocchina,E.Tempesti,P.Cronchi,L.Giuffre and L. Zande-ri ghi.. J.Catal.,1998,111:345
    51 M.Bowker,Q.Guo and R.W. Weinberg,Surface Sci., 1982, 116:549
    52 I.wachs and R.J.Madix.Appl.Surf.Sci.,1978,1:303
    
    
    53 丁一慧.Pd,Rh催化剂上甲烷与二氧化碳直接转化合成乙酸:[硕士学位论文].太原,太原理工大学,2001
    54 R.A.Keeppel,A.Baiker, Ch. Schild and A.Workarn. Stud. Sci. Catal.,63:59
    55 S.M,Stagg,E.Romeo,C. Padro, and D. E. Resasco. J. Catal.,1998,178:137-145
    56 T. Koerts,M.J.A.G.Deelen and R.A.van Santen,J.Catal., 1992,138:101
    57 M.Belgued,A.Amariglio,P. Pareja and H.Amariglio,J.Catal., 1996,159:441
    58 宋世谟,庄公惠,王正烈.物理化学.高等教育出版社,1992 Yan Ma,Qi Sun,Dong Wu et al. Appl. Catal.,1998,171:45
    59 李荣生,甄开吉.催化作用基础.高等教育出版社,1990
    60 R.G.Cook .Chem. and Ind.,1955,142
    61 Spivey J J. Method of Preparing Alkyl Carboxylic Acid by Carboxylation of Lower Alkanes Methane. US WO 99/59952. 25 November 1999
    63 Noriyuki IKEHARA,Kouji HARA,Atsushi SATSUMA,et al. Chem. Lett., 1994, 262

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700