活性炭载铁催化剂上几种典型芳烃一步羟基化反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酚是一类重要的基本有机化合物,广泛应用于化学工业、药物、日常生活等诸方面,相当一部分具有很强的生理活性,甚至是生物体内不可缺少的物质。目前,酚类化合物的生产主要是多步合成,有些合成方法存在着原子利用率不高,甚至还严重污染环境等问题。将含芳环的化合物直接羟基化为酚,只需一步反应就可以将原料转化为产物,符合绿色化学观点。这是一个将芳环C-H键直接活化使其功能化的反应,同时也是合成研究中最值得研究、也是最难解决的问题之一,其原因有三1)芳环是一个较稳定的结构,它的羟基化本身是一个难题,也是目前催化氧化研究中的热点之一;2)取代芳烃的羟基化可能发生在取代基的邻、间和对位,如何对某一位置实现有选择性的羟基化,是芳环羟基化研究的重要课题;3)对有侧链的芳烃底物,芳烃侧链的C-H键能比芳环C-H键能低,侧链的C-H的活化更容易进行,因此在羟基化芳烃底物时对芳环的选择性又是一个难题,这些都给芳环的直接羟基化提出了挑战。正因为如此,目前具有高的芳烃环羟基化选择性和高的酚产率的报道很少。也正基于上述原因,芳烃羟基化的研究近年来受到了越来越多的关注。要达到这样一个目的,催化剂的研究是关键。本文在文献报道的基础之上,使用活性炭为载体,负载铁盐后制成催化剂,对几种典型芳香族化合物进行了直接羟基化反应研究,对活性炭官能团与铁盐的作用进行了探讨,讨论了载铁活性炭催化芳环羟基化的反应机理,优化了部分底物羟基化的实验条件。
     采用浸渍法制备了一系列铁含量不同的活性炭载铁催化剂,并用于乙腈介质中以过氧化氢为氧化剂的苯一步羟基化反应,使用比表面测定、苯吸附、XRD、XPS等方法对催化剂或活性炭载体进行了表征,考察了活性炭载体热处理等预处理对活性炭表面基团分布、活性炭载铁催化剂催化活性等的影响。结果表明,活性炭是吸附负载Fe2(SO4)3的良好载体,最初吸附负载的铁盐负载在较小的微孔中,随后吸附在中空和介孔表面;载铁活性炭在乙腈介质中对苯有较高的吸附,其吸附量随载铁活性炭比表面的增加而增加;XRD结果说明,即使在最大的铁盐负载量时,负载的Fe2(SO4)3仍然以非晶质负载在活性炭表面;XPS结果发现:主要是活性炭表面羧酸基团吸附负载了铁物种,它与铁物种的作用是催化剂具有催化活性的重要原因;通过将活性炭热处理后再负载铁盐测定其催化活性的变化发现:热处理中最先脱附的羧酸基团对催化剂的活性贡献最大,进一步证明了活性炭表面羧酸基团与铁盐的作用是活性炭载铁催化剂具有催化活性的关键;通过两个与活性炭结构类似的水杨酸和邻苯二酚与铁盐相互作用后用于苯的羟基化的对照实验说明,活性炭表面上水杨酸类似结构与铁物种的作用是非常重要的,可能是活性炭载铁催化剂的高活性相。
     利用硝酸和空气氧化处理活性炭,制得不同织构和表面含氧基团的活性炭,并用于乙腈和醋酸中有水及无水情况下的苯吸附。结果表明,活性炭在溶剂中的苯吸附容量与苯在介质中的溶解度、活性炭上的含氧基团(特别是与活性炭表面的羧酸基团)有密切的相关关系,活性炭表面所含羧酸基团越多苯吸附越少;通过与活性炭在有水与无水时对苯吸附量的对比发现,活性炭表面含氧基团与水的作用,对活性炭吸附苯有重要的影响:当活性炭表面有较多的羧酸基团时,乙腈介质中的水与表面羧酸基团的作用较强,减小了苯的吸附;由于醋酸介质对苯与水的混合物的溶解较好,而乙腈介质对苯与水的混合物溶的解较差,在乙腈介质中活性炭对苯的吸附高于醋酸介质中。另外,对活性炭处理前后的Boehm滴定和BET测定结果表明,硝酸氧化处理活性炭可在表面生成较多的羧酸基团,而空气处理活性炭则在一定范围内可使活性炭比表面增加。
     利用活性炭载铁催化剂,对几种典型取代芳烃底物进行了一步直接羟基化反应研究,使用红外光谱和核磁对产物作了进一步确认。实验结果发现,载铁活性炭在30℃左右的温和条件下,对所选择的几种典型芳烃底物的芳环羟基化反应具有良好的活性,对底物苯转化率为19.6%,产物苯酚收率为17.6%,选择性为89.8%;与苯的转化率相比,载铁活性炭催化剂催化含给电子取代基的底物甲苯、乙基苯、对二甲苯、苯甲醚和二苯甲醚等时,底物转化率增加,分别为29.1%、20.1%、19.8%、39.4%和48.5%,生成邻、对位羟基化产物(对二甲苯除外);而载铁活性炭催化剂催化吸电子取代基的底物氯苯、苯乙酮、二苯甲酮、硝基苯和苯甲酸等时,底物转化率比苯的转化率降低,分别为9.0%、9.0%、10.6%、4.5%和4.2%,除氯苯、苯甲酸外,均生成邻、间、对位羟基化产物,但主要是邻位羟基化产物。对反应结果的进一步发现分析,载铁活性炭催化剂对所选的几种典型芳环底物的催化羟基化反应还具有以下特点:
     1)较好的芳环羟基化选择性:催化羟基化甲苯、乙基苯和对二甲苯三个芳烃底物除了得到较高的底物转化率外,还得到了较高的环羟基化选择性,分别达到了90.8、73.0和63.4%;
     2)邻位羟基化选择性:当芳环取代基上具有特定的能与催化剂Fe配位的基团如-OCH3、-OPh、-Cl-COCH3、-COPh、-NO2和-COOH等时,反应具有邻位选择性,主要生成邻位羟基化产物,甚至全部生成邻位羟基化产物;
     3)空间位阻效应:当以底物二苯甲醚和二苯甲酮取代底物苯甲醚和苯乙酮进行催化羟基化反应时(即以空间位阻较大的-OPh和-COPh基团取代空间位阻较小-OCH3和-COCH3底物进行催化羟基化反应时),反应的邻位羟基化选择性下降,分别由苯甲醚的100%下降到二苯甲醚的50.1%、苯乙酮的78.9%下降到二苯甲酮的44.3%。
     对产物生成情况的进一步分析发现:载铁活性炭催化剂催化芳环的反应是一个按亲电机理进行的反应,而不是自由基反应,在文献结果的基础之上,我们推测了活性炭羟基化芳环的机理,并试着对催化剂具有的邻位选择性和空间位阻效应进行了合理的解释。
     改变溶剂、温度和过氧化氢用量等条件,用活性炭载铁催化剂催化羟基化甲苯、苯乙酮和苯,进行了催化反应的条件优化。结果表明,溶剂对催化反应有较大的影响,催化剂在乙腈反应介质中具有较好的催化活性,在乙酸介质中次之;较好的反应温度在30℃左右,当温度低于15℃时,催化剂活性较低,高于45℃的温度对羟基化反应也不利;过氧化氢与底物的摩尔比在5.0左右是合适的比例;在优化条件下:甲苯转化率达到28.1%,产物甲酚收率为22.9%,其中邻、对位甲酚的收率分别达到14.2和8.7%,生成甲酚的选择性为80.8%;苯乙酮的转化率为10.7%,生成邻羟基苯乙酮收率为7.7%,选择性为72%(其余产物为1.9%的间羟基苯乙酮,1.1%的对羟基苯乙酮);苯的转化率为19.6%,苯酚的产率为17.9%,选择性为89%。
     此外,还考察了硝酸氧化处理活性炭载体对催化剂活性的影响,结果表明:硝酸氧化处理活性炭增加表面羧酸基团,因此增加催化剂的活性。
Phenols are one kind of fundamental compounds, and widely used as intermediates for the synthesis of drugs, polymers, pesticides, etc. However, most of phenols are currently manufactured via multi-step processes. In addition, some processes for phenol production are resource wasteful and environmentally pollutive. The directly selective oxidation of aromatics to phenols over catalyst is atom economically efficient and in good agreement with the view point of green chemistry, thus has been payed an increasing interest. Further more, the selective oxidation of aromatics to phenols is also one of the important subjects that deserve detailed investigation because of the following reasons. Firstly, it involves the activation of C-H bond on aromatic ring, which is much difficult among activation of C-H bond on all the organic compound. Secondly, the regio-selectivity of hydroxylation on substituted aromatics is not easy to be controlled, for there are three sites (o-,m-,p-) could be hydroxylated on ring of substituted aromatics. Thirdly, in the oxidation of aromatic hydrocarbons, the higher bond energy of aromatic C–H bonds (435 kJ mol?1 for benzene) compared to aliphatic ones (typically, 380–415 kJ mol?1) made the hydroxylation of aromatic ring even more difficult than the side chain substituted groups. In the present work, the direct catalytic hydroxylation of aromatic ring was studied. The interaction between the surface oxygen groups on activated carbon and the supported iron species was investigated. The hydroxylation of a series of typical aromatics was also investigated. The possible mechanism for the hydroxylation of aromatics was discussed and the reaction conditions for the hydroxylation of benzene, toluene and acetophone were optimized.
     A series of Fe-based catalysts was prepared by impregnating activated carbon in the aqueous solution of ferric sulfate. These catalysts were employed to the hydroxylation of benzene to phenol using hydrogen peroxide as the oxidant. The Fe/Activated Carbon catalyst were characterized by BET, adsorption of benzene, XRD and XPS. It was found that ferric species were mainly anchored on activated carbon via its interaction with surface carboxylic oxygen group. These supported ferric species was found catalytically active for the hydroxylation of benzene to phenol. The interaction between the surface carboxylic oxygen group and iron species was responsible for the synergistic effect of activated carbon for the hydroxylation of benzene to phenol.
     The adsorption capacity of benzene on activated carbons (ACs) born different textures and oxygen species was also studied in acetonitrile or acetic acid media in the presence or absence of water. The AC samples were pretreated by nitric acid or air to change the distribution of surface oxygen groups. It was found that the amount of benzene adsorbed on the pretreated samples was dependent on the distribution of surface oxygen groups and the media employed. Acetonitrile solvent favored benzene adsorption, in comparison to acetic acid solvent in both water and water–free solutions. The adsorption capacity of benzene decreased with the increase of the amount of carboxylic groups on ACs in both acetonitrile and acetic acid media.
     The Fe/Activated Carbon catalyst was further used for the hydroxylation of several typical substituted aromatics. The results showed that the Fe/Activated Carbon catalyst was effective for the hydroxylation of aromatics and the ring oxidation was predominant for all the substrates studied. Only trace amount of side chain oxidation was observed except xylene. The selectivity to ring oxidation was much greater and the reaction conditions were much milder than those reported previously. A comparison of the conversions revealed that electron-donating substituents (-CH3, -CH2CH3, -OCH3, -O-Ph ) increased the conversion of the substrates, while electron-withdrawing substituents (-Cl, -NO2, -CO-Ph, -COOH, -COCH3) decreased the conversion. The incease of yields from benzene to Ph-O-Ph could be attributed to the electron-donating ability. For electron-donating group substituted aromatics, except anisole, ortho- and para-substituent products were generally detected with almost equivalent selectivties, indicating an electrophilic character of the reaction. The faint difference in selectivity could be ascribed to steric hindrance. Thus it could be considered that the reaction goes through iron-oxo complexes mechanism (electrophilc mechanism). It is found that when electron-withdrawing group substituted aromatics were used as the substrates in this catalytic system, only a small amount of or even no meta- hydroxylated products were obtained while ortho- hydroxylated products were predominant with a small amount of para- hydroxylated products. For benzoic acid and anisole, only ortho- hydroxylated products were obtained in spite of the electron-donating or electron- withdrawing ability of the substituents. These data could not be explained by the reported electrophilic mechanism. An examination of the structure of these substrates indicated that the substituent contained at least one atom (O or Cl ) capable of coordinating to the FeIII. Thus a new mechanism involving the coordination of the substituent to the active site of the catalyst was tentatively proposed. The formation of 5 or 6 number ring with the catalyst allowed only the ortho- position to occur the hydroxylation. That is to say, the reaction bore also electrophilic character, which explained the decrease of substrate conversion. Thus the hydroxylation of substituted aromatics might be dominated by the competition between the two mechanisms mentioned above, while the electron-donating or electron-withdrawing character and the steric hindrance of the substituents played important roles for the activity and selectivity.
     The selective partial oxidation of toluene to cresols was also studied using Fe/Activated Carbon catalyst and the reaction conditions were optimized. BET and X-ray photoelectron spectroscopies (XPS) methods were used to characterize the catalysts. A toluene conversion of 28.1 % and a yield of 22.7 % with a selectivity of 80.8 % to cresols were obtained under optimized conditions: 303K, atmospheric pressure in acetonitrile medium. It was found that the pretreatment of activated carbon by nitric acid was favorable to the catalytic performance of the finished catalysts, and this effect was ascribed to the increase of surface carboxylic oxygen group on activated carbon with which ferric species might be anchored properly to provide active phases for the hydroxylation of toluene.
     Similar optimized conditions were obtained for the hydroxylation of acetophone and benzene. For the hydroxylation of acetophone, the yield of o-hydroxyl-acetophone was 7.7% with a acetophone conversion of 10.7% and a selectivity of 72% to o-hydroxyl-acetophone. For the hydroxylation of benzene, a benzene conversion of 19.6 %, a phenol yield of 17.5% with a selectivity of 89.3% was obtained under optimized conditions: 303K, atmospheric pressure, and using acetonitrile as the solvent.
引文
1 邢其毅,徐瑞秋,周政. 基础有机化学,北京,高等教育出版社,1983,734.
    2 锦西化工厂. 磺化碱熔法合成苯酚,北京,石油化工出版社,1978.
    3 杨华. 精细化工原料及中间体,2005,(8,25.
    4 吕咏梅. 化工文摘,2001,(11),24.
    5 吕咏梅. 邻甲酚生产与发展,浙江化工,2002,33,31.
    6 向东,肖明. 石油化工技术经,2006,(3),39.
    7 李晓平. 化工中间体,2006,(11),13.
    8 胡斌. 化工中间体,2001,(14), 12.
    9 梁诚. 染料工业,2001, 38(5), 17.
    10 G. Vidyasagar, V.V. Rao. GR 2162756,1972.
    11 Y. Osada, T. Konoshi. JP 03151339,1991.
    12 R.T. 莫里森,R N 博伊德 著,賀孝雍译. 有机化学(下),第四版,世界图书出版公司,1994,1165.
    13 JP 0421654,1992.
    14 B.M. 罗基奥洛夫等著,马玉甲等译. 中间体及染料化学实验指导,高等教育出版社,1955,130.
    15 段长强,孟庆芳,张泰 等编. 现代化学试剂手册,第一分册,化学工业出版社,1988,393.
    16 朱伟,肖国民. 精细与专用化学品,2005,13(8),13-14.
    17 罗杰, 牟莉娟, 蒋文伟. 化学世界,2001,(10),536.
    18 牟丽娟. 精细石油化工, 1999,(2), 20.
    19 H.C. Wang, C.C. Xu, D.L. Zhang, Chem.Eng. Proc., 1998, 3, 25.
    20 H. Yang, Fine Materal. & Intermediates,2005,(8),25.
    21 D. Ji, L.Yan, T. Ren, J.S. Suo, J. Mol. Catal. 2004,18(3,198.
    22 V.R. Komandur,Chary; K. Ramesh, G. Vidyasagar, V.V. Rao, J. Mol. Catal. A: Chem. 2003,198,195.
    23 K. Sreekumar, S. Sugunan, J. Mol. Catal. A: Chem. 2002, 185, 259.
    24 吕咏梅. 化工文摘,2001,(11),24.
    25 吕咏梅. 邻甲酚生产与发展,浙江化工,2002,33,31.。
    36 梁诚. 精细化工原料及中间体 2003,(3),26.
    27 Umeno, Masayuki,Tomomi. JP 6212732, 1985.
    28 H.K. Matralis, C. Papadopoulou, C. Kordulis. Appl. Catal. A, 1995, 126, 365.
    29 J. Miki, Y. Osada, T. Konoshi. Appl. Catal. A, 1996, 137, 93.
    31 陈 彤,付真金,祝良芳,刘雪奇,胡常伟,田安民. 石油化工,2003, 32(6), 530.
    32 简敏. 四川大学硕学位论文,钒羧盐直接催化氧化羟基化苯合成苯酚的研究,2006.
    33 付真金,陈彤,余天华,胡常伟,田安民. 天然气化工, 2003,28,14.
    34 M. Jian, L. Zhu, J. Wang, J. Zhang, G. Li, C. Hu. J. Mol. Catal. A, Chem.,2006, 253, 1.
    35 S. Niwa,M. Eswaramoorthy,J. Nair. Science,2992,295,105
    36 B. Lücke, K.V. Narayana, A. Martin, K. J?hnisch, Adv. Synth. Catal., 2004,346, 1407.
    37 J. Zhang, Y.Tang, G. Li, C. Hu, Appl. Catal., 2005,278,251.
    38 L. Balducci, D. Bianchi, R. Bortolo, R. D’Aloisio, M. Ricci, R.Tassinari, R. Ungarelli. Angew. Chem. Int. Ed., 2003,42,4937.
    39 B. Lücke, K.V. Narayana, A. Martin, K. J?hnisch. Adv. Synth. Catal., 2004, 346, 1407.
    40 任永利,王莅,张香文. 化学进展,2003,15(5),420
    41 M. Bahidsky, M. Hronec. Catalysis Today, 2005, 99, 187.
    42 A. Costine, T. O’Sullivan, B.K. Hodnett. Catalysis Today,2005,99,199.
    43 D. Bianchi, R. Bortolo, R.Tassinari, M. Ricci, R. Vignola. Angew. Chem., 2000,112, 4491.
    44 D. Bianchi, M. Bertoli, R. Tassinari. J. Mol. Catal. A, Chem., 2003, 204–205, 419.
    45 R. Burch, C. Howitt. Appl. Catal. A, 1992, 86,139.
    46 季东,任通,张小明,闫亮,索继栓. 化学进展,2003,15,903.
    47 M. Iwamato,J. Hirata, K. Matsukaml.J. Phy. Chem., 1983, 87, 903.
    48 T. Ren, L. Yan, X. Zhang, J. Suo. Appl. Catal. A, 2003, 244, 11.
    49 J. Hirata. Fr.2630735, 1998.
    50 M.H. Sachtler. USSR.1805127, 1996.
    51 E.Suzuki,K.Nakashiro. Chem.Lett., 1988, 953.
    52 G.I.Panov, A.S.Kharitonov,V.I.Soboev. Appl. Catal. A, 1993, 98, 1.
    53 V.I.Soboev, A.S.Kharitonov,Y.A.Paukshtis. J Mol. Catal. A, Chem., 1993, 84, 117.
    54 V.I.Soboev, G.I.Panov, A.S.Kharitonov. J. Catal., 1993, 139, 435.
    55 J.Jia, K.S. Pillai, W.M.H. Sachtler. J. Catal., 2004, 221, 119.
    56 G.I. Panov, A.K. Uriarte, M.A. Rodkin, V.I. Sobolev, Catal. Today, 1998,41, 365.
    57 季东,闫亮,任通,索继栓. 分 子 催 化,2004, 18(3), 198.
    58 张祥富,时效天. 合成化学,1998,6,433.
    59 熊海, 石峰, 邓友全. 催化学,2004,25,887.
    60 易清风,于站良,范敏,蒋庆来,刘小平,周秀林. 应用化学,2004,21,292.
    61 G. A. Hamilton, J. W. Hanifin, J. P. Friedman, J. Am. Chem. Soc., 1966, 92,5269.
    62 C.Walling, R.Johnson. J. Am. Chem. Sos., 1975, 97,363.
    63 M.A.Brook, L.Castle, R. Higgins, K. Morris. J. Chem. Sos.Perkin Trans II, 1982, 97, 687.
    64 M. Bianch, M. Bonchio, V. Conte, F. Coppa, F. D. Furia, G. Modena, S. Moro, S. Standen. J. Mol. Catal. A: Chem. 1993, 83, 107。
    65 D. T. Sawyer, A. Sobkowiak, T. Matsushita. Acc. Chem. Res., 1996, 29, 409.
    66 J. P. Hage, A. Llobet, D. T. Sawyer, Bioorg. Med. Chem. Lett., 1995, 3, 1383.
    67 V. Balland, D. Mathieu, N. Pons-Y-Moll, J. Mol.Catal. A: Chem., 2004, 215, 81.
    68 J. F. Bartoli, F. Lambert, I. Morgenstern-Badarau, P. Battioni, D. Mansuy. C. R. Chimie, 2002, 5, 263.
    69 E. A. Karakhanov, T.Y. Filippova, S. A. Martynova, A. L. Maximov, V. V. Predeina, I. N. Topchiva. Catal. Today, 1998, 44, 189.
    70 L. Balducci, D. Bianchi, R. Bortolo, R. D’Aloisio, M. Ricci, Tassinari, R. Ungarelli. Angew. Chem. Int. Ed., 2003, 42, 4937.
    71 D. Bianchi, M. Bertoli, R. Tassinari, M. Ricci, R. Vignola. J. Mol. Catal. A: Chem., 2003, 204–205, 419.
    72 M. E. Kurz, G. J. Johnson. J. Org. Chem., 1971, 36, 3184.
    73 R. Kumar, A. Bhaumik. Microporous Mesoporous Mater., 1998, 21, 497.
    74 N.K. Mal, A.V. Ramaswamy. Applied Catalysis A: General, 1996, 43, 75.
    75 K. Bahranowski, M. Gasior, A. K.ielski, J. Podobinski, E. M. Serwicka, L. A. Vartikian, K. Wodenicka. Clay Miner., 1999, 34, 79.
    76 K. Bahranowski, R. Dula, M. Gasior, M. Labanowska, A. Michalik, L. A. Vartikian, E. M. Serwicka, Appl. Clay Sci., 2001, 18, 93.
    77 a)D. Dumitriu, R. Barjega, L.Frunza, D.Macovei, T. Hu, Y. Xie, V.I. Parvulescu, S. Kaliaguine. J. Catal., 2003, 219, 337. B)H.H. Monfared, Z. Amouei. J. Mol. Catal. A: Chem., 217(2004) 161.
    78 T. H. Bennur, D. Srinivas, S. Sivasanker. J. Mol. Catal. A: Chem., 2004, 207, 163.
    79 S. Velu, N. Shah, T.M. Jyothi, S. Sivasanker. Micropor. Mesopor.Mater.1999, 33, 61.
    80 A.P. Singh, T. Selvam. J. Mol. Catal. A 1996, 113, 489.
    81 A. Tuel, Y. Ben Taarit. Appl. Catal. A 1993, 102, 201.
    82 C. Walling,R. A. Johnson. J. Am. Chem. Soc., 1975, 97, 363.
    83 S. N. Massie. US 3692842, 1972.
    84 S. N. Massie. US 3662006, 1972.
    85 D. T. Sawyer, A. Sobkowiak, T. Matsushita. Acc. Chem. Res., 1996, 29, 409.
    86 M. Bianch, M. Bonchio, V. Conte, F. Coppa, F. D. Furia, G. Modena, S. Moro, S. Standen. J. Mol. Catal. A: Chem., 1993, 83, 107.
    87 R. Kumar, A. Bhaumik. Microporous Mesoporous Mater., 1998, 21, 497.
    88 E. A. Karakhanov, T. Y. Filippova, S. A. Martynova, A. L. Maximov, V. V. Predeina, I. N. Topchiva. Catal. Today, 1998, 44, 189.
    89 K. Bahranowski, M. Gasior, A. Kielski, J. Podobinski, E. M.Serwicka, L. A.Vartikian, K. Wodenicka. Clay Miner. 1999, 34, 79.
    90 K. Bahranowski, R. Dula, M. Gasior, M. Labanowska, A. Michalik, L. A. Vartikian, E. M. Serwicka. Appl. Clay Sci., 2001, 18, 93.
    91 D. Bianchi, R. Bortolo, R. Tassinari, M. Ricci, R. Ignola. Angew. Chem., 2000, 112, 4491.
    92 S. Niwa, M. Eswaramoorthy, J. Nair, A. Raj, N. Itoh, H. Shoji, T. Namba, F. Mizukami. Science, 2002, 295, 105.
    93 J. F. Bartoli, F. Lambert, I. Morgenstern-Badarau, P. Battioni, D. C. Mansuy. R. Chimie, 2002, 5, 263.
    94 S. L. H. Rebelo, M. M. Q. Sim?es, P. M. S. Neves, A. S. Cavaleiro. J. Mol. Catal. A: Chem., 2003, 201, 9.
    95 L. Balducci, D. Bianchi, R. Bortolo, R. D’Aloisio, M. Ricci, R. Ungarelli. Angew. Chem. Int. Ed., 2003, 42, 4937.
    96 T. H. Bennur, D. Srinivas, S. Sivasanker, J. Mol. Catal. A: Chem., 2004, 207, 163.
    97 B. Lücke, K. V. Narayana, A. Martin, K. J?hnisch. Adv. Synth. Catal., 2004, 346, 1407.
    98 D. Dumitriu, R. Barjega, L. Frunza, D. Macovei, T. Hu, Y. Xie, Parvulescu, V. Balland, D.Mathieu. J. Mol.Catal. A: Chem., 2004, 215, 81.
    99 S. Kaliaguine. J. Catal. 2003, 219, 337.
    100 H. H. Monfared, Z. Amouei. J. Mol. Catal. A: Chem. 2004, 217, 161.
    101 A. Costine, T. O’Sullivan, K. B. Hodnett. Catal. Today, 2005, 99, 199.
    102 D. Bianchi, M. Bertoli, R. Tassinari, M. Ricci. J. Mol. Catal. A: Chem. 2003, 204–205, 419.
    103 M. Bahidsky, M. Hronec. Catal. Today, 2005, 99, 187.
    104 J. H. Merz, W. A. Waters. J. Chem. Soc., 1949, 2427.
    105 C. Walling. Acc. Chem. Res., 1998, 31, 155.
    106 M. A. Brook, L. Castle, R. Higgins, K. Morris. J. Chem. Soc. Perkin TransII 1982, 97, 687.
    107 G. A. Hamilton, J. W. Hanifin, J. P. Friedman. J. Am. Chem. Sos., 1966, 92,5269.
    108 M. Bianch, M. Bonchio, V. Conte, F. Coppa, F. D. Furia, G. Modena, S. Moro, S. Standen, J. Mol. Catal. A: Chem., 1993, 83, 107.
    109 D. T. Sawyer, A. Sobkowiak, T. Matsushita. Acc. Chem. Res., 1996, 29, 409.
    110 J. P. Hage, A. Llobet, D. T. Sawyer. Bioorg. Med. Chem. Lett., 1995, 3, 1383.
    111 M. Bianch, M. Bonchio, V. Conte, F. Coppa, F. D. Furia, G. Modena, S. Moro, S. Standen. J. Mol. Catal. A: Chem., 1993, 83, 107.
    112 D. R. Barton, F. Launay. Tetrahedron, 1998, 54, 3379.
    113 K. Chen, Jr. Que. Am. Chem. Soc., 2001, 123, 6327.
    114 K. Chen, M.Costas, J. Kim, A. K. Tipton, L. Que. J. Am. Chem. Soc., 2002, 124, 3026.
    115 解强,边炳鑫著. 煤的炭化过程控制理论及其在煤基活性炭制备中的应用,中国矿业大学出版社,2002.
    116 立本英楼,安部郁夫(日)主编;高尚愚译编.活性炭的应用技术:其维持管理及存在问题,东南大学出版社(南京),2002.
    117 北川睦夫[日],丁瑞芝等译. 活性炭处理水的技术和管理,新时代出版社,1987
    118 H.P. Boehm. Carbon, 2002, 40, 145.
    119 H.P. Boehm, E. Diehl, W. Heck, R. Sappok, Angew. Chem. Int. Ed., 1964, 3, 669.
    120 张进,博士学位论文,四川大学,2005.
    121 D. Suarez, J. A. Menendez, E. Fuente, M. A. Montes-Moran. Langmuir, 1999, 15(11), 3897.
    122 王鹏,张海禄. 炭素技术,2003,(3),23.
    123 范延臻,王宝贞. 煤炭转化,活性炭表面化学,2000,23(4),26.
    124 G.Nanse, E. Papirer, P. Fioux,et al.. Carbon, 1997, 35(2), 175.
    125 R. Richner, S. Muller, A. Wokaun. Carbon, 2002, 40, 307.
    126 C. Zhao, L. Ji, H. Liu, G. Hu, S. Zhang,M. Yang, Z, Yang. J. Solid State Chem., 2004, 177, 4394.
    127 Q. Liu, J.R. Wijn, K. Groot, C. A. Blitterswijk. Biomaterials,1998, 19, 1067.
    128 G. Wei , K. Shirai, K. Fujiki, H. Saitoh. Carbon,2004, 42, 1923.
    129 Carlos Moreno-Castilla. Carbon, 2004, 42, 83.
    130 范延臻,王宝贞,王琳,余敏. 环境化学,2001,215, 437.
    131 I. I. Salame, T. J. Bandosz. J. Colloid Interface Sci., 2003, 264, 307.
    132 H. Tamon, M. Okazaki. J. Colloid Interface Sci., 1996, 179, 181.
    133 M. Franz1, H. A. Arafat, N. G. Pinto. Carbon, 2000, 38, 1807.
    134 F. Figueiredo, M. F.R. Pereira, M. M. A. Freitas, J. J. M. Orfao. Carbon, 1999, 37, 379.
    135 A. Leilke, K. J. Huttinger, W. P. Hoffman. Carbon, 1996, 34, 983.
    136 范延臻,王宝贞,王琳,余敏. 环境化学,2001,215,37.
    137 厉悦, 李湘洲, 刘敏. 林产化工通讯,2004,38(5),14.
    138 王鹏,张海禄. 炭素技术,2003,3,23.
    139 杨明平, 付勇坚, 黄念东. 材料保护,004,37(9 ),44.
    140 [日]炭素材料学会 编著,高尚愚,陈维译. 活性炭的基础与应用,中国林业出版社出版,第一版,北京:1984。
    141 J. S. Choi, T. H. Kim, K.Y.Choo, J. S. Sung, Saidutta, B. Ramachandra, M.B. Ryu, S. D. Song, Y. W. Rhee. Appl. Catal. A: Genreal, 2005, 290, 1.
    142 郏其庚,罗启云,郑国炉 编. 活性炭的应用,华东理工大学出版社,2002.
    143 F. Rodríguez-Reinoso. Carbon,1998,36(3),159.
    144 I. F. Silva, J. Vital, A. M. Ramos, H. Valente, A. M. Botelho Do Rego, M. J. Reis. Carbon, 1998,36,1159.
    145 C. Pinel, E. Landrivon, H. Lini, P. Gallezot. J. Catal., 1999, 182, 515.
    146 A. Pigamo, M. Besson, B.Blanca, P. Gallezota, A. Blackburn , E. Crezee ,O. Kozynchenko, S. Tennison , F. Kapteijn .Carbon, 2002, 40, 1267.
    147 彭会清,胡海祥,赵根成,胡海宾. 炭素技术,2003,129,31.
    148 F. Rodríguez-Reinoso. Carbon, 1998, 36 (3), 159.
    149 L.Solano, F.Rodríguez-Reinoso, L. Salinas, et al.. Carbon, 1980, 20, 177.
    150 M. Gullon, A. Prado-Burguete, F. Rodríguez-Reinoso. Carbon, 1993,31, 1099.
    151 J. Laine, F. Severino, M. Labady. J. Catal., 1994, 147, 355.
    152 J. Laine, F. Severino, M. Labady, S. Yunes. J. Catal., 1997, 166, 384.
    153 周桂林, 蒋毅, 吕绍洁, 李子健, 邱发礼. 燃料化学学报, 2005, 33(2), 361.
    154 H. Jin. Carbon, 1996, 34 (3), 429.
    155 F. Derbyshire, V. H. Beer, G. M. Abotsi,etal.. Appl. Catal., 1986, 27, 117.
    156 C.Prado-Burguete,A.Linares-Solao, F.Rodríguez-Reinoso, et al.. 1989, 115, 98.
    157 C. Prado-Burguete,A.Linares-Solao, F. Rodríguez-Reinoso, et al.. 1991, 128, 397.
    158 R. Reinoso,S. M. Lecea, S. Escribano. Catal.Today, 1990, 7, 287.
    159 梅华,胡成刚,刘晓勤,姚虎卿. 新型炭材料, 2002, 17(4), 33.
    160 A. Erhan Aksoylu, M. Madalena, A. Freitas, M. Fernando R. Pereira. Carbon, 2001, 39, 175.
    161 Y. F. Jia, C. J. Steele, I. P. Hayward, K. M. Thomas. Carbon, 1998, 36, 1299.
    162 J. M. Solar, C. A.. Leon, L. R. Radovic, et al.. Carbon, 1991, 28, 369.
    163 C. A. Leon, J. M. Solar, L. R. Radovic, et al.. Carbon, 1992, 29, 797.
    164 R. W. Wunder, J. W. Phillips, L. R. Radovic, et al. Langmuir, 1993, 154, 299.
    165 A. S. Dastgheib, A. D. Rockstraw. Carbon, 2002, 40, 1843.
    166 F. Coloma, J. L. Fierro, F. Rodríguez-Reinoso. Langmuir, 1994, 10, 750.
    167 F. Coloma, A. Sepulveda-Escribano, F. Rodríguez-Reinoso. J. Catal., 1995, 154, 299.
    168 F. Coloma, A. Sepulveda-Escribano, F.Rodríguez-Reinoso. Appl. Catal. A: Gen, 1997, 150, 165.
    169 韩文锋, 赵波, 霍超, 刘化章. 催化学报, 2004, 25(3), 194.
    170 V. H. Beer, C. K. Groot, R. Prins, et al. Fuel, 1984, 63, 1095.
    171 A. V. Scaroni, R. G. Jenkins, P. L. Walker. Appl. Catal., 1985, 14, 173.
    172 E. Auer, A. Freund, J. Pietsch, T. Tacke. Appl.Catal.A: General,1998, 259, 313.
    173 A. Erhan Aksoylu, M. Madalena A. Freitas, Jose L. Figueiredo. Applied Catalysis A: General,2002, 192, 29.
    174 F. B. Passos, D. A. G. Aranada, M. Schmal. J. Catal., 1998,178,474.
    175 Z. Paal. Catal.Today,1998,2,595.
    1 A. E. Aksoylu, M. Madalena, A. Freitas, M. R. Pereira, J. L. Figueiredo. Carbon, 2001, 39, 175.
    2 J. S. Choi, T. H. Kim, K.Y. Choo, J. S. Sung, M. B. Saidutta, S.O. Ryu, S. D. Song, B. Ramachandra, Y.W. Rhee. Appl. Catal. A: Genreal, 2005, 290, 1.
    3 J. S. Choi, M. B. Saidutta, S. D. Song, Y. W. Rhee. J. Porous Material, 2005, 12, 30.
    4 Carlos Moreno-Castilla. Carbon,2004,42,83.
    5 I.I.Salame, T. J. Bandosz. J. Colloid Interface Sci.,2003,264,307.
    6 H. Tamon, M. Okazaki. J. Colloid Interface Sci.,1996,179,181.
    7 H. Nur, H. Hamid, S. Endud, H. Hamdan, Z. Ramli. Mater.Chem.Phys. 2006, 96, 337.
    8 U. Zielke, K. J. Hottinger, W. P. Hofffman. Carbon, 1996, 34, 983.
    9 C. Moreno-Castilla, M. V. Lòpez-Ramòn, F. Carrasco-Marin, Carbon, 2000, 38, 1995.
    10 Z. H. Huang, F. Kang , Y. P. Zheng, J. B. Yang, K. M. Liang. Carbon, 2002, 40, 1363.
    11 S. Biniak,J. Szymanski, J. Siedlewski, A. Sviatkowski. Carbon, 1997, 35(12), 1799.
    12 F. Rodríguez-Reinoso. Carbon,1998,36 (3),159.
    13 万晔,严川伟,屈庆,史志明,曹楚南. 物理化学,2002,18, 156.
    14 H. P. Boehm. Carbon, 2002, 40, 145.
    15 H.P. Boehm, E. Diehl, W. Heck, R. Sappok. Angew. Chem. Int. Ed. 1964, 3, 669.
    16 Y. El-Sayed, T. J. Bandosz. J. Colloid and Interface Sci., 2004, 273, 64.
    17 I. I. Salame, T. J. Bandosz. J. Colloid and Interface Sci., 2003, 264, 307.
    18 F. Figueiredo, M. F. R. Pereira, M. M. A. Freitas, J. J. M. Orfao. Carbon, 1999, 37, 379.
    19 A.Leilke, K.J. Huttinger, W.P. Hoffman. Carbon, 1996, 34, 983.
    20 B. Marchon, J. Carrazza, H. Heinemann, G.A.Somorjai. Carbon, 1988, 26, 507.
    21 Y. Otake, R. G. Jenkins. Carbon, 1993, 31, 109.
    22 Q. L. Zhuang, T. Kyotany, A.Tomita. Energy and Fuels, 1994, 8, 714.
    23 T. Tomohiko,Y. J. Seo, G. Shigeo. J. Mol. Catal., 1993, 78, 201.
    24 D. T. Sawyer, A. Sobkowiak, T. Matsushita. Acc. Chem. Res., 1996, 29, 409.
    25 V. Balland, D. Mathieu, N. Pons-Y-Moll. J. Mol.Catal. A: Chem., 2004, 215, 81.
    26 J. P. Hage, A. Llobet, D. T. Sawyer. Bioorg. Med. Chem. Lett. 1995, 3, 1383.
    27 D. Bianchi, M. Bertoli, R. Tassinari, M. Ricci, R. Vignola. J. Mol. Catal. A: Chem., 2003, 204–205, 419.
    28 黄正宏,许德平,康飞宇,郝吉明. 新型炭材料, 2004, 19, 229.
    1 C. Walling,R. A. Johnson. J. Am. Chem. Soc., 1975, 97, 363.
    2 S. N. Massie. US 3692842, 1972.
    3 S. N. Massie. US 3662006, 1972.
    4 D. T. Sawyer, A. Sobkowiak, T. Matsushita. Acc. Chem. Res., 1996, 29, 409.
    5 M. Bianch, M. Bonchio, V. Conte, F. Coppa, F. D. Furia, G. Modena, S. Moro, S. Standen. J. Mol. Catal. A: Chem., 1993, 83, 107.
    6 R. Kumar, A. Bhaumik. Microporous Mesoporous Mater., 1998, 21, 497.
    7 E. A. Karakhanov, T. Y. Filippova, S. A. Martynova, A. L. Maximov, V. V. Predeina, I. N. Topchiva. Catal. Today, 1998, 44, 189.
    8 K. Bahranowski, M. Gasior, A. Kielski, J. Podobinski, E. M.Serwicka, L. A. Vartikian, K. Wodenicka. Clay Miner. 1999, 34, 79.
    9 K. Bahranowski, R. Dula, M. Gasior, M. Labanowska, A. Michalik, L. A. Vartikian, E. M. Serwicka. Appl. Clay Sci., 2001, 18, 93.
    10 D. Bianchi, R. Bortolo, R. Tassinari, M. Ricci, R. Ignola. Angew. Chem., 2000, 112, 4491.
    11 S. Niwa, M. Eswaramoorthy, J. Nair, A. Raj, N. Itoh, H. Shoji, T. Namba, F. Mizukami. Science, 2002, 295, 105.
    12 J. F. Bartoli, F. Lambert, I. Morgenstern-Badarau, P. Battioni, D. C. Mansuy. R. Chimie, 2002, 5, 263.
    13 S. L. H. Rebelo, M. M. Q. Sim?es, P. M. S. Neves, A. S. Cavaleiro. J. Mol. Catal. A: Chem., 2003, 201, 9.
    14 L. Balducci, D. Bianchi, R. Bortolo, R. D’Aloisio, M. Ricci, R. Ungarelli. Angew. Chem. Int. Ed., 2003, 42, 4937.
    15 T. H. Bennur, D. Srinivas, S. Sivasanker, J. Mol. Catal. A: Chem., 2004, 207, 163.
    16 B. Lücke, K. V. Narayana, A. Martin, K. J?hnisch. Adv. Synth. Catal., 2004, 346, 1407.
    17 D. Dumitriu, R. Barjega, L. Frunza, D. Macovei, T. Hu, Y. Xie, Parvulescu, V. Balland, D.Mathieu. J. Mol.Catal. A: Chem., 2004, 215, 81.
    18 S. Kaliaguine. J. Catal. 2003, 219, 337.
    19 H. H. Monfared, Z. Amouei. J. Mol. Catal. A: Chem. 2004, 217, 161.
    20 A. Costine, T. O’Sullivan, K. B. Hodnett. Catal. Today, 2005, 99, 199.
    21 D. Bianchi, M. Bertoli, R. Tassinari, M. Ricci. J. Mol. Catal. A: Chem. 2003, 204–205, 419.
    22 M. Bahidsky, M. Hronec. Catal. Today, 2005, 99, 187.
    23 J. H. Merz, W. A. Waters. J. Chem. Soc., 1949, 2427.
    24 C. Walling. Acc. Chem. Res., 1998, 31, 155.
    25 M. A. Brook, L. Castle, R. Higgins, K. Morris. J. Chem. Soc. Perkin TransII 1982, 97, 687.
    26 G. A. Hamilton, J. W. Hanifin, J. P. Friedman. J. Am. Chem. Sos., 1966, 92, 5269.
    27 M. Bianch, M. Bonchio, V. Conte, F. Coppa, F. D. Furia, G. Modena, S. Moro, S. Standen, J. Mol. Catal. A: Chem., 1993, 83, 107.
    28 D. T. Sawyer, A. Sobkowiak, T. Matsushita. Acc. Chem. Res., 1996, 29, 409.
    29 J. P. Hage, A. Llobet, D. T. Sawyer. Bioorg. Med. Chem. Lett., 1995, 3, 1383.
    30 M. Bianch, M. Bonchio, V. Conte, F. Coppa, F. D. Furia, G. Modena, S. Moro, S. Standen. J. Mol. Catal. A: Chem., 1993, 83, 107.
    31 D. R. Barton, F. Launay. Tetrahedron, 1998, 54, 3379.
    32 K. Chen, Jr. Que. Am. Chem. Soc., 2001, 123, 6327.
    33 K. Chen, M.Costas, J. Kim, A. K. Tipton, L. Que. J. Am. Chem. Soc., 2002, 124, 3026.
    1 梁诚. 中国石油和化工经济分析,2003,(10),38.
    2 杨华. 精细化工原料及中间体,2005,(8),25.
    3 吕咏梅. 化工文摘,2001,(11),24.
    4 吕咏梅. 邻甲酚生产与发展,浙江化工,2002,33,31.。
    5 梁诚. 精细化工原料及中间体 2003,(3),26.
    6 D. Bianchi, M. Bertoli, R. Tassinari, J. Mol. Catal. A: Chemical, 2003, 204–205, 419.
    7 D. T. Sawyer, A.Sobkowiak, T. Matsushita. Acc.Chem.Res. 1996, 29, 409.
    8 M. Bahidsky, M. Hronec. Catal. Today, 2005, 99, 187.
    9 H. H. Monfared, Z.Amouei. J. Mol. Catal. A: Chemical, 2004, 217, 161.
    10 A. Costine, T. O’Sullivan, B.K. Hodnett. Catal. Today, 2005, 99, 199.
    11 V. Balland, D. Mathieu, N. Pons-Y-Moll. J. Mol. Catal. A: Chemical, 2004, 215, 81.
    12 K. Bahranowski, R.Dula, M. Ga, et al.. Applied Clay Science, 2001, 18, 93.
    13 王化淳,许长春,张德立. 化工进展, 1998, 3, 25.
    14 杨华. 甲酚的开发与市场前景,精细化工原料及中间体,2005,(8), 25.
    15 季东, 闫亮, 任通, 索继栓. FeZSM-5 N2O 体系催化氧化甲苯制甲酚的研究,分子催化,2004,18(3), 198.
    16 J. S. Choi, T. H. Kim, K. Y. Choo, J. S. Sung, M. B. Saidutta, R. Dyu, B. Ramachandra, Y. W. Rhee. Appl. Catal. A: Genreal,2005, 290, 110.
    17 J. S. Choi, T. H. Kim, K. Y. Choo, J. S. Sung, M. B. Saidutta, R. Dyu, B. Ramachandra, Y. W. Rhee. J. Porous Material, 2005, 12, 301.
    18 汪小强,欧光南,袁友珠. 化学学报,62(18), 1695.
    19 U. ZIELKE, K. J. HOTTINGER, W. P. HOFFMAN. Carbon, 1996, 34, 983.
    20 C. Moreno-Castilla, M. V. Lopez-Ramon, F. Carrasco-Mar?n. Carbon, 2000, 38, 1995.
    21 王国喜. 中国医药工业杂志, 1999, 30(5), 232.
    22 王国喜,马东玲, 鲍改玲. 郑州大学学报(自然科学版), 2000, 32 (2), 89.
    23 卢会杰. 化学试剂, 1993, 15(4), 254.
    24 H. Wolfgang, H. Alfred. Ger. Offen. De 19637976.
    25 F.Fujita, D.Terunori, S.Yamakawa. 60252444.
    26 T. Shuji,I. Tsutomu, Omori. Jpn. Kokai Tokkyo Koho JP 09194422.
    27 I. Masagasu,S. Kenji, Fujita. Jpn. Kokai Tokkyo Koho JP 57161075.
    28 B. M. Choudary, A. Durgaprasud, V. L. K. Valli. Tetrahedron Letter, 1990, 31(40), 5785.
    29 M. Bahidsky, M. Hronec. Catalysis Today, 2005, 99, 187.
    30 A. Costine, T. O’Sullivan, B. K. Hodnett. Catalysis Today, 2005, 99, 199.
    31 D. Bianchi, M. Bertoli, R. Tassinari. J. Mol. Catal. A: Chemical, 2003, 204–205, 419.
    32 B. Lücke, K. V. Narayana, A. Martin, K. J?hnisch. Adv. Synth. Catal.,2004, 346, 1407.
    33 V. Balland, D. Mathieu, N. Pons-Y-Moll. J. Mol. Catal. A: Chemical, 2004, 215, 81.
    34 H. H. Monfared, Z.Amouei. J. Mol. Catal. A: Chemical, 2004, 217, 161.
    35 K. Bahranowski, R. Dula, M. Ga, et al.. Applied Clay Science, 2001, 18, 93.
    36 L. Balducci, D. Bianchi, R. Bortolo, R. D’Aloisio, M. Ricci, R.Tassinari, R. Ungarelli. Angew. Chem. Int. Ed. 2003, 42, 4937.
    37 S. L. H. Rebelo, M. M. Q. Sim?es, M. G. P. M. S. Neves, J. A. S. Cavaleiro. J. Mol. Catal. A: Chemical, 2003,201, 9.
    38 R. Kumar, A. Bhaumik. Microporous and Mesoporos Material, 1998, ( 21 ), 497.
    39 庞振涛,焦凤茹,陶文静. 现代化工. 2006,(2), 61.
    40 向东,肖明. 石油化工技术经,2006,(3),39.
    41 李晓平. 化工中间体,2006,(11), 13.
    42 李明,李玉芳. 精细化工原料及中间体,2006,(4), 27.
    43 贺宗昌,纪振华. 精细与专用化学品,2005, 13(18), 23.
    44 锦西化工厂,磺化碱熔法合成苯酚,北京,石油化工出版社,1978.
    45 GR 2162756,1972.
    46 JP 03151339,1991.
    47 邢其毅,徐瑞秋,周政. 基础有机化学,北京,高等教育出版社,1983,734.
    48 JP 0421654,1992.
    49 林深,陈守正. 福建师范大学学报(自然科学版),1994,10,57.
    50 K. Nomiya, S. Matsuoka, T. Hasegawa , et al. . J . Mol .Catal . A : Chem., 2000, 156 (1~2),143.
    51 B. Louis, B.Viswanathan, I. Iouranov. Indian J.Chem., Sect. A , 2001 , 40A(8), 837.
    52 J. Zhang, Y.Tang, G. Li, C. Hu. Applied Catalysis A: General, 2005,278, 251.
    53 张进,唐英,谢家庆,简敏,胡长伟. 无机化学,2004,20,408.
    54 M. Jian, L. Zhu, J. Wang, J. Zhang, G. Li, C. Hu. J. Mol. Catal. A, Chem.,2006, 253, 1.
    55 高焕新, 李树本. 催化学报, 1996, 17 (4), 296.
    56 A. Bhaumik, P. Mukherjee, R. Kumar, J. Catal.,1998, 178, 101.
    57 M. Stockmann, F. Konietzni, J.Ulrich Notheis, et al..Appl. Catal.A,2001, 208,343.
    1 Carlos Moreno-Castilla. Carbon, 2004, 42, 83.
    2 张丽丹, 赵晓鹏, 马群, 王琪, 郭坤敏. 新型炭材料, 2002, 17( 2), 41.
    3 闫勇. 化工进展, 1996, (5), 26.
    4 范延臻,王宝贞,王琳,余敏. 环境化学,2001,215,437.
    5 谢志刚,刘成伦. 工业水处理, 2005, 25(7), 10.
    6 于洪斌,丁蕴铮. 工业水处理, 2003, 23(8), 12.
    7 蒋文举, 江霞, 朱晓帆, 金燕, 钟本和. 林产化学与工业, 2003, 23(1), 39.
    8 梅建庭.炭素,2001, (2), 9.
    9 汤鸿,庞亚芳,李启东.环境化学, 2000,19(5), 431.
    10 I. I. Salame, T. J. Bandosz. J. Colloid Interface Sci., 2003, 264, 307.
    11 H. Tamon, M. Okazaki, J. Colloid Interface Sci., 1996, 179, 18.
    12 M. Franz1, H. A. Arafat, N. G. Pinto. Carbon, 2000, 38, 1807.
    13 A. P. Terzyk, G. Rychlicki, M. S. Cwiertnia, P. A. Gauden, P. Kowalczyk. Lamgmuir, 2005, 21, 12257.
    14 G.Newcombe, M. Drikas. Carbon, 1997, 35, 1239.
    15 B. Buczek, A. ? wiatkowski, J. Goworek. Carbon, 1995, 33 (2), 129.
    16 隋铭皓, 马军. 中国给水排水, 2001, 17(10), 70.
    17 刘转年, 金奇庭, 周安宁. 水处理技术, 2003, 29(6), 318.
    18 韩严和, 全燮, 薛大明, 赵雅之, 陈硕. 环境污染治理技术与设, 2003, 4(1), 33.
    19 张文辉, 阎文瑞, 刘春兰. 煤,2001, 10, 10.
    20 (日)立本英機,(日)安部郁夫主编,高尚愚译编. 活性炭的应用技术:其维持管理及存在问题,南京东南大学出版社,2002,149.
    20 凯利,巴德(德)著,魏同成 译. 活性炭及其工业应用,中国环境科学出版社,北京,1990.
    21 立本英楼,安部郁夫(日)主编;高尚愚译编.活性炭的应用技术:其维持管理及存在问题,东南大学出版社(南京),2002.
    22 H. Hindarso, S. Ismadji, F. Wicaksana, Mudjijati, N. Indraswati. J. Chem. Eng. Data, 2001, 46, 788.
    23 J. S. Choi, T. H. Kim, K. Y. Choo, J. S. Sung, M. B. Saidutta, S. O. Ryu, B. Ramachandra, Y. W. Rhee. Appl. Catal. A: Genreal, 2005, 290, 1.
    24 J. S. Choi, M. B. Saidutta, S. D. Song, Y. W. Rhee. J. Porous Material, 2005, 12, 301.
    25 Y. Zhong, G. Li, L. Zhu, Y. Yun, G. Wu, C. Hu. J. Mol. Catal. A (accepted).
    26 S. Bashkova, A. Bagreev, T. J. Bandosz. Catalysis Today, 2005, 99, 323.
    27 F. Adib, A. Bagreev, T. J. Bandos. J. Colloid Inter. Sci., 1999, 216, 360.
    28 T. Bandosz. J.Colloid Inter. Sci., 2002, 246, 1.
    29 H. Hindarso, S. Ismadji, F. Wicaksana, Mudjijati, N. Indraswati. J. Chem. Eng. Data., 2001, 46, 788.
    30 J. L. Figueiredo, M. F. R. Pereira, M. M. A. Freitas, J. J. M. órf?o. Carbon, 1999, 37, 1379.
    31 A. W. Heinen, J. A. Peters, H. Bekkum. Appl. Catal. A: General, 2000, 194 –195, 193.
    32 Y. H. Li, C. W. Lee, B. K. Gullett. Fuel, 2003, 82, 451.
    33 E. A. Muller, K. E. Gubbins, Carbon, 1998, 36, 1433.
    34 I. I. Salame, T. J. Bandosz. J. Colloid Interface Sci., 1999, 210, 367.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700