端基炔烃参与的若干串联反应与多组分反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
串联反应与多组分反应是当今有机化学的研究前沿和热点领域之一,在天然产物的全合成、杂环化合物的合成、组合化学等领域具有广泛地应用。本论文系统地研究了端基炔烃参与的一些串联反应与多组分反应,发展了一系列基于此类反应的芳环和杂环化合物的合成新方法。主要内容和结果如下:
     1.发展了由磺酰基叠氮与端基炔烃原位产生的N-磺酰基烯酮亚胺与一些同时含有亲电和亲核基团化合物的串联反应:(1)发展了CuI催化的端基炔烃、磺酰基叠氮、水杨醛的三组分反应,该反应提供了一步合成香豆素亚胺衍生物的新方法。将此反应扩展到邻羟基苯乙酮、2-酰基芳胺、2-巯基苯甲醛等底物,发展了多取代的亚胺香豆素、二氢喹啉、硫代苯并吡喃等杂环化合物的合成新方法。(2)发展了CuI催化的端基炔烃、磺酰基叠氮、2-酰基吖丙啶的三组分反应,利用该反应以良好的收率合成了一系列Z-2-磺酰基-5-芳亚苄基-3-吡咯啉类化合物。(3)发展了CuI催化的端基炔烃、磺酰基叠氮、亚胺亚磷的三组分反应,该反应提供了一步合成脒稳定的膦叶立德的新方法。这些新反应和新方法具有快速、高效、通用性好等特点。我们还通过同位素标记等手段,研究了这些串联过程的机理。
     2.发现了一种A_3B_2型串联反应:在三乙胺催化下,3分子丙炔酸酯与2分子芳香醛发生串联反应,生成萘的衍生物。这个反应是温度控制的,在-40℃反应3小时后用稀盐酸淬灭反应,反应产物是四氢萘-[2,3-b]-呋喃;在-20℃~-10℃反应5小时,再升温到80℃反应8小时,反应产物是萘乙酸酯类化合物;在-20℃~-10℃反应5小时,再于室温下反应8小时,得到的是两个萘乙醇类非对映异构体,以反式为主。通过这几类化合物之间互相转化的控制实验,以及氘代实验,提出了可能的反应机理。我们还对产物四氢萘-[2,3-b]-呋喃进行了芳构化,得到了具有良好荧光性能的萘并呋喃类化合物,并筛选出了两个具有较高荧光量子收率的化合物。在对这个串联反应进行扩展研究时,发展了三乙胺催化的丙炔酸酯、芳香醛、丁炔二酸二甲酯的三组分反应,该反应提供了一种合成多取代呋喃的新方法。
     3.发现了一种E-3-(邻甲酰基芳氧基)-丙烯酸酯和伯胺的串联反应:由水杨醛与丙炔酸酯制备的E-3-(邻甲酰基芳氧基)-丙烯酸酯,在三氟乙酸催化下,与各种伯胺(包括芳香胺和脂肪胺)发生加成-亲核-消除-环化的串联反应,生成1,4-二氢了吡啶。这个方法反应操作简单,收率良好,生成的1,4-二氢吡啶类化合物具有潜在的生物活性,同时还可进一步衍生化。
     4.发展了三苯基磷调节的2-酰基吖丙啶与偶氮二甲酸酯的串联反应:三苯基磷与偶氮二甲酸酯原位产生Huisgen阴阳离子,对2-酰基吖丙啶的羰基加成,随后的分子间和分子内的有次序的环化-开环-重排-开环-加成的串联反应,以几乎定量的收率合成了吡唑啉。通过氘代实验结果,提出了这个反应的可能机理。该反应提供了一种合成吡唑啉类化合物高效方法,而所得产物吡唑啉可在甲醇的硫酸液中进一步转化为吡唑类化合物。
     5.发展了微波促进的醛、酮、丙二腈的无溶剂三组分反应合成2,6-二氰基苯胺类化合物的新方法。在三乙胺催化和微波的作用下,醛、酮与丙二腈反应,以较高收率合成了2,6-二氰基苯胺类化合物。由于所得产物具有电子受体-给体-受体(A-D-A)结构特性,我们筛选了其中一些化合物的荧光性能,发现三个具有良好荧光性能的化合物。在此基础上,我们还发展了一种聚乙二醇支载的2,6-二氰基苯胺的制备方法。
     6.发展了N-芳基酰胺和重氮乙酸乙酯的串联反应合成吲哚类化合物。N-芳基酰胺在2-氯吡啶、2,6-二氯吡啶和Tf_2O的存在下,活化成为两性离子,被具有较强亲核性的重氮乙酸乙酯捕捉,随后的分子内亲电反应-异构化就构建了吲哚。
Domino reactions and Multi-component reactions(MCRs)have been highlighted as one of research frontier,widely used for the construction of heterocycles and in enantioselective synthesis and total synthesis.In this thesis,domino reactions and MCRs involved terminal alkynes are explored for the construction of arens and heterocycles.The discussions and results are listed as following:
     1.The N-sulfonyl ketenimine in situ generated by the Copper-catalyzed click reaction of terminal alkynes and sulfonyl azides,undergo a domino intramolecular addition-cyclization-dehydration sequence with special synthons bearing nucleophile and electronphile simultaneously:(a)The copper-catalyzed MCRs of terminal alkynes, sulfonyl azides and salicaldehydes furnish iminocoumarins,and the method is extened to 2-aeylphenols,2-acylanilines,potassium salt of 2-thiobenzaldehyde for the construction of substituted iminocoumarins,iminodihydroquinolines, iminothiochromenes respectively.(b)The copper-catalyzed MCRs of terminal alkynes, sulfonyl azides and 2-acylaziridines furnish Z-5-arylidene-2-imino-3-pyrrolines and the stereochemistry is established by NOESY analysis.(c)The copper-catalyzed MCRs of terminal alkynes,sulfonyl azides and iminophosphoranes are also explored for the synthesis of stabilized phosphorous arnidines.All the methods are general and efficient,while deuterium-labeling experiments are carried out to view the sight of the domino reactions.
     2.A TEA-catalyzed domino reaction(A_3B_2)of propiolates(3 equiv.)and benzaldehydes(2 equiv.)are developed.The reaction is temperature dependant:(a) the product is 2,3,9,9a-tetrahydro-naphtha[2,3-b]furan when the reaction is carried out at -40℃for 3h and quenched by 1N HCl.(b)the product is naphthalene when the reaction is carried out at -20~-10℃for 5h and then under reflux for 5h.(c)the product isβ-hydroxyl-naph.thalene when the reaction is carried out at -20~-10℃for 5h and then kept at rt for 5h.The insight of the domino reaction is viewed by the deuterium-labeling reaction and several controlled reactions and a possible mechanism is proposed.Furthermore,2,3,9,9a-tetrahydro-naphtha[2,3-b]furan is aromatized to naphthofuran exhibiting strong fluoresence.The TEA-catalyzed MCRs of propiolates,aryl aldehydes and DMAD for access to furans are also developed and the structure is established by X-ray analysis.The procedure is general and efficient and a possible mechanism is outlined.
     3.A novel synthesis of Hantzsch-type N-substituted 1,4-dihydropyridines from salicaldehydes,ethyl propiolate and amines has been developed.Salicaldehydes were treated with ethyl propiolate in the presence of N-methylmorpholine to give ethyl 3-(2-formylphenoxy)-propenoates.Three equiv of ethyl 3-(2-formylphenoxy)-propenoates reacted with one equiv of amines under trifluoroacetic acid(TFA)catalyst to furnish the corresponding N-substituted 1,4-dihydropyridines in good to excellent yields,recovering the starting material salicaldehydes.A possible mechanism for the domino process was proposed. Furthermore,the products can be easily derived via further transformations and three of them exhibited strong fluorescence.
     4.A novel,efficient and general domino reaction of 2-acyl-aziridines with the Huisgen zwitterions to furnish 2-pyrazoline rings is described.The Huisgen zwitterion in situ generated by PPh_3 and dialkyl azodicarboxylate is intercepted by 2-acylazridine to undergo a domino reaction for achievement of pyrazoline in quantitative yield,releasing Ph_3PO.The structure is firmly established by X-ray analysis and the deuterium-labeling reactions are carried out.A possible mechanism for the domino sequence is proposed.Furthermore,the resulting pyrazolines are converted to pyrazoles in acidic methanol solution under reflux.
     5.A facile parallel synthesis of polysubstituted 2,6-dicyanoanilines via microwave-promoted three-component reaction of aldehydes,ketones and propanedinitrile in solution and also on polymer support(PEG4000)has been developed.The structure of the compound is confirmed by X-ray analysis.The method is general and efficient.The screening for optical properties identified two new compounds with high fluorescence quantum yields.
     6.A novel and facile synthesis of indole via domino reaction of N-aryl amide and Ethyl diazoacetate has been established.The structure of the compound is confirmed by X-ray analysis and the methodology could be utilized to indole-fused heteroeyeles preparation.
引文
1.Using Triethynylphosphine Ligands Bearing Bulky End Caps To Create a Holey Catalytic Environment:Application to Gold(Ⅰ)-Catalyzed Alkyne Cyclizations.Ochida,A.;Ito,H.;Sawamura,M.J..Am.Chem.Soc.2006,128,16486-16487.
    2.Gold(Ⅰ)-Catalyzed Ring Expansion of Cyclopropanols and Cyclobutanols.Markham,J.P.;Staben,S.T.;Toste,F.D.J.Am.Chem.Soc.2005,127,9708-9709.
    3.Gold(Ⅰ)-Catalyzed Regioselective Cyclizations of Silyl Ketene Amides and Carbamates with Alkynes.Minnihan,E.C.;Colletti,S.L.;Toste,F.D.;Shen,H.C.J.Org.Chem.2007,72,6287-6289.
    4.Gold-Catalyzed Intramolecular Reaction of Indoles with Alkynes:Facile Formation of Eight-Membered Rings and an Unexpected Allenylation.Ferrer,C.;Echavarren,A.M.Angew.Chem.Int.Ed 2006,45,1105-1109.
    5.Synthesis of Substituted 1,2-Dihydroquinolines and Quinolines from Aromatic Amines and Alkynes by Gold(Ⅰ)-Catalyzed Tandem Hydroamination-Hydroarylation under Microwave-Assisted Conditions.Liu,X.Y.;Ding,P.;Huang,J.S.;Che,C.M.Org.Lett.2007,9,2645-2648.
    6.Tandem Cyclization of Alkynes via Rhodium Alkynyl and Alkenylidene Catalysis.Joo,J.N.;Yuan,Y.;Lee,C.J.Am.Chem.Soc.2006,128,14818-14819.
    7.Rhodium-Catalyzed Arylative and Alkenylative Cyclization of 1,5-Enynes Induced by Geminal Carbometalation of Alkynes.Chen,Y.Y.;Lee,C.J.Am.Chem.Soc.2006,128,15598-15599.
    8.Rhodium(Ⅰ)-Catalyzed[4+2+2]Cycloadditions of 1,3-Dienes,Alkenes,and Alkynes for the Synthesis of Cyelooetadienes.Wender,P.A.;Christy,J.P.J.Am.Chem.Soc.2006,128,5354-5355.
    9.Rhodium-Catalyzed Chemo-,Regio-,and Enantioselective[2 + 2 + 2]Cycloaddition of Alkynes with Isocyanates.Tanaka,K.;Wada,A.;Noguchi,K.Org.Lett.2005,7,4737-4739.
    10.Ru-Catalyzed Cyclization of Terminal Alkynals to Cycloalkenes.Varela,J.A.;Gonzádez-Rodríguez,C.;Rubín,S.G.;Castedo,L.;Saá,C.J.Am.Chem.Soc.2006,128,9576-9577.
    11.Efficient Intermolecular[2 + 2 + 2]Alkyne Cyclotrimerization in Aqueous Medium Using a Ruthenium(Ⅳ)Precatalyst.Cadiemo,V.;Caríca-Carrído,S.E.;Gimeno,J.J.Am.Soc.Chem.2006,128,15094-15095.
    12.Ruthenium(Ⅱ)-Catalyzed Selective Intramolecular[2 + 2 + 2]Alkyne Cyclotrimerizations.Yamamoto,Y.;Arakawa,T.;Ogawa,R.;Ltoh,K.J.Am.Chem.Soc.2003,125,12143-12160.
    13.Ruthenium-Catalyzed Cyclization of Epoxide with a Tethered Alkyne:Formation of Ketene Intermediates via Oxygen Transfer from Epoxides to Terminal Alkynes.Madhushaw,R.J.;Lin,M.Y.;Sohel,S.M.A.;Liu,R.S.J.Am.Chem.Soc.2004,126,6895-6899.
    14.Ruthenium-Catalyzed Cycloaddition of Alkynes and Organic Azides.Zhang,L.;Chen,X.G.;Xue,P.;Sun,H.H.Y.;Charpless,B.;Fokin,V.V.;Jia,G.C.J.Am.Soc.Chem.2005,127,15995-15999.
    15.Catalytic One-Pot Synthesis of Cyclic Amidines by Virtue of Tandem Reactions Involving Intramolecular Hydroamination under Mild Conditions.Chang,S.;Lee,M.;Jung,D.Y.;Yoo,E.J.;Cho,S.H.;Han,S.K.J.Am.Chem.Soc.2006,128,12366-12367.
    16.Nickel-Catalyzed Intermolecular[3 + 2 + 2]Cocyclization of Ethyl Cyclopropylideneacetate and Alkynes.Saito,S.;Masuda,M.;Komagawa,S.J.Am.Chem.Soc.2004,126,10540-10541.
    17.Nickel-Catalyzed Three-Component[3+2+2]Cocyclization of Ethyl Cyclopropylideneacetate and Alkynes-Selective Synthesis of Multisubstituted Cycloheptadienes.Komagawa,S.;Saito,S.Angew.Chem.Int.2006,45,2446-2449.
    18.Nickel-Catalyzed Cycloaddition of Alkynes and Isocyanates.Duong,H.A.;Cross,M.J.;Louie,J.J.Am.Chem.Soc.2004,126,11438-11439.
    19.Base Dependence in Copper-Catalyzed Huisgen Reactions:Efficient Formation of Bistriazoles.Yu,A.;Kevin,B.Angew.Chem.Int.Ed.2007,46,3649-3651.
    20.(a)Highly Efficient One-Pot Synthesis of N-Sulfonylamidines by Cu-Catalyzed Three-Component Coupling of Sulfonyl Azide,Alkyne,and Amine.Bae,I.;Han,H.;Chang,S.J.Am.Chem.Soc.2005,127,2038-2039.
    (b)Copper-Catalyzed Hydrative Amide Synthesis with Terminal Alkyne,Sulfonyl Azide,and Water.Cho,S.H.;Yoo,E.J.;Bae,I.;Chang,S.J.Am.Chem.Soc.2005,127,16046-16047.
    21.A Straightforward and Mild Synthesis of Functionalized 3-Alkynoates.Suárez,A.;Fu,G.C.Angew.Chem.Int.Ed.2004,43,3580-3582.
    22.A New Copper-Catalyzed[3 + 2]Cycloaddition:Enantioselective Coupling of Terminal Alkynes with Azomethine Imines To Generate Five-Membered Nitrogen Heterocycles.Shintani,R.;Fu,G.C.J.Am.Chem.Soc.2003,125,10788-10789.
    23.Catalytic Enantioselective Synthesis of β-Lactams:Intramolecular Kinugasa Reactions and Interception of an Intermediate in the Reaction Cascade.Shintani,R.;Fu,G.C.Angew.Chem.Int.Ed.2003,42,4082-4085.
    24.Microwave-Promoted Three-Component Coupling of Aldehyde,Alkyne,and Amine via C-H Activation Catalyzed by Copper in Water.Shi,L.;Tu,Y.Q.;Wang,M.;Zhang,F.M.;Fan,C.A.Org.Lett.2004,6,1001-1003.
    25.Copper-Catalyzed Coupling of Imines,Acid Chlorides,and Alkynes:A Multicomponent Route to Propargylamides.Black,D.A.;Amdtsen,B.A.Org.Lett.2004,6,1107-1110.
    26.Direct Synthesis of 2-(Aminomethyl)indoles through Copper(Ⅰ)-Catalyzed Domino Three-Component Coupling and Cyclization Reactions.Ohno,H.;Ohta,Y.;Oishi,S.;Fujii,N.Angew.Chem.Int.Ed.2007,46,2295-2298.
    27.Platinum(Ⅱ)-Coordinated Phosphinous Acid-Catalyzed Alkylidenecyclopropanation of Bicyclic Alkenes with Terminal Alkynes.Bigeault,J.;Giordano,L.;de Riggi,I.;Gimbert,Y.;Buono,G.Org.Lett.2007,9,3567-3570.
    28.A Silver-Catalyzed Domino Route toward 1,2-Dihydroquinoline Derivatives from Simple Anilines and Alkynes.Luo,Y.M.;Li,Z.G.;Li,C.J.Org.Lett.2005,7,2675-2678.
    29.Silver(Ⅰ)Triflate-Catalyzed Direct Synthesis of N-PMP Protected r-Aminopropargylphosphonates from Terminal Alkynes.Dodda,R.;Zhao,C.G.Org.Lett.2007,9,165-167.
    30.Alkynoates as a Source of Reactive Alkylinides for Aldehyde Addition Reactions.de Armas,P.;Garcia-Tellado,F.;Marrero-Tellado,J.J.;Tejedor,D.;Maestro,M.A.;González-Platas,J.Org.Lett.2001,3,1905-1908.
    31.An Effective One-Pot Synthesis of 5-Substituted Tetronic Acids.Aragon,D.T.;López,G.V.;Garcia-Tellado,F.;Marrero-Tellado,J.J.;de Armas,P.;Tejedor,D.J.Org.Chem.2003,68,3363-3365.
    32.A Modular,One-Pot,Four-Component Synthesis of Polysubstituted 1,3-Oxazolidines.Tejedor,D.;Santos-Exposito,A.;González-Cruz,D.;Marrero-Tellado,J.J.;Garcia-Tellado,F.J.Org.Chem.2005,70,1042-1045.
    33.A Diversity-Oriented Strategy for the Construction of Tetrasubstituted Pyrroles via Coupled Domino Processes.Tejedor,D.;González-Cruz,D.;Garcia-Tellado,F.;Marrero-Tellado,J.J.;Rodriguez,M.L.J.Am.Soc.Chem.2004,126,8390-8391.
    34.Chemo-differentiating MCRs based on a-ketoesters and terminal alkynoates.A homoaldol-based ABB' system.Tejedor,D.;Santos-Exposito,A.;Garcia-Tellado,F. Chem.Comm.2006,2667-2669.
    35.Metal-Free Access to Fully Substituted Skipped Diynes.An Efficient Chemodifferentiating A_2BB' 4CR Manifold.Tejedor,D.;L6pez-Tosco,S.;
    González-Platas,J.;García-Tellado,F.J.Org.Chem.2007,72,5454-5456.
    36.Aza-Baylis-Hillman Reactions of N-Tosylated Aldimines with Activated Allenes and Alkynes in the Presence of Various Lewis Base Promoters.Zhao,G.L.;Shi,M.J.Org.Chem.2005,70,9975-9984.
    37.Efficient Domino Process Based on the Catalytic Generation of Non-Metalated,Conjugated Acetylides in the Presence of Aldehydes or Activated Ketones.Tejedor,D.;García-Tellado,F.;Marrero-Tellado,J.J.;de Armas,P.Chem.Eur.J.2003,9,3122-3131.
    38.Stable Tetravalent Phosphonium Enolate Zwitterions.Zhu,X.F.;Henry,C.E.;Kwon,O.J.Am.Soc.Chem.2007,129,6722-6723.
    39.KO~(?)Bu-Promoted Three-Component Coupling of Aldehydes and Alkynes:Highly Efficient Synthesis of 1-En-4-yn-3-ols and 2-En-4-yn-l-ols.Wang,S.H.;Tu,Y.Q.;Chen,P.hu,X.D.;Zhang,F.M.;Wang,A.X.J.Org.Chem.2006,71,4343-4345.
    40.One-Pot Synthesis of Fluorescent 2,5-Dihydro-1,2,3-triazine Derivatives from a Cascade Rearrangement Sequence in the Reactions of 1,2,3-Triazolium-1-aminide 1,3-Dipoles with Propiolate Esters.Butler,R.N.;Fahy,A.M.;Fox,A.;Stephens,J.C.;Mcardle,P.;Cunningham,D.;Ryder,A.J.Org.Chem.2006,71,5679-5687.
    41.Novel Approach to Multifunctionalized Homoallylic Alcohols via Regioselective Ring Opening of Aryl Oxiranes with 3-Iodo Allenoates.Kattuboina,A.;Kaur,P.;Timmons,C.;Li,G.G.Org.Lett.2006,8,2771-2774.
    42.(a)Coumarins:Biology,Applications,and Mode of Action;O'Kennedy,R.,Thomas,R.D.,Eds.;Wiley:Chichester,UK,1997.
    (b)Recent progress in the development of coumarin derivatives as potent anti-HIV agents.Yu,D.;Suzuki,M.; Xie,L.;Morris-Natschke,S.L.;Lee,K.-H.Med.Res.Rev.2003,23,322-345.
    (c)The Natural Coumarins;Murray,R.D.H.;Mendez,J.;Brown,S.A.;Wiley:Chichester,UK,1982.
    (d)An aroma chemical profile:Coumarin.Clark,G.S.Perfum.Flavor.1995,20,23-34.
    (e)Azomethine metal:complex colorants.Sekar,N.Colourage 2003,50,55-56.
    (f)A Very Short Route to Enantiomerically Pure Coumarin-Bearing Fluorescent Amino Acids.Brun,M.-P.;Bischoff,L.;Garbay,C.Angew.Chem.,Int.Ed.2004,43,3432-3436.
    (g)A Convenient and Improved Baylis-Hillman Synthesis of 3-Substituted 2H-1-benzopyran-2-ones.Hariprassad,V.;Talele,T.T.;Kulkami,V.M.Pharm.Pharmacol.Commun.1998,4,365-372.
    (h)Synthesis of 4-aminopolymethoxycoumarins from 4-hydroxycoumarin triflates.Sardari,S.;Nishibe,S.;Daneshtalab,M.Stud.Nat.Prod.Chem.2000,23,335-393.
    (i)Studies on coumarins and coumarin-related compounds to determine their therapeutic role in the treatment of cancer.Lacy,A.;O'Kennedy,R.Curr.Pharm.Des.2004,10,3797-3811.
    43.Bicyclic compounds as ring-constrained inhibitors of protein-tyrosine kinase p561ck.Burke,T.R.;Lim,B.;Marquez,V.E.;Li,Z.-H.;Bolen,J.B.;Stefanova,I.;Horak,I.D.J.Med.Chem.1993,36,425-432.
    44.Novel N-chlorinated derivatives of 2H-1-benzopyran-2-imines.Volmajer,J.;Toplak,R.;Bittner,S.;Leban,I.;Le Marechal,A.M.Tetrahedron Lett.2003,44,2363-2366.
    45.(a)For a review,see:Recent progress in the synthesis of 1,2,3,4,-tetrahydroquinolines.Katritzky,A.R.;Rachwal,S.;Rachwal,B.Tetrahedron 1996,52,15031-15070.
    (b)Martinelline and Martinellic Acid,Novel G-Protein Linked Receptor Antagonists from the Tropical Plant Martinella iquitosensis (Bignoniaceae).Witherup,K.M.;Ransom,R.W.;Graham,A.C.;Bernard,A.M.;Salvatore,M.J.;Lumma,W.C.;Anderson,P.S.;Pitzenberger,S.M.;Varga,S.L.J.Am.Chem.Soc.1995,117,6682-6685.
    (c)Antimicrobial Activities of a New Schizozygane Indoline Alkaloid from Schizozygia coffaeoides and the Revised Structure of Isoschizogaline.Kariba,R.M.;Houghton,P.J.;Yenesew,A.J.Nat.Prod.2002,65,566-569.
    (d)Alkaloids from Galipea of-ficinalis.Rakotoson,J.H.;Fabre,N.;Jacquemond-Collet,I.;Hannedouche,S.;Fouraste,I.;Moulis,C.Planta Med.1998,64,762-763.
    46.(a)The antimicrobial natural product chuangxinmycin and Some synthetic analogues are potent and selective inhibitors of bacterial tryptophanyl tRNA synthetase.Brown,M.J.;Carter,P.S.;Fenwick,A.E.;Fosberry,A.P.;Hamprecht,D.W.;Hibbs,M.J.;Jarvest,R.L.;Mensah,L.;Milner,P.H.;O'Hanlon,P.J.;Pope,A.J.;Richardson,C.M.;West,A.;Witty,D.R.Bioorg.Med.Chem.Lett.2002,12,3171-3174.
    (b)Enantioselective Organocatalytic Tandem Michael-Aldol Reactions:One-Pot Synthesis of Chiral Thiochromenes.Wang,W.;Li,H.;Wang,J.;Zu,L.S.J.Am.Chem.Soc.2006,128,10354-10355.
    47.Enantioselective Organocatalytic Tandem Michael-Aldol Reactions:One-Pot Synthesis of Chiral Thiochromenes.Wang,W.;Li,H.;Wang,J.;Zu,L J.Am.Soc.Chem.2006,128,10354-10355.
    48.Potassium Carbonate-Catalyzed Reactions of Salicylic Aldehydes with Allenic Ketones and Esters:an Effective Way to Synthesize Functionalized 2H-Chromenes.Shi,M.;Dai,L.Z.;Shi,Y.L.;Zhao,G.L.Adv.Synth.Catal.2006,348,967-972.
    49.Highly Efficient One-Pot Synthesis of N-Sulfonylamidines by Cu-Catalyzed Three-Component Coupling of Sulfonyl Azide,Alkyne,and Amine.Bae,I.;Han,H.;Chang,S.J.Am.Soc.Chem.2005,127,2038-2039.
    50.(a)Highly Efficient One-Pot Synthesis of N-Sulfonylamidines by Cu-Catalyzed Three-Component Coupling of Sulfonyl Azide,Alkyne,and Amine.Bag,I.;Han,H.;Chang,S.J.Am.Soc.Chem.2005,127,2038-2039.
    (b)Copper-Catalyzed Hydrative Amide Synthesis with Terminal Alkyne,Sulfonyl Azide,and Water.Cho,S.H.;Yoo, E.J.;Bae,I.Chang,S.J.Am.Soc.Chem.2005,127,16046-16047.
    (c)Copper-Catalyzed Reaction Cascade:Direct Conversion of Alkynes into N-Sulfonylazetidin-2-imines.Whiting,M.;Fokkin,V.V.Angew.Chem.Int.Ed.2006,45,3157-3161.
    51.(a)For use of pyrrolines in aza sugar synthesis,see:A novel approach to azasugars from vinyl glycine methyl ester via olefin metathesis.Huwe,C.M.;Blechert,S.Tetrahedron Lett.1995,36,1621-1624.
    (b)Synthesis and monoamine oxidase inhibitory activities of.alpha.-allenic amines in vivo and in vitro.Different activities of two enantiomeric allenes.Sahlberg,C.;Ross,S.B.;Fagervall,I.;Ask,A.-L.;Claesson,A.J.Med.Chem..1983,26,1036-1042.
    (c)Stereoisomers of allenic amines as inactivators of monoamine oxidase type B.Stereochemical probes of the active site.Smith,R.A.;White,R.L.;Krantz,A.J.Med.Chem..1988,31,1558-1566and references therein.
    52.For pyrrolines as monoamine oxidase inhibitors,see:(a)3-Pyrrolines Are Mechanism-Based Inactivators of the Quinone-Dependent Amine Oxidases but Only Substrates of the Flavin-Dependent Amine Oxidases.Lee,Y.;Ling,K.-Q.;Lu,X.;Silverman,R.B.;Shepard,E.M.;Dooly,D.M.;Sayre,L.M.J.Am.Chem.Soc.2002,124,12135-12143.
    (b)Williams,C.H.;Lawson,J.Neurobiology 1999,7,225-233.
    (c)Mechanism-based inhibition of monoamine oxidase by 3-aryl-△~3-pyrrolines.Williams,C.H.;Lawson,J.Biochem.J.1998,336,63-67.
    (d)Model Studies Support Pyrrolylation of the Topaquinone Cofactor To Explain Inactivation of Bovine Plasma Amine Oxidase by 3-Pyrrolines.Unusual Processing of a Secondary Amine.Lee,Y.;Huang,H.;Sayre,L.M.J.Am.Chem.Soc.1996,118,7241-7242.
    53.Isolation and structure of the cytostatic linear depsipeptide dolastatin 15.Petti,G.R.;Kamano,Y.;Dufresne,C.;Cerny,R.L.;Herald,C.L.;Schmidt,J.M.J.Org.Chem.1989,54,6005-6006.
    54.(a)Stereospecific synthesis of N-protected statine and its analogues via chiral tetramic acid.Jouin,P.;Castro,B.J.Chem.Soc.,Perkin Trans.1 1987,1177-1182.
    (b)An improved procedure to homochiral cyclic statines.Ma,D.;Ma,J.;Ding,W.;Dai,L.Tetrahedron:Asymmetry 1996,7,2365-2370.
    55.Dipeptide Analogues Containing 4-Ethoxy-3-pyrrolin-2-ones.Hosseini,M.;Kringelum,H.;Murray,A.;Tφnder,J.E.Org.Lett.2006,8,2103-2106.
    56.Highly Substituted Pyrrolidinones and Pyridones by 4-CR/2-CR Sequence.Beck,B.;Picard,A.;Herdtweck,E.;D6mling,A.Org.Lett.2004,6,39-42.
    57.Regiocontrolled Synthesis of Pyrrole-2-carboxaldehydes and 3-Pyrrolin-2-ones from Pyrrole Weinreb Amides.Coffin,A.R.;Roussel,M.A.;Tserlin,E.;Pelkey,E.T.J.Org.Chem.2006,71,6678-6681.
    58.Readily Available Unprotected Amino Aldehydes.Hili,R.;Yudin,A.K.J.Am.Soc.Chem.2006,128,14772-14773.
    59.An Amine-Promoted Aziridination of Chalcones.Shen,Y.M.;Zhao,M.X.;Xu,J.X.;Shi,Y.Angew.Chem.,Int.Ed.2006,45,8005-8008.
    60.Patai,S.;Rappoport,Z.The Chemistry of Amidines and Imidates,Wiley:New York,1991;Vol.27.
    61.(a)Domino Reactions of Amidines with Methyl 2-Chloro-2-cyclopropylideneacetate as an Efficient Access to Cyclobutene-Annelated Pyrimidinones.Notzel,M.W.;Rauch,K.;Labahn,T.;de Meijere,A.Org.Lett.2002,4,839-841.
    (b)Synthesis of Purines and Other Fused Imidazoles from Acyclic Amidines and Guanidines.Szczepankiewicz,B.G.;Rohde,J.J.;Kurukulasuriya,R.Org.Lett.2005,7,1833-1835.
    62. (a) Potent in vitro and in vivo inhibitors of platelet aggregation based upon the Arg-Gly-Asp-Phe sequence of fibrinogen. A proposal on the nature of the binding interaction between the Arg-guanidine of RGDX mimetics and the platelet GP IIb-IIIa receptor. Zablocki, J. A.; Miyano, M.; Garland, R.; Pireh, D.; Schretzman, L.; Rao, S. N.; Lindmark, R. J.; Panzer-Knodle, S. G.; Nicholson, N. S.; Taite, B. B.; Salyers, A. K.; King, L. W.; Campion, J. G.; Feigen, L. P. J. Med. Chem. 1993,36, 1811-1819.
    (b)Greenhill, J. V.; Lue, P. Amidines and Guanidines in Medicinal Chemistry, Progress in Medicinal Chemistry; Ellis, G. P., Luscombe, D. K., Eds.; Elsevier: New York, 1993; Vol. 300 Chapter 5, pp 203-326.
    63. Dunn, P. J. In Comprehensive Organic Functional Group Transformations; Katritzky, A. R., Meth-Cohn, O., Rees, C. W., Eds.; Pergamon Press: Oxford, 1995; Vol. 5, pp 741.
    64. (a) Efficient Microwave Access to Polysubstituted Amidines from Imidoylbenzotriazoles. Katritzky, A. R.; Cai, C. M.; Singh, S. K. J. Org. Chem. 2006, 71, 3375-3380.
    (b) Convenient general synthesis of amidines. Weintraub, L.; Oles, S. R.; Kalish, N. J. Org. Chem. 1968, 33, 1679.
    (c) Mild method for the synthesis of amidines by the electrophilic activation of amides. Charette, A. B.; Grenon, M. Tetrahedron Lett. 2000,41,1677-1680.
    65. Copper-Catalyzed Highly Efficient Multicomponent Reactions: Synthesis of 2-(Sulfonylimino)-4-(alkylimino)azetidine Derivatives. Xu, X. L.; Cheng, D. P.; Li, J. H.; Guo, H. Y.; Yan, J. Org. Lett. 2007,9,1585-1587.
    66. (a) Reactivity and synthetic applications of bis(iminophosphoranes). One-pot preparation of pyrido[2,3,4-de]quinazolines and benzo[de][1,6]naphthyridines. Molina, P.; Alajarin, M.; Vidal, A. J. Org. Chem. 1992, 57, 6703-6711.
    (b) From Ketenimines to Ketenes to Quinolones: Two Consecutive Pseudopericyclic Events. Alajarin, M.; Ortin, M. M.; Sanchez-Andrada, P.; Vidal, A.; Bautista, D. Org. Lett. 2005,7,5281-5284.
    (c)Tandem Pseudoperieyelie Reactions:[1,5]-X Sigmatropie Shift/6 π -Electrocyelic Ring Closure Converting N-(2-X-Carbonyl)phenyl Ketenimines into 2-X-Quinolin-4(3H)-ones.Alajarin,M.;Ortin,M.M.;Sanchez-Andrada,P.;Vidal,A.J.Org.Chem.2006,71,8126-8139.
    (d)Intramolecular Ketenimine-Ketenimine[2 + 2]and[4 + 2]Cycloadditions.Alajarín,M.;Bonillo,B.;Sanchez-Andrada,P.;Vidal,A.;Bautista,D.J.Org.Chem.2007,72,5863-5866.
    67.(a)1-Arylnaphthalene Lignan:A Novel Scaffold for Type 5 Phosphodiesterase Inhibitor.Ukita,T.;Nakamura,Y.;Kubo,A.;Yamamoto,Y.;Takahashi,M.;Kotera,J.;Ikeo,T.J.Med Chem.1999,42,1293-1305.
    (b)Lignans,neolignans,and related compounds.Ward,R.S.Nat.Prod.Rep.1995,12,183-206.
    68.Regioselective Synthesis of Substituted Naphthalenes:A Novel de Novo Approach Based on a Metal-Free Protocol for Stepwise Cycloaddition of o-Alkynylbenzaldehyde Derivatives with Either Alkynes or Alkenes.Barluenga,J.;Váquez-Villa,H.;Ballesteros,A.;González,J.M.Org.Lett.2003,5,4121-4123.
    69.Palladium-Catalyzed Intermolecular Controlled Insertion of Benzyne-Benzyne-Alkene and Benzyne-Alkyne-Alkene - Synthesis of Phenanthrene and Naphthalene Derivatives.Yoshikawa,E.;Yamamoto,Y.Angew.Chem.Int.Ed.2000,39,173-175.
    70.A Convenient Preparation of Functionalized 1,8-Dioxygenated Naphthalenes from 6-Alkoxybenzocyclobutenones.Bungard,C.J.;Morris,J.C.J.Org.Chem.2002,67,2361-2364.
    71.(a)Dean,F.A.Naturally Occurring Oxygen Ring Compounds;Butterworth:London,1963.
    (b)Natural Products Chemistry;Nakanishi,K.,Goto,T.,Ito,S.,Natori,S.,Nozoe,S.,Eds.;Kodansha:Tokyo,1974;Vols.1-3.
    (c)Dean,F.M.in Advances in Heterocyclic Chemistry;Katritzky,A.R.,Ed.;Academic Press:New York,1983;Vol.31,pp 237-344.
    (d)Sargent,M.V.;Dean,F.M.in Comprehensive Heterocyclic Chemistry;Bird,C.W.,Cheeseman,G.W.H.,Eds.;Pergamon Press:Oxford,1984;Vol.3,pp 599-656.
    (e)Five-membered Heteroaromatic Rings as Intermediates in Organic Synthesis.Lipshutz,B.H.Chem.Rev.1986,86,795-819.
    (a)Benassi,R.in Comprehensive Heterocyclic Chemistry Ⅱ;Katritzky,A.R.,Rees,C.W.,Scriven,E.F.V.,Eds.;Pergamon Press:Oxford,1996;Vol.2,pp 259-295.
    (b)Heaney,H.;Ahn,J.S.in Comprehensive Heterocyclic Chemistry Ⅱ;Katritzky,A.R.,Rees,C.W.,Scriven,E.F.V.,Eds.;Pergamon Press:Oxford,1996;Vol.2,pp 297-357.
    72.AuCl_3-Catalyzed Synthesis of Highly Substituted Furans from 2-(1-Alkynyl)-2-alken-1-ones.Yao,T.;Zhang,X.;Larock,R.C.J.Am.Soc.Chem.2004,126,11164-11165.
    73.Room Temperature Zinc Chloride-Catalyzed Cycloisomerization of Alk-3-yn-1-ones:Synthesis of Substituted Furans.Sniady,A.;Durham,A.;Morreale,M.S.;Wheeler,K.A.;Dembinski,R.Org.Lett.2007,9,1175-1178.
    74.Alkynoates as a Source of Reactive Alkylinides for Aldehyde Addition Reactions.de Armas,P.;Garcia-Tellado,F.;Marrero-Tellado,J.J.;Tejedor,D.;Maestro,M.A.;González-Platas,J.Org.Lett.2001,3,1905-1908.
    75.(a)Unprecedented Reactivity of N-Heterocyclic Carbenes toward DMAD and Aldehydes Leading to Novel Multicomponent Reactions.Nair,V.;Bindu,S.;Sreekumar,V.;Rath,N.P.Org.Lett.2003,5,665-667.
    (b)A Novel Approach to the Synthesis of Bicyclic Lactones via an Interrupted Nazarov Reaction of gem-Divinyl Dihydrofurans.Nair,V.;Bindu,S.;Sreekumar,V.;Chiaroni,A.Org.Lett.2002,4,2821-2823.
    76.(a)1,4-Dihydropyridines as calcium channel ligands and privileged structures. Triggle,D.J.Cell.Mol.Neurobiol.2003,23,293-303.
    (b)Permanently Charged Chiral 1,4-Dihydropyridines:Molecular Probes of L-Type Calcium Channels.Synthesis and Pharmacological Characterization of Methyl(ω-Trimethylalkylammonium)1,4-Dihydro-2,6-dimethyl-4-(3-nitrophenyl)-3,5-pyridinedicarboxylate Iodide,Calcium Channel Antagonists.Peri,R.;Padmanabhan,S.;Rutledge,A.;Singh,S.;Triggle,D.J.J.Med.Chem.2000,43,2906-2914.
    (c)Interaction of 1,4-Dihydropyridine and Pyridine Derivatives with Adenosine Receptors:Selectivity for A3 Receptors.van Rhee,A.M.;Jiang,J.L.;Melman,N.;Olah,M.E.;Stiles,G.L.;Jacobson,K.A.J.Med.Chem.1996,39,2980-2989.
    (d)A homologous series of permanently charged 1,4-dihydropyridines:novel probes designed to localize drug binding sites on ion channels.Baindur,N.;Rutledge,A.;Triggle,D.J.J.Med Chem.1993,36,3743-3745.
    77.(a)Triggle,D.J.Drugs acting on ion channels and membranes.In Comprehensive Medicinal Chemistry;Emmett,J.C.,Ed.;Pergamon Press:London,1985;Vol.3,pp 1047-1099.
    (b)Calcicludine Binding to the Outer Pore of L-type Calcium Channels Is Allosterically Coupled to Dihydropyridine Binding.Wang,X.M.;Du,L.;Peterson,B.Z.Biochemistry 2007,46,7590-7598.
    (c)Characterizing the 1,4-Dihydropyridines Binding Interactions in the L-Type Ca~(2+)Channel:Model Construction and Docking Calculations.Cosconati,S.;Marinelli,L.;Lavecchia,A.;Novellino,E.J.Med.Chem.2007,50,1504-1513.
    78.(a)Mechanisms of the Oxidations of NAD(P)H Model Hantzsch 1,4-Dihydropyridines by Nitric Oxide and Its Donor N-Methyl-N-nitrosotoluene-p-sulfonamide.Zhu,X.Q.;Zhao,B.J.;Cheng,J.P.J.Org.Chem.2000,65,8158-8163.
    (b)AppliCation of NAD(P)H Model Hantzseh 1,4-Dihydropyddine as a Mild Reducing Agent in Preparation of Cyclo Compounds.Zhu,X.Q.;Wang,H.Y.;Wang,J.S.;Liu,Y.C.J.Org.Chem.2001,66,344-347.
    (c)Heterolytic and Homolytic N-H Bond Dissociation Energies of 4-Substituted Hantzsch 2,6-Dimethyl-1,4-dihydropyridines and the Effect of One-Electron Transfer on the N-H Bond Activation.Cheng,J.P.;Lu,Y.;Zhu,X.Q.;Sun,Y.K.;Bi,F.;He,J.Q.J.Org.Chem.2000,65,3853-3857.
    79.(a)Dithionite adducts of pyridinium salts:regioselectivity of formation and mechanisms of decomposition.Carelli,V.;Liberatore,F.;Scipione,L.;Rienzo,B.D.;Tortorella,S.Tetrahedron 2005,61,10331-10337.
    (b)On the structure of intermediate adducts arising from dithionite reduction of pyridinium salts:a novel class of derivatives of the parent sulf'mic acid.Carelli,V.;Liberatore,F.;Scipione,L.;Musio,R.;Sciacovelli,O.Tetrahedron Lett.2000,41,1235-1240.
    (c)Pyridinium Complexes.Ⅱ.The Nature of the Intermediate in the Dithionite Reduction of Diphosphopyridine Nucleotide DPN.Kosower,E.M.;Bauer,S.J.Am.Chem.Soc.1960,82,2191-2194.
    (d)Characterization of an Intermediate in the Dithionite Reduction of a Diphosphopyridine Nucleotide Model as a 1,4-Addition Product by Nuclear Magnetic Resonance Spectroscopy~1.Caughey,W.S.;Shellenberg,K.J.Org.Chem.1966,31,1978-1982.
    80.Facile,Regioselective[4+2]Cycloaddition Involving 1-Aryl-4-phenyl-1-azadienes and Allenic Esters:An Efficient Route to Novel Substituted 1-Aryl-4-phenyl-l,4-dihydropyridines.Ishar,M.P.S.;Kumar,K.;Kaur,S.;Kumar,S.;Girdhar,N.K.;Sachar,S.;Marwaha,A.;Kapoor,A.Org.Lett.2001,3,2133-2136.
    81.An Efficient Protocol for the Liquid-Phase Synthesis of Furanoquinolines and Pyranoquinolines.Wang,Y.G.Lin,X.F.;Cui,S.L.Synlett 2004,1175-1178.
    82.Esters of 2,3-Dihydro-3-oxobenzofuran-2-acetic Acid and 3,4-Dihydro-4-oxo-2H-1-benzopyran-3-acetic Acid by Intramolecular Stetter Reactions.Ciganek,E.Synthesis,1995,1311-1314.
    83.Oxidation of enamine-esters with lead tetra-acetate.Part 1.Products from some N-alkylaminofumarates.Carr,R.M.;Norman,R.O.C.;Vernon,J.M.J.Chem.Soc.,Perkin Trans.1 1980,156-162.
    84.(a)Solution-Phase Parallel Synthesis of a Library of △~2-Pyrazolines.Manyem,S.;Sibi,M.P.;Lushington,G.H.;Neuenswander,B.;Schoenen,F.;Aube,J.J.Comb.Chem.2007,9,20-28.
    (b)Small molecules:the missing link in the central dogma.Schreiber,S.L.Nat.Chem.Biol.2005,1,64-66.
    (c)Chemical genetics to chemical genomics:small molecules offer big insights.Spring,D.R.Chem.Soc.Rev.2005,34,472-482.
    (d)4,5-Dihydro-1 H-pyrazole Derivatives with Inhibitory nNOS Activity in Rat Brain:Synthesis and Structure-Activity Relationships.Camacho,M.E.;Leon,J.;Entrena,A.;Velasco,G;Carrion,M.D.;Escames,G;Vivo,A.;Acuna-Castroviejo,D.;Gallo,M.A.;Espinosa,A.J.Med.Chem.2004,47,5641-5650.
    (e)Inhibition of nNOS Activity in Rat Brain by Synthetic Kynurenines:Structure-Activity Dependence.Camacho,E.;Leon,J.;Carrion,A.;Entrena,A.;Escames,G.;Khaldy,H.Acuna-Castroviejo,D.;Gallo,M.A.;Espinosa,A.J.Med.Chem.2002,45,263-274.
    85.(a)Synthesis and Selective Inhibitory Activity of 1-Aeetyl-3,5-diphenyl-4,5-dihydro-(1H)-pyrazole Derivatives against Monoamine Oxidase.Chimenti,F.;Bolasco,A.;Manna,F.;Secci,D.;Chimenti,P.;Befani,O.;Turini,P.;Giovannini,V.;Mondovi,B.;Cirilli,R.;La Torre,F.J.Med.Chem.2004,47,2071-2074.
    (b)Synthesis and antidepressant activity of some 1,3,5-triphenyl-2-pyrazolines and 3-(2″-hydroxy naphthalen-1″-yl)-1,5-diphenyl-2-pyrazolines.Rajendra Prasad,Y.;Lakshmana Rao,A.;Prasoona,L.;Murali,K.;Ravi Kumar,P.Bioorg.Med.Chem.Lett.2005,15,5030-5034.
    (c)Novel 3,4-diarylpyrazolines as potent cannabinoid CB_1 receptor antagonists with lower lipophilicity.Lange,J.H.M.;van Stuivenberg,H.H.;Veerman,W.;Wals,H.C.;Stork,B;.Coolen,H.K.A.C.;McCreary,A.C.;Adolfs,T.J.P.;Kruse,C.G.Bioorg.Med.Chem.Lett.2005,15,4794-4798.
    (d)Identification of Compounds with Anti-West Nile Virus Activity.Goodell,J.R;Puig-Basagoiti,F.;Forshey,B.M.;Shi,P.-Y.;Ferguson,D.M.J.Med.Chem.2006,49,2127-2137.
    (e)Synthesis of some pyrazole derivatives and preliminary investigation of their affinity binding to P-glycoprotein.Manna,F.;Chimenti,F.;Fioravanti,R.;Bolasco,A.;Secci,D.;Chimenti,P.;Fedini,C.;Scambia,G.Bioorg.Med.Chem.Lett.2005,15,4632-4635.
    86.(a)Versatile,Diastereoselective Additions of Silyl Ketene Acetals,Allyl Tributylstannane,and Me3SiCN to N-Acyl Pyrazolines:Asymmetric Synthesis of Densely Functionalized Pyrazolidines.Guerra,F.M.;Mish,M.R.;Carreira,E.M.Org.Lett.2000,2,4265-4267.
    (b)Oxidative Aromatization of 1,3,5-Trisubstituted Pymzolines and Hantzsch 1,4-Dihydropyridines by Pd/C in Acetic Acid.Nakamichi,N.;Kawashita,Y.;Hayashi,M.Org.Lett.2002,4,3955-3957.
    (c)Efficient Synthesis of Enantiomerically Pure α-Alkyl Cyclopropanecarbonitrile Derivatives from Pyrazolines.Ruano,J.L.G.;de Diego,S.A.A.;Martin,M.R.;Torrente,E.;Castro,A.M.M.Org.Lett.2004,6,4945-4948.
    87.Aqueous N-Heterocyclization of Primary Amines and Hydrazines with Dihalides:Microwave-Assisted Syntheses of N-Azaeycloalkanes,Isoindole,Pyrazole,Pyrazolidine,and Phthalazine Derivatives.Ju,Y.H.;Varma.,R.S.J.Org.Chem.2006,71,135-141.
    88.Solid-Phase Synthesis of Pyrazolines and Isoxazolines with Sodium Benzenesulfinate as a Traceless Linker.Chen,Y.;Lam,Y.L.;Lai,Y.H.Org.Lett.2003,5,1067-1069.
    89.Enantioselective 1,3-Dipolar Cycloaddition Reaction between Diazoacetates and r-Substituted Acroleins:Total Synthesis of Manzacidin A.Kano,T.;Hashimoto,T.;Maruoka,K.J.Am.Chem.Soc.2006,128,2174-2175.
    90.Reaction of Diaryl-1,2-diones with Triphenylphosphine and Diethyl Azodicarboxylate Leading to N,N-Diearboethoxy Monohydrazones via a Novel Rearrangement.Nair,V.;Biju,A.T.;Abhilash,K.G.;Menon,R.S.;Suresh,E.Org. Lett.2005,7,2121-2123.
    91.Reaction of Huisgen Zwitterion with 1,2-Benzoquinones and Isatins:Expeditious Synthesis of Dihydro-1,2,3-benzoxadiazoles and Spirooxadiazolines.Nair,V.;Biju,A.T.;Vinod,A.U.;Suresh,E.Org.Lett.2005,7,5139-5142.
    92.Novel Synthesis of Highly Functionalized Pyrazolines and Pyrazoles by Triphenylphosphine-Mediated Reaction of Dialkyl Azodicarboxylate with Allenic Esters.Nair,V.;Biju,A.T.;Mohanan,K.;Suresh,E.Org.Lett.2006,8,2213-2216.
    93.A Novel Reaction of the "Huisgen Zwittefion" with Chaleones and Dienones:An Efficient Strategy for the Synthesis of Pyrazoline and Pyrazolopyridazine Derivatives.Nair,V.;Mathew,S,C,;Biju,A.T.;Suresh,E.Angew.Chem.,Int.Ed.2007,46,2070-2073.
    94.General conversion of phenols to anilines.Rossi,R.A.;Bunnett,J.F.J.Org.Chem.1972,37,3570-3570.
    95.A New Practical One-Pot Conversion of Phenols to Anilines.Mizuno,M.;Yamamo,M.Org.Lett.2005,7,3629-3631.
    96.Synthesis of Nonsubstituted Anilines from Molecular Nitrogen via Transmetalation of Arylpalladium Complex with Titanium-Nitrogen Fixation Complexes.Hori,K.;Mori,M.J.Am.Chem.Soc.1998,120,7651-7652.
    97.Synthesis of Highly Substituted Aniline and o-Phenylenediamine Derivatives Containing Various Substitution Patterns.Kranjc,K.;Stefane,B.;Polanc,S.;Kocevar,M.J.Org.Chem.2004,69,3190-3193.
    98. The Combinatorial Synthesis of Bicyclic Privileged Structures or Privileged Substructures. Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. Rev. 2003, 103, 893-930.
    99. For reviews, see: (a) Synthesis and Functionalization of Indoles Through Palladium-catalyzed Reactions. Cacchi, S.; Fabrizi, G. Chem. Rev. 2005, 105, 2873-2920.
    (b) Practical Methodologies for the Synthesis of Indoles. Humphrey, G. R.; Kuethe, J. T. Chem. Rev. 2006,106,2875-2911.
    100. (a) Fischer, E.; Jourdan, F. Ber. Dtsch. Chem. Ges. 1883, 16, 2241-2245.
    (b) Fischer, E.; Jourdan, F. Ber. Dtsch. Chem. Ges. 1884, 17, 559-563.
    (c) The Neber Route to Substituted Indoles. Taber, D. F.; Tian, W. W. J. Amer. Chem. Soc. 2006, 128, 1058-1059.
    (d) A Palladium-Catalyzed Method for the Preparation of Indoles via the Fischer Indole Synthesis. Wagaw, S.; Yang, B. H.; Buchwald, S. L. J. Amer. Chem. Soc. 1999, 121, 10251-10263.
    (e) Zinc-Promoted Hydrohydrazination of Terminal Alkynes: An Efficient Domino Synthesis of Indoles. Alex, K.; Tillack, A.; Schwarz, N.; Beller, M. Angew. Chem., Int. Ed. 2008, 47, 2304-2307.
    (f) Tandem Hydroformylation/Fischer Indole Synthesis: A Novel and Convenient Approach to Indoles from Olefins. Kohling, P.; Schmidt, A. M.; Eilbracht, P. Org. Lett. 2003, 5, 3213-3216.
    101. (a) New Organolithium Addition Methodology to Diversely Functionalized Indoles. Coleman, C. M.; O'Shea, D. F. J. Amer. Chem. Soc. 2003, 125, 4054-4055.
    (b) A Facile Method for the Synthesis of Polycyclic Indole Derivatives: The Generation and Reaction of Tungsten-Containing Azomethine Ylides. Kusama, H.; Takaya, J.; Iwasawa, N. J. Amer. Chem. Soc. 2002, 124, 11592-11593.
    (c) Indole Synthesis via Palladium-Catalyzed Intramolecular Cyclization of Alkynes and Imines. Takeda, A.; Kamijo, S.; Yamamoto, Y. J. Amer. Chem. Soc. 2000,122, 5662-5663.
    (d) Radical Cyclization of 2-Alkenylthioanilides: A Novel Synthesis of 2,3-Disubstituted Indoles. Tokuyama, H. Yamashita, T.; Reding, M. T.; Kaburagi, Y.; Fukuyama, T. J. Amer.Chem.Soc.1999,121,3791-3792.
    (e)Synthesis of Polysubstituted Indoles and Indolines by Means of Zirconocene-Stabilized Benzyne Complexes.Tidwell,J.H.;Buchwald,S.L.J.Amet.Chem.Soc.1994,116,11797-11810.
    (f)Li,G.T.;Huang,X.G.;Zhang,L.M.Angew.Chem.,Int.Ed.2008,47,346-349.
    (g)Synthesis of 2,3-Disubstituted Indoles by a Rhodium-Catalyzed Aromatic Amino-Claisen Rearrangement of N-Propargyl Anilines.Saito,A.;Kanno,A.;Hanzawa,Y.Angew.Chem.,Int.Ed.2007,46,3931-3933.
    (h)From PtCl_2- and Acid-Catalyzed to Uncatalyzed Cycloisomerization of 2-Propargyl Anilines:Access to Functionalized Indoles.Carious,K.;Ronan,B.;Mignani,S.;Fensterbank,L.;Malacria,M.Angew.Chem.,Int.Ed.2007,46,1881-1884.
    (i)Intramolecular C-H Amination Reactions:Exploitation of the Rh_2(Ⅱ)-Catalyzed Decomposition of Azidoacrylates.Stokes,B.J.;Dong,H.J.;Leslie,B.E.;Pumphrey,A.L.;Driver,T.G.J.,Amer.Chem.Soc.2007,129,7500-7501.
    102.(a)Synthesis of Highly Substituted Indolines and Indoles via Intramolecular[4+2]Cycloaddition of Ynamides and Conjugated Enynes.Dunetz,J.R.;Danheiser,R.L.J.Amer.Chem.Soc.2005,127,5776-5777.
    (b)An Annulative Approach to Highly Substituted Indoles:Unusual Effect of Phenolic Additives on the Success of the Arylation of Ketone Enolates.Rutherford,J.L.;Rainka,M.P.;Buchwald,S.L.J.Amer.Chem.Soc.2002,124,15168-15169.
    (c)Palladium-Catalyzed Aryl Amination-Heck Cyclization Cascade:A One-Flask Approach to 3-Substituted Indoles.Jensen,T.;Pedersen,H.;Bang-Andersen,B.;Madsen,R.;Jφrgensen,M.Angew.Chem.,Int.Ed.2008,47,888-890.
    (d)One-Pot Multicornponent Synthesis of Indoles from 2-Iodobenzoic Acid.Leogane,O.;Lebel,H.Angew.Chem.,Int.Ed.2008,47,350-352.
    (e)Direct Synthesis of 2-(Aminomethyl)indoles through Copper(Ⅰ)-Catalyzed Domino Three-Component Coupling and Cyclization Reactions.Ohno,H.;Ohta,Y.;Oishi,S.;Fujii,N.Angew.Chem.,Int.Ed.2007,46,2295-2298.
    (f)Rhodium-Catalyzed Cycloisomerization:Formation of Indoles,Benzofurans,and Enol Lactones.Trost,B.M.;McClory,A.Angew.Chem.,Int.Ed.2007,46,2074-2077.
    (g)The Azaallylic Anion as a Synthon for Pd-Catalyzed Synthesis of Heterocycles:Domino Two- and Three-Component Synthesis of Indoles.Barluenga,J.;Jiménez-Aquino,A.;Valdés,C.;Aznar,F.Angew.Chem.,Int.Ed 2007,46,1529-1532.
    (h)Elaboration of 2-(Trifluoromethyl)indoles via a Cascade Coupling/Condensation/Deacylation Process.Chen,Y.;Wang,Y.J.;Sun,Z.M.;Ma,D.W.Org.Lett.2008,10,625-628.
    (i)Synthesis of 2-Vinylic Indoles and Derivatives via a Pd-Catalyzed Tandem Coupling Reaction.Fayol,Fang,Y.Q.;Lautens,M.Org.Lett.2006,8,4203-4206.
    103.(a)C-H Activation as a Strategic Reaction:Enantioselective Synthesis of 4-Substituted Indoles.Davies,H.M.L.;Manning,J.R.J.Amer.Chem.Soc.2006,128,1060-1061.
    (b)Room Temperature and Phosphine Free Palladium Catalyzed Direct C-2 Arylation of Indoles.Lebrasseur,N.;Larrosa,I.J.Amer.Chem.Soc.2008,130,2926-2927.
    (c)Room Temperature Palladium-Catalyzed 2-Arylation of Indoles.Deprez,N.R.;Kalyani,D.;Krause,A.;Sanford,M.S.J.Amer.Chem.Soc.2006,128,4972-4973.
    104.(a)Spectroscopic studies of the electrophilie activation of amides with triflic anhydride and pyridine.Charette,A.B.;Grenon,M.Can.J.Chem.2001,79,1694-1703 and references therein.
    (b)Practical and Highly Regio- and Stereoselective Synthesis of 2-Substituted Dihydropyridines and Piperidines:Application to the Synthesis of(-)-Coniine.Charette,A.B.;Grenon,M.;Lemire,A.;Pourashraf,M.;Martel,J.J.Am.Chem.Soc.2001,123,11829-11830.
    (c)Highly Chemoselective Metal-Free Reduction of Tertiary Amides.Barbe,G.;Charette,A.B.J.Amer.Chem.Soc.2008,130,18-19.
    (d)Single-Step Synthesis of Pyrimidine Derivatives.Movassaghi,M.;Hill,M.D.J.Am.Chem.Soc.2006,128,14254-14255.
    (e)Synthesis of Substituted Pyridine Derivatives via the Ruthenium-Catalyzed Cycloisomerization of 3-Azadienynes.Movassaghi,M.;Hill,M.D.J.Am.Chem.Soc.2006,128,4592-4593.
    (f)Direct Synthesis of Pyridine Derivatives.Movassaghi,M.;Hill,M.D.;Ahmad,O.K.J.Am.Chem.Soc.2007,129,10096-10097
    105.(a)Palladium-Catalyzed Cross-Coupling of Aryl or Vinyl Iodides with Ethyl Diazoaeetate.Peng,C.;Cheng,J.J.;Wang,J.B.J.Amer.Chem.Soc.2007,129,8708-8709.
    (b)BH_3-Catalyzed Oligomerization of Ethyl Diazoacetate:The Role of C-Boron Enolates.Bai,J.;Burke,L.D.;Shea,K.J.J.Amer.Chem.Soc.2007,129,4981-4991.
    (c)Brφnsted Acid-Catalyzed Insertion of Aryldiazoacetates to sp~2Carbon-CHO Bond:Facile Construction of Chiral All-Carbon Quaternary Center.Hashimoto,T.;Naganawa,Y.;Maruoka,K.J.Amer.Chem.Soc.2008,130,2434-2435.
    (d)Design of Axially Chiral Dicarboxylic Acid for Asymmetric Mannieh Reaction of Arylaldehyde N-Boe Imines and Diazo Compounds.Hashimoto,T.;Maruoka,K.J.Amer.Chem.Soc.2007,129,10054-10055.
    106.t-Butyl Diazoacatate.Regitz,M.;Hocker,J.;Liedhegener,A.Organic Syntheses Coll.Vol.5,1973,179-181;Vol.48,1968,36-40.
    107.Therrnolysis of Sulfonyl Azides Bearing Nucleophilic Neighboring Groups.A search for Anchimeric Assitance.McManus,S.P.;Smith,M.R.J.Org.Chem.1984,49,683-687.
    108.An Efficient and Convenient Synthesis of 2-Mercaptobenzaldehyde.Kasmai,H.S.;Mischke,S.G.Synthesis 1989,763-765.
    109.Novel Heterocycles:Tetrazinodi(heteroarenes),Synthesis and Structure.Eichenberger,T.;Balli,H.Helvetica Chimica Acta 1986,69,1521-1530.
    110.A Click Chemistry Approach to Tetrazoles by IIuisgen 1,3-Dipolar Cycloaddition:Synthesis of 5-Sulfonyl Tetrazoles from Azides and Sulfonyl Cyanides.Demko,Z.P.;Sharpless,K.B.Angew.Chem.,Int.Ed 2002,41,2110-2113.
    111.A Novel Synthesis of α-Azidocinnamates,α-Azido-α,β-Unsaturated Ketones,and β-Azidostyrenes Mediated by Cerium(Ⅳ)Ammonium Nitrate.Nair,V.;George,T.G.Tetrahedron Letters 2000,41,3199-3201.
    112.The Preparation of 1,2,3-Trisubstituted Guanidines.Katritzky,A.R.;Khashab,N.M.;Bobrov,S.Helvetica Chimica Acta 2005,88,1664-1675.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700