3-甲氧基黄酮的新合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄酮类化合物是自然界中分布最广的一类多酚类物质,其有着广泛且重要的生理药理活性,如抗氧化、抗癌、抗过敏、抗菌、抗炎活性以及抗心血管疾病和镇痛作用。3-甲氧基黄酮由于其特定的抗病毒活性和抗肿瘤活性,使得其合成研究备受人们的青睐。
     本论文研究了3-甲氧基黄酮的制备。首先通过邻羟基苯乙酮衍生物与苯甲醛衍生物发生Claisen-Schmidt缩合反应,得到查尔酮化合物,用SeO2氧化环合查尔酮得到系列黄酮化合物,接着在过溴化吡啶鎓盐的作用下,选择性溴化得到3-溴黄酮化合物,最后与甲醇钠反应,得到系列3-甲氧基黄酮化合物。首先邻羟基苯乙酮衍生物与苯甲醛衍生物在20%KOH溶液中,以TBAB为催化剂发生羟醛缩合反应,得到查尔酮化合物,其收率为60%~80%左右;同时采用固相研磨方法来合成2-硝基查尔酮。
     以2 equivalen SeO2作为氧化剂,正辛醇为溶剂,将查尔酮氧化环合得到黄酮化合物,收率为40%~60%左右。
     以过溴化吡啶鎓盐作为溴化剂,与黄酮化合物发生溴化反应,得到系列3-溴黄酮化合物,收率为70%~90%左右。
     甲氧基化反应是整条路线的关键步骤。以甲醇钠作为甲氧基化试剂,在TBAB催化下,与3-溴黄酮反应得到系列3-甲氧基黄酮化合物,收率为40%~60%左右。
     在本论文的主要目标(黄酮化合物转变成3-甲氧基黄酮化合物)实现的过程中,涉及到一系列的查尔酮、黄酮、3-溴黄酮以及3-甲氧基黄酮的合成,这为后来的生物活性检测或构效关系研究打下坚实的物质基础。
     上述所有目标产物及关键中间体的谱图数据,如:红外光谱、核磁共振氢谱、碳谱等,均符合各化合物的结构特征。
Flavonoids from a class of polyphenos which are ubiquitous in nature, possess wide spectrum and importance of biological and pharmacological activities, such as antioxidant, anticarcinogenic, antiallergic, antimicrobial, antiinflammatory activity as well as anticardiovascular and analgesic properties. Due to specific antiviral activity and antitumor activity of 3-methoxyflavones, tremendous attentions are given to the synthesis of 3-methoxyflavones.
     In this paper, the process of preapring the 3-methoxyflavones was described concisely as follows. Firstly, chalcones were prepared from o-hydroxyacetophenone derivations and benzaldehyde derivations by Claisen-Schmidt reaction, which were oxidative cyclized under the effect of SeO2 to give flavones. Then, flavones were converted to 3-bromo?avones by selective bromination with Pyridinium bromide perbromide. At last, 3-methoxyflavones were obtained from 3-bromo?avones via methoxylation with sodium methoxide.
     Chalcones were prepared from o-hydroxyacetophenone derivations and benzal -dehyde derivations by Claisen-Schmidt reaction in 20% KOH solution and taking TBAB as catalyst, the yields were about 60%~80%; Meanwhile, 2-nitrochalcone was obtained by gringing method.
     The synthetic route for flavones were proposed. Under the condition of 2 equivalen SeO2 and octanol as solvent, a series of flavones were obtained, the yields were about 40%~60%.
     The transformation of flavones into the corresponding 3-bromo derivatives proceeded smoothly using the pyridinium bromide perbromide, the yields were about 70%~90%.
     The methoxylation is the key step of the whole reaction route. Under the effect of sodium methylate and TBAB as catalyst, 3-bromoflavones were converted to 3-methoxyflavones, the yields were about 40%~60%.
     In the process of achieving the main objective(flavones were convert to 3-methoxyflavones) of the thesis, some of flavonoids, such as chalcones、flavones、3-bromoflavones、3-methoxyflavones were synthesised, which were laid substantial material foundation for further study of the biological activity or structure-activity relationship.
     The structures of the target compounds and key intermediates were confirmed by IR, ~1H NMR and ~(13)C NMR.
引文
[1]肖崇厚,杨松松,洪筱坤,《中药化学》第1版[M].上海:上海科学技术出版社,1997:265-331.
    [2]姚新生,《天然药物化学》第1版[M].北京:人民卫生出版社,1988:191-240.
    [3]林启寿,《中草药化学成分》北京:科学出版社,1977:266-283.
    [4] Williams, C. A.; Grayer, R. J. Anthocyanins and other flavonoids[J]. Nat Prod Rep, 2004, 21(4): 539-573.
    [5] Veitch, N. C.; Grayer, R. J. Flavonoids and their glycosides, including antho -cyanins[J]. Nat Prod Rep, 2008, 25(3): 555-611.
    [6] Hemingway, R. W.; Foo, L. Y.; Porter, L. J. Linkage isomerism in trimeric and poly -meric 2,3-cis-procyanidins[J]. J. Chem.Soc.,PerkinTrans. 1982, 1: 1209-1216.
    [7] Porter, L. J. Flavans and proanthocyanidins. In The Flavonoids: Advances in Research since, J B Harborne(ed.), Chapman and Hall, London, 1980, 21-26.
    [8] Tatsuzawa, F.; Saitob, N.; Muratac, N.; Shinodac, K.; Shigiharad, A.; Hondad; T. 6-Hydroxypelargonidin glycosides in the orange–red flowers of Alstroemeria[J]. Phytochemistry, 2003, 62(8): 1239-1242.
    [9] Otsukia, T.; Matsufujia, H.; Takedaa, M.; Toyodab, M.; Goda, Y. Acylated anthocyanins from red radish (Raphanus sativus L.)[J]. Phytochemistry, 2002,60(1): 79-87.
    [10] Zorna, B.; Garc?a?-Pi?eresa, A. J.; Castrob, V.; Murillob, R.; Morac, G.; Merforta, I. 3-Desoxyanthocyanidins from Arrabidaea chica[J]. Phytochemistry, 2001, 56(8): 831-835.
    [11] Phrutivorapongkul, A.; Lipipun, V.; Ruangrungsi, N.; Kirtikara, K.; Nishikawak, K.; Maruyama, S.; Watanabe, T.; Ishikawa, T. Studies on the Chemical Constituents of Stem Bark of Millettia leucantha: Isolation of New Chalcones with Cytotoxic, Anti-herpes Simplex Virus and Anti-inflammatory Activities[J]. Chem Pharm Bull, 2003, 51(2): 187-190.
    [12] Iiyas, M.; Perveen, M.; Shafiullah, M. A. S. A novel chalcone from Garcinianervosa[J]. J. Chem. Research(S), 2002, 231-233.
    [13] Iwase, Y.; Takahashi, M.; Takemura, Y.; Ju-ichi, M.; Ito, C.; Furukawa, H.; Yano, M. Isolation and Identification of Two New Flavanones and a Chalcone from Citrus kinokuni[J].Chem Pharm Bull, 2001, 49(10): 1356-1358
    [14] Sritularak, B.; Likhitwitayawuid, K. Flavonoids from the pods of Millettia erythrocalyx[J]. Phytochemistry, 2006, 67(8): 812-817.
    [15] Nakazawa, K.; Ito, M. Synthesis of Ring-substituted Flavonoids and Allied Compounds.X. Synthesis of Ginkgetin[J]. Chem Pharm Bull, 1963, 11(3): 283-288.
    [17] Veitch, N. C. Isoflavonoids of the Leguminosae[J]. Nat Prod Rep, 2007, 24(2): 417-464.
    [18] Reynaud, J.; Guilet, D.; Terreux, R.; Lussignol, M.; Walchshofer, N. Isoflavonoids in non-leguminous families: an update[J]. Nat Prod Rep, 2005, 22(4): 504-515.
    [20] Dhingra, V. K.; Mukerjee, S. K.; Saroja, T.; Seshadri, T. R. Chemical examination of the bark and sapwood of Dalbergia latifolia[J]. Phytochemistry, 1971, 10(10): 2551-2553.
    [21] Mukerjee, S. K.; Saroja, T.; Seshadri, T. R. Dalbergichromene : A new neoflavonoid from stem-bark and heartwood of Dalbergia sissoo[J]. Tetrahedron, 1971, 27 (4): 799-803.
    [22] Reher, G.; KRAUS, L. New neoflavonoids from Coutarea Latiflora[J]. J. Nat. Prod. 1984, 47(1): 172–174.
    [23] Kawazu, K.; Ohigashi, H.; Mitsui, T. The piscicidal constituents of calophyllum inophyllum linn[J]. Tetrahedron Lett., 1968, 9(19): 2383-2385.
    [24] Harborne, J. B.; Williamsa, C. A. Advances in flavonoid research since 1992[J]. Phytochemistry, 2000, 55(6): 481-504.
    [25] Park, J. S.; Rho, H. S.; Kim, D. H.; Chang, I. S. Enzymatic Preparation of Kaempferol from Green Tea Seed and Its Antioxidant Activity[J]. J. Agric. Food Chem., 2006, 54 (8): 2951–2956.
    [26] Gao, H.; Nishida, J.; Saito, S.; Kawabata, J. Inhibitory Effects of5,6,7-Trihydroxy -flavones on Tyrosinase[J]. Molecules, 2007, 12(1), 86-97
    [27] Ramiro-Puig, E.; Urpí-Sardà, M.; Pérez-Cano, F. J.; Franch,à.; Castellote, C.; Andrés- Lacueva, C.; Izquierdo-Pulido, M.; Castell, M. Cocoa-Enriched Diet Enhances Antioxidant Enzyme Activity and Modulates Lymphocyte Composition in Thymus from Young Rats[J]. J. Agric. Food. Chem., 2007, 55(16): 6431-6438.
    [28] Kazazi?, S. P.; Butkovi?, V.; Srzi?, D.; Klasinc, L. Gas-Phase Ligation of Fe+ and Cu+ Ions with Some Flavonoids[J]. J. Agric. Food. Chem., 2006, 54(22): 8391- 8396.
    [29] Hajji, H. E.; Nkhili, E.; Tomao, V.; Dangles, O. Interactions of quercetin with iron and copper ions: Complexation and autoxidation[J]. Free Radic. Res., 2006, 40(3): 303-320.
    [30] Yan, C. H.; Han, R. Genistein suppresses adhesion-induced protein tyrosine phos–phorylation and invasion of B16-BL6 melanoma cells[J]. Cancer letters, 1998, 129(1): 117-124.
    [35] Yanagihara, K.; Ito, A.; Toge, T.; Numoto, M. Antiproliferative Effects of Isoflavones on Human Cancer Cell Lines Established from the Gastrointestinal Tract[J]. Cancer Res., 1993, 53(23): 5815-5821.
    [33] Cappelletti, V.; Fioravanti, L.; Miodini, P.; Fronzo, G. D. Genistein blocks breast cancer cells in the G2M phase of the cell cycle[J]. J. Cell. Biochem., 2000, 79(4): 594-600.
    [34] Ranelletti, F. O.; Maggiano, N.; Serra, F. G.; Ricci, R.; Larocca, L. M.; Lanza, P.; Scambia, G.; Fattorossi, A.; Capelli, A.; Piantelli, M. Quercetin inhibits p21-RAS expression in human colon cancer cell lines and in primary colorectal tumors[J]. Int. J. Cancer, 2000, 85(3): 438-445.
    [35] Holder, S.; Zemskova, M.; Zhang, C.; Tabrizizad, M.; Bremer, R.; Neidigh, W.; Lilly, M. B. Characterization of a potent and selective small-molecule inhibitor of the PIM1 kinase[J]. Mol. Cancer Ther., 2007, 6(1): 163-172.
    [36] Ikegawa, T.; Ushigome, F.; Koyabu, N.; Morimoto, S. Inhibition of P-glyco–protein by orange juice components, polymethoxyflavones in adriamycin-resistant human myelogenousleukemia (K562/ADM) cells[J]. Cancer Lett, 2000, 160(1): 21-28.
    [37] Fischer, E. H.; Charbonneau, H.; Tonks, N. K. Protein tyrosine phosphatases: a diverse family of intracellular and transmembrane enzymes[J]. Science, 1991, 253 (5018): 401-406.
    [38] Geahlen, R. L.; Koonchanok, N. M.; McLaughlin, J. L.; Pratt, D. E. Inhibition of Proteiin-Tyrosine Kinase Activity by Flavanoids and Related Compounds[J]. J. Nat. Prod. 1989, 52(5): 982–986.
    [39] Akiyama, T.; Ishida, J.; Nakagawa, S.; Ogawara, H.; Watanabe, S.; Itoh, N.; Shibuya, M.; Fukami, Y. Genistein, a Specific Inhibitor of Tyrosine-specific Protein Kinases[J]. J. Biol. Chem., 1987, 262(12): 5592-5595.
    [40] Hunter, T. Protein kinases and phosphatases: The Yin and Yang of protein phosphorylation and signaling[J]. Cell, 1995, 80(2): 225-236.
    [41] Rudd, C. E. CD4, CD8 and the TCR-CD3 complex: a novel class of protein-tyrosi -ne kinase receptor[J]. Immunol. Today, 1990, 11: 400-406.
    [42] Cambier, J. C.; Morrison, D. C.; Chien, M. M.; Lehmann, K. R. Modeling of T cell contact-dependent B cell activation. IL-4 and antigen receptor ligation primes quiescent B cells to mobilize calcium in response to Ia cross-linking[J]. J. Immunol., 1991, 146(7): 2075-2082.
    [43] Carter, R. H.; Tuveson, D. A.; Park, D. J.; Rhee, S. G.; Fearon, D. T. The CD19 complex of B lymphocytes. Activation of phospholipase C by a protein tyrosine kinase- dependent pathway that can be enhanced by the membrane IgM complex[J]. J. Immunol., 1991, 147(11): 3663-3671.
    [44] Milich, D. R.; McLachlan, A.; Stahl, S.; Wingfield, P.; Thornton, G. B.; Hughes, J. L.; Jones, J. E. Comparative immunogenicity of hepatitis B virus core and E antigens [J]. J. Immunol., 1988, 141(10): 3671-3679.
    [45] Rankin, B. M.; Yocum, S. A.; Mittler, R. S.; Kiener, P. A. Stimulation of tyrosine phos -phorylation and calcium mobilization by Fc gamma receptor cross-linking. Regulation by the phosphotyrosine phosphatase CD45[J]. J. Immunol., 1993, 150(2): 605-616.
    [46] Eversa, D. L.; Chao, C. F.; Wang, X.; Zhang, Z.; Huong, S. M.; Huang, E. S. Human cytomegalovirus-inhibitory flavonoids: Studies on antiviral activity and mechanism of action[J]. Antiviral Res., 2005, 68(3): 124-134.
    [47] Lyu, S. Y.; Rhim, J. Y.; Park, W. B. Antiherpetic Activities of Flavonoids against Herpes Simplex Virus Type 1 (HSV-1) and Type 2 (HSV-2) In Vitro[J]. Arch. Pharm.Res., 2005, 28(11): 1293-1301.
    [48] White, R. E.; Coon, M. J. Oxygen Activation by Cytochrome P-4501[J]. Annu. Rev. Biochem., 1980, 49: 315-356.
    [49] Huang, Y. T.; Kuo, M. L.; Liu, J.Y.; Huang, S.Y.; Lin, J. K. Inhibitions of protein kinase C and proto-oncogene expressions in NIH 3t3 cells by apigenin[J]. Eur. J. Cancer, 1996, 32(1): 146-151.
    [50] Ning, X. H.; Ding, X.; Childs, K. F.; Bolling, S. F.; Gallagher, K. P. Flavone improves functional recovery after ischemia in isolated reperfused rabbit hearts[J]. J. Thorac.Cardiovasc.Surg.,1993, 105: 541-549.
    [51] McCord, J. M. Oxygen-Derived Free Radicals in Postischemic Tissue Injury[J]. N. Engl. J. Med., 1985, 312(3): 159-163.
    [52]刘湘,汪秋安.《天然产物化学》第1版[M].北京:化学工业出版社,2005:75-77.
    [1] Lu, H. W., Sugahara, K.; Sagara, Y.; Masuoka, N.; Asaka, Y.; Manabe, M.; Kodama, H. Effect of Three Flavonoids, 5,7,3’,4’-Tetrahydroxy-3-methoxy Flavone, Luteolin, and Quercetin, on the Stimulus-Induced Superoxide Generation and Tyrosyl Phosphorylation of Proteins in Human Neutrophil[J]. Archives of Biochemistry and Biophysics, 2001, 393(1): 73–77.
    [2] Hoof, L. V.; Vanden Berghe, D. A.; Hatfield, G. M.; Vlietinck, A. J. Plant Antiviral Agents; VI.1 3-Methoxyflavones as Potent Inhibitors of Viral-Induced Block of Cell Synthesis[J]. Planta Medica, 1984, 50 (6): 513-517.
    [3] Tsuchiya Y, Shimizu M, Hiyama Y, Itoh K, Hashimoto Y, Nakayama M, Horie T, Morita N. Antiviral activity of natural occurring flavonoids in vitro[J]. Chem. Pharm.Bull. 1985,33(9):3881-3886.
    [4] Meyer, N. D.; Haemers, A.; Mishra, L.; Pandey, H. K.; Pieters, L. A. C.; Berghe, D. A. V.; Vlietinck,A.J. 4'-Hydroxy-3-methoxyflavones with potent antipicornavirus activity[J]. J. Med. Chem. 1991, 34 (2): 736-746.
    [6] Ishitsuka, H.; Ohsawa, C.; Ohiwa, T.; Umeda, I.; Suhara, Y. Antipicornavirus flavone Ro 09-0179[J]. Antimicrob. Agents Chemother. 1982, 22 (4): 611-616.
    [7] Tsuchiya, Y.; Shimizu, M.; Hiyama, Y.; Itoh, K.; Hashimoto, Y.; Nakayama, M.; Horie, T.; Morita, N. Antiviral activity of natural occurring flavonoids in vitro[J]. Chem. Pharm.Bull. 1985, 33(9): 3881-3886.
    [8] Marder, M.; Viola, H.; Wasowski, C.; Wolfman, C.; Waterman, P. G.; Medina, J. H. Paladini, A. C. 6,3'-Dinitroflavone, a novel high affinity ligand for the benzodiazepine receptor with potent anxiolytic properties[J]. Bioorg. Med.Chem.Lett. 1995, 5 (22): 2717-2720.
    [9] R.G. Douglas, Jr.,“Respiratory Disease,”ed. by G.J. Galasso, T.C. Merigan and R.A. Buchanan, Raven Press, New York, 1979, p. 113.
    [10] Kraus, G.; Roy, S. Direct Synthesis of Chrysosplenol D[J]. J. Nat. Prod. 2008, 71(11): 1961–1962.
    [11] Repák, M.; vehlíková, V.; Imrich, J.; Pihlaja, K. Jaceidin and chrysosplenetin chemotypes of Chamomilla recutita (L.) Rauschert[J]. Biochem. Syst. Ecol. 1999, 27: 727–732.
    [12] Diaz, F.; Chavez, D.; Lee, D.; Mi, Q.; Chai, H.-B.; Tan, G. T.; Kardono, L. B. S.; Riswan, S.; Fairchild, C. R.; Wild, R.; Farnsworth, N. R.; Cordell, G. A.; Pezzuto, J. M.; Kinghorn, A. D. J. Cytotoxic flavone analogues of vitexicarpin, a constituent of the leaves of Vitex negundo[J]. J. Nat. Prod. 2003, 66(6): 865–867.
    [13] Iwase, Y.; Takemura, Y.; Ju-ichi, M.; Ito, C.; Furukawa, H.; Kawaii, S.; Yano, M.; Mou, X. Y.; Takayasu, J.; Tokuda, H.; Nishino, H. Inhibitory effect of flavonoids from Citrus plants on Epstein–Barr virus activation and two-stage carcinogenesis of skin tumors[J]. Cancer Lett. 2000, 154 (1): 101-105.
    [14] Li, S.; Pan, M.-H.; Lai, C.-S.; Lo, C.-Y.; Dushenkov, S.; Ho C.-T. Isolation and syntheses of polymethoxyflavones and hydroxylated polymethoxyflavones as inhibitors of HL-60 cell lines[J]. Bioorg. Med.Chem. 2007, 15 (10): 3381-3389.
    [15] Boumendjel A, Bois F, Beney C, Mariotte A-M, Conseil G, Di Pietro A, B-ring substituted 5,7-dihydroxyflavonols with high-affinity binding to P-glycoprotein responsible for cell multidrug resistance[J]. Bioorg. Med.Chem. Lett. 2001, 11(1): 75–77.
    [16] Lee J, Park T, Jeong S, Kim K-H, Hong C, 3-Hydroxy -chromones as cyclin -dependent kinase inhibitors: Synthesis and biological evaluation[J]. Bioorg. Med.Chem. Lett. 2007, 17(5): 1284–1287.
    [17] Deng, B. L.; Lepoivrea, J. A.; Lemikre, G.; Dommissea, R.; Claeys, M.; Boersa, F. Groota, A. D. A Practical Synthesis of 3-Methoxyflavones[J]. Liebigs Ann./Recueil. 1997, 2169-2175.
    [18] Hahn, H. G.; Oh, H. S.; Cheon, S. H.; Oak, M. H.; Kim, Y. R.; Kim, K. M. Excavation of Lead Compounds that Inhibit Mast Cell Degranulation by Combinatorial Chemistry and Activity-Guided[J]. Arch. Pharm. Res. 2004, 27(5): 518-523.
    [19] Boersa, F.; Denga, B. L.; Lemibrea, G.; Lepoivrea, J.; Groota, A. D.; Donunissea, R; Vlietinck, A. J. An Improved Synthesis of the Anti-Picornavirus Flavone 3-O-Methylquercetin[J]. Arch. Pharm. Pharm. Med. Chem. 1997, 330: 313-316.
    [20] Yoo, H.; Kim, S. H.; Lee, J.; Kim, H. J.; Seo, S. H.; Chung, B. Y.; Jin, C.; Lee, Y. S. Synthesis and Antioxidant Activity of 3-Methoxyflavones[J]. Bull. Korean Chem. Soc. 2005, 26(12): 2057-2060.
    [21] Kraus, G.; Roy, S. Direct Synthesis of Chrysosplenol D[J]. J. Nat. Prod. 2008, 71(11): 1961–1962.
    [22]朱洪友;张成敏;刘复初. 3,4’-二甲氧基莰菲醇[J].合成化学.2000, 8(4): 284 -283.
    [23] Takahashi H, Kubota Y. Fang L, Onda M, Reaction of 2'-Hydroxychalcones with Alkaline Hydrogen Peroxide[J]. Heterocycles. 1986, 24(4): 1099-1107.
    [24] Meyer, M.; Bodo, B.; Deschamps, C.; Molho, D. Cis-dimethoxylation de perchlo -rates d'alkoxy-3 flavylium[J]. Tetrahedron Lett. 1984, 25(40): 4519-4520.
    [25] Pandey, G.; Krishna, A.; Kumaraswamy, G. Photosensitized (set) conversion of 2′-hydroxychalcones to flavonoids a probable biogenetic pathway[J]. Tetrahedron Lett. 1987, 28(39): 4615-4616.
    [1]廖头根,汪秋安,方伟琴,朱华结.新型查尔酮类化合物的合成及其生物活性研究[J].有机化学, 2006, 26(5): 685-689.
    [2]曾平莉,王东,冯驸.查尔酮的合成研究进展[J].化工生产与技术, 2005, 12(3): 23-26.
    [3] Hsu, Y. L.; Kuo, P. L.; Tzeng, W. S.; Lin, C. C. Chalcone inhibits the proliferation of human breast cancer cell by blocking cell cycle progression and inducing apoptosis[J]. Food Chem. Toxicol, 2006, 44(5): 704-713.
    [4] Rafi, M. M.; Rosen, R. T.; Vassil, A.; Ho, C. T.; Zhang, H.; Ghai, G.; Lambert, G.; DiPaola, R. S. Modulation of bcl-2 and cytotoxicity by licochalcone-A, a novel estrogenic flavo -noid[J]. Anticancer Res. 2000, 20(4): 2653-2658.
    [5] Yamazaki, S.; Morita, T.; Endo, H.; Hamamoto, T.; Baba, M.; Joichi, Y.; Kaneko, S.; Okada, Y.; Okuyama, T.; Nishino, H.; Tokue, A. Isoliquiritigenin suppresses pulmonary metastasis of mouse renal cell carcinoma[J]. Cancer Lett. 2002, 183(1): 23-30.
    [6] Hsu, Y. L.; Kuo, P. L.; Lin, C. C. Isoliquiritigenin induces apoptosis and cell cycle arrest through p53-dependent pathway in Hep G2 cells[J]. Life Sci. 2005, 77(3): 279-292.
    [7] Wang, Y.; Chan, F. L.; Chen, S.; Leung, L. K. The plant polyphenol butein inhibits testosterone-induced proliferation in breast cancer cells expressing aromatase [J]. Life Sci. 2005, 77(1): 39-51.
    [8] Nam, N. H.; Kim, Y.; You, Y. J.; Hong, D. H.; Kim, H. M.; Ahn, B. Z. Cytotoxic 2′,5′-dihydr -oxychalcones with unexpected antiangiogenic activity [J].Eur. J. Med. Chem. 2003, 38(2): 179-187.
    [9] Boeck, P.; Bandeira Falc?o, C. A.; Leal, P. C.; Yunes, R. A.; Filho, V. C. Torres-Santos, E. C.; Rossi-Bergmann, B. Synthesis of chalcone analogues with increased antileishmani -al activity[J]. Bioorg. Med. Chem. 2006, 14(5): 1538-1545.
    [10] Liu, M.; Wilairat, P.; Croft, S. L.; Lay-Choo, T. A.; Go, M. L. Structure–activityrelationships of antileishmanial and antimalarial chalcones [J]. Bioorg. Med. Chem. 2003, 11(13): 2729-2738.
    [11] Ram, V. J.; Saxena, A. S.; Srivastava, S.; Chandra, S. Oxygenated chalcones and bischalcones as potential antimalarial agents[J]. Bioorg. Med. Chem. Lett. 2000,10(19): 2159-2161.
    [12] Domínguez, J. N.; León, C.; Rodrigues, J.; de Domínguez, N. G.,; Gut, J.; Rosenthal, P. J. Synthesis and evaluation of new antimalarial phenylurenyl chalcone derivatives [J]. J. Med. Chem. 2005, 48(10): 3654-3658.
    [13] Domíngueza, J. N.; León, C.; Rodrigues, J.; de Domínguez, N. G.; Gut, J.; Rosenthal, P. J. Synthesis and antimalarial activity of sulfonamide chalcone derivatives [J]. 1l Farmaco, 2005, 60(4): 307-311.
    [14] Liu, M.; Wilairat, P.; Go, M. L. Antimalarial alkoxylated and hydroxylated chalones structure-activity relationship analysis[J]. J. Med. Chem. 2001, 44(25): 4443- 4452.
    [15] Uchiumi, F.; Hatano, T.; Ito, H.; Yoshida, T.; Tanum, S. Transcriptional suppression of the HIV promoter by natural compounds [J]. Antiviral Res. 2003, 58(1): 89-98.
    [16] Wu, J. H.; Wang, X. H.; Yi, Y. H; Lee, K. H. Anti-AIDS agents 54. A potent anti-HIV chalcone and flavonoids from genus Desmos[J]. Bioorg. Med. Chem. Lett. 2003, 13(10): 1813-1815.
    [17] Nielsen, S. F.; Boesen, T.; Larsen, M.; Sch?nning, K.; Kromann, H. Antibacterial chalcones-bioisosteric replacement of the 4′-hydroxy group [J]. Bioorg. Med. Chem. 2004, 12(11): 3047-3054.
    [18] Lópeza, S. N.; Castellia, M. V.; Zacchino, S. A.; Domínguezb, J. N.; Lobob, G.; Charris–Charrisb, J.; Cortésc, J. C. G.; Ribasc, J. C.; Deviad, C.; Rodríguezd, A. M.,; Enrizd, R. D. In vitro antifungal evaluation and structure–activity relationships of a new series of chalcone derivatives and synthetic analogues, with inhibitory properties against polymers of the fungal cell wall[J]. Bioorg. Med. Chem. 2001, 9(8): 1999 -2013.
    [19] Herencia, F.; Ferrándiz, M. L; Ubeda, A.; Guilléna, I.; Dominguez, J. N.; Charris,J. E.; Lobo, G. M.; JoséAlcaraz, M. Novel anti-inflammatory chalcone derivatives inhibit the induction of nitric oxide synthase and cyclooxygenase-2 in mouse peritoneal macrophages[J]. FEBS Lett. 1999, 453(1-2): 129-134.
    [20] Herencia, F.; Ferrándiz, M. L.; Ubeda, A.; Dominguez, J. N.; Charris, J. E.; Lobo, G. M.; JoséAlcaraz, M. Synthesis and anti-inflammatory activity of chalcone derivatives [J]. Bioorg. Med. Chem. Lett. 1998, 8(10): 1169-1174.
    [21] Zhao, L. M.; Jin, H. S.; Sun, L. P.; Piao, H. R.; Quan, Z. S. Synthesis and evaluation of antiplatelet activity of trihydroxychalcone derivatives[J]. Bioorg. Med. Chem. Lett. 2005, 15(22): 5027-5029.
    [22]郑洪伟,牛新文,朱君,王绍杰,查尔酮类化合物生物活性研究进展[J].中国新药杂志, 2007, 16(18): 1145-1149.
    [23]王维,吴群绒,杨志兰,沈长虹,张爱清,韦海洋,3’,3-二氨基查尔酮的合成[J].应用化学,2006, 23(4): 447-449.
    [24] Woo, S. W.; Lee, S. H.; Kang, H. C.; Park, E. J.; Zhao, Y. Z.; Kim, Y. C.; Hwan, S. D. Butein suppresses myofibroblastic differentiation of rat hepatic stellate cells in primary culture[J]. J. Pharmacy Pharmacology 2003, 55(3): 347-352.
    [25] Cheng, Z. J.,; Kuo, S. C.; Chan, S. C.; Ko, F. N.; Teng, C. M. Antioxidant properties of butein isolated from Dalbergia odorifera[J]. Biochimica et Biophysica Acta (BBA)- Lipids and Lipid Metabolism, 1998, 1392(2-3): 291-299.
    [26] Sivakumar, P. M.; Seenivasan, S. P.; Kumar, V.; Doble, M. Synthesis, antimycobac -terial activity evaluation, and QSAR studies of chalcone derivatives[J]. Bioorg. Med. Chem. Lett. 2007, 17(6): 1695-1700.
    [27] Rojas, J.; Domínguez, J. N.; Charris, J. E.; Lobo, G.; Payá, M.; FerrándizEur, M. L. Synthesis and inhibitory activity of dimethylamino-chalcone derivatives on the induction of nitric oxide synthase[J]. J. Med. Chem. 2002, 37: 699-705.
    [28]胡志国,刘军,李工安,董志兵,李薇. SOCl2/EtOH催化查尔酮的合成[J].化学研究与应用, 2004, 16(4): 583-584.
    [29] Narender,T.; Reddy, K. P. A simple and highly efficient method for the synthesis of chalcones by using borontrifluoride-etherate[J]. Tetrahedron Lett. 2007, 48: 3177-3180.
    [30] Kerr, D. J.; Hamel, E.; Jung, M. K.; Flynn, B. L. The concise synthesis of chalcone, indanone and indenone analogues of combretastatin A4[J]. Bioorg. Med. Chem. 2007, 15(9): 3290-3298.
    [31] Daskiewicz, J. B.; Comte, G.; Barron, D.; Pietro, A. D.; Thomasson, F. Organolithium mediated synthesis of prenylchalcones as potential inhibitors of chemoresistance[J]. Tetrahedron Lett. 1999, 40: 7095-7098.
    [32]刘玉婷,晏会新,尹大伟,苗东琳.微波法合成含二茂铁基查尔酮[J].精细石油化工, 2010, 27(1): 54-57.
    [33]徐洲,宛瑜,沈阳,吴翚.四丁基溴化铵存在下水介质中微波促进2-羟基查尔酮的合成[J].徐州师范大学学报(自然科学版) 2006, 24(1): 64-66.
    [34]韩荣弼,陈姓,吴学.2-硝基查尔酮类衍生物的合成[J].化学试剂, 2006, 28(4): 243-244.
    [1]王兰明,黄酮化合物的合成方法[J].中国医药工业杂志, 1990, 21(9): 423-428.
    [2] Khobragade, C. N.; Bodade, R. G.; Shinde, M. S.; Juju, D. R.; Bhosle, R. B.; Dawane, B. S. Microbial and xanthine dehydrogenase inhibitory activity of some flavones[J]. J. Enzyme Inhib. Med. Chem. 2007, iFirst article, 1–6.
    [3] Pinto, D. C. G. A.; Silva, A. M. S.; Cavaleiro, J. A. S. Syntheses of 5-hydroxy-2- (phenyl or styryl)chromones and of some halo derivatives[J]. J. Heterocycl. Chem. 1996, 33(6):1887-1893.
    [4] Silva, A. M. S.; Pinto, D. C. G. A.; Cavaleiro, J. A. S. 5-Hydroxy-2-(phenyl or styryl) chromones: One-pot synthesis and C-6, C-8 13C NMR assignments[J]. Tetrahedron Lett. 1994, 35(32): 5899-5902.
    [5] Alam, S. Synthesis, antibacterial and antifungal activity of some derivatives of 2-phenyl- chromen-4-one[J]. J. Chem. Sci. 2004, 116(6): 325–331.
    [6] Buisson, D.; Quintin, J.; Lewin, G. Biotransformation of Polymethoxylated Flavonoids: Access to Their 4’-O-Demethylated Metabolites[J]. J. Nat. Prod. 2007, 70(6): 1035-1038.
    [7] Maki, Y.; Shimada, K.; Sako, M.; Hirota, K. Photo-oxidative cyclisation of 2'-hydroxy -chalcones leading to flavones induced by heterocycle -oxides: high efficiency of pybimido[54- ]pteridine -oxide for the photochemical dehydrogenation[J]. Tetrahedron 1988, 44(11): 3187-3194.
    [8] Pandey, G.; Krishna, A.; Kumaraswamy, G. Photosensitized (set) conversion of 2′-hydroxychalcones to flavonoids a probable biogenetic pathway[J]. Tetrahedron Lett. 1987, 28(39):4615-4616.
    [9]鲁宽科,谭镇,李裕林,黄烷酮电解氧化合成黄酮[J].兰州大学学报(自然科学版),1995, 31(2): 163-164.
    [10] Wu, E. S. C.; Cole, T. E.; Davidson, T. A.; Dailey, M. A.; Doring, K. G.; Fedorchuk, M.; Loch III, J. T.; Thomas, T. L.; Blosser, J. C. Flavones. 2. Synthesis and structure-activity relationship of flavodilol and its analogs. A novel class of antihypertensive agents with catecholamine depleting properties[J]. J. Med. Chem.1989, 32:183-192
    [11] Sanerjji A., Goomer N. C. A New Synthesis of Flavones[J]. synthesis, 1980, 1980(11):874-875.
    [12] Jain, P. K., Makrandi, J. K., Grover, S. K.A Facile Baker-Venkataraman Synth -esis of Flavones using Phase Transfer Catalysis[J]. synthesis 1982, 1982(03): 221-222.
    [13] Saxena S, Makrandi, J. K., Grover, S. K., Synthesis of 5- and/or 7-Hydroxy -flavones using A Modified Phase Transfer-Catalysed Baker-Venkataraman Transformation[J]. synthesis, 1985, 1985(6/7):697-697.
    [14]段新方,张站斌,段新红,5,3′,4′-三羟基-6,7-二甲氧基黄酮的另法全合成[J].有机化学, 2003, 23(4): 353-355.
    [15] Jeffrey, J. A.; Pamela, E. O.; Sunil, V. K.; Robert, C. B.; Jeffrey, C. G. A convenient large-scale synthesis of 5-methoxyflavone and its application to analog preparation[J]. J. Org. Chem. 1993, 58: 7903-7905
    [16] Riva C, Toma C D, Donadel L, Boi C, Pennini R, Motta G, Leonardi A, New DBU (1,8-Diazabicyclo[5.4.0]undec-7-ene) Assisted One-Pot Synthesis of 2,8-Disubstituted 4H-1-Benzopyran-4-ones[J]. synthesis,1997, 1997(2):195-201.
    [17] Deka N, Hadjeri M, Lawson M, Beney C, Boumendjel A. Acetylated Dimethoxy -aniline as a Key Intermediate for the Synthesis of Aminoflavones and Quinol -ones[J]. Heterocycles, 2002, 57(1):123-128.
    [1] Khattab, A. M.; Grace, M. H.; el-Khrisy, E. A. A new flavone derivative from Ehretia ovalifolia leaves[J]. Pharmazie., 2001, 56(8): 661-662.
    [2] Nohara, A.; Umetani, T.; Sanno, Y. Synthese cyclopropenique totale d'un triquina -ne naturel angulaire, le (±)-silphinene[J]. Tetrahedron, 1974, 30(27): 3553-3536.
    [3] Horie, T.; Tominaga, H.; Kawamura, Y.; Hada, T.; Ueda, N.; Amano, Y.; Yamamoto, S. Syntheses of 5,7,8- and 5,6,7-Trioxygenated 3-Alkyl-3’,4’-di -hydroxyflavones and Their Inhibitory Activities against Arachidonate 5-Lipoxygenase[J]. J. Med. Chem. 1991, 34(7): 2169-2176.
    [4] Zhou, Z. Z.; Zhao, P. L.; Huang, W.; Yang, G. F. A Selective Transformation of Flavanones to 3-Bromoflavones and Flavones Under Microwave Irradiation[J]. Adv. Synth. Catal. 2006, 348: 63–67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700