C-N链为桥基的邻羟基二苯基桥连化合物合成及抑菌活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
邻羟基二苯醚类化合物具有优异的抗菌性能,近年的生物信息学研究表明,该类化合物是通过模拟细菌ENR酶的自然作用底物使酶失活,从而破坏和终断了正常的脂肪酸生物合成实现杀菌。研究显示,“邻羟基苯基”分子片段,桥基的类型、结构和形成氢键的能力等对“病原酶- NAD+辅酶-杀菌化合物”三元络合物的形成有重要作用。
     鉴于此,本课题以“邻羟苯基”、“卤代邻羟苯基”为母核,根据生物活性叠加原理,选取在抗菌、抗病毒、抗结核及抗肿瘤领域里有一定的生物活性及广阔的应用前景的席夫碱键、苄胺键、酰腙键及含有咪唑环的结构作为桥基,设计并合成以C-N链为桥基的邻羟基二苯基桥连化合物,并进行了抑菌活性测试。根据结构的不同,将化合物进行如下分类:
     (1)以水杨醛为原料,经过溴代修饰,制得5-溴代及3,5-二溴代水杨醛,与取代芳胺缩合得到N-苯基-邻羟苯基亚胺类化合物。抑菌活性测试表明:3,5-二溴-水杨醛缩席夫碱类化合物对金黄色葡萄球菌、大肠杆菌、白色念珠菌均具有较强的抑菌活性。
     (2)以卤代水杨醛为原料,经与取代芳胺缩合、NaBH4还原,得到N-苯基-卤代邻羟苄胺类化合物。还原反应进程快,产物单一,收率高。抑菌活性测试表明:化合物对白色念球菌、大肠杆菌具有良好的抑菌活性;芳环上引入卤原子的化合物抑菌性能有显著提升。
     (3)以水杨酸甲酯为原料,经溴化、肼解与取代芳香醛缩合得到芳基取代-5-溴水杨酰腙类化合物。抑菌活性测试表明:化合物对白色念珠菌、枯草芽孢杆菌的抑菌率高达100%,具有强抑菌活性。构效分析表明,化合物的抑菌活性与Ar环及其取代基性质有关,引入呋喃环、Ar环邻、对位引入-OH、-OCH3等供电基容易导致化合物抑菌活性降低,Ar环的间位引入Cl、Br等卤素原子能够提高化合物的抑菌活性。
     (4)以水杨醛和乙二胺为起始原料,经缩合、NaBH4还原,进而与芳醛类化合物缩合关环制得N,N′-二(-2-羟苄基)取代咪唑烷衍生物。结果表明,水杨醛与乙二胺的缩合反应,可专一性地生成对称双缩席夫碱化合物;芳醛上的取代基对缩合关环反应有显著影响,邻、对位吸电基可使芳醛的羰基活化,有利于缩合关环反应的进行,邻、对位供电基可使芳醛的羰基钝化,不利于缩合关环反应进行。抑菌活性测试表明,化合物对不同菌株的抑菌活性具有明显的特异性,对白色念珠菌、大肠杆菌的抑菌率高达100%,具有强抑菌性。
     本文总结了抑菌活性和化合物结构之间的关系,为进一步设计具有广谱高效的抗菌型化合物奠定了基础。
o-Hydroxy diphenyl ether compouds have a excellent antibacterial activity, In recent years, bioinformatics research show that they sterilized by simulating nature substrate of bacteria ENR enzyme and restrianing enzyme activity, then destroy and break off biosynthesis of fatty acids. Some research in o-Hydroxy diphenyl ether show that the molecule segment o-Hydroxyphenyl,types of bridged groups and ability of hydrogen bonding, which have a important effect on ternary complex compounds of“pathogen enzyme-NAD+ coenzyme-sterilization compound”.
     A series of o-Hydroxyphenyl aryl substituted bridged compounds were designed by combining the molecule segment o-Hydroxyphenyl or halogeno-o-Hydroxyphenyl, by select Schiff base bond, benzylamine bond, hydrazone bond and imidazole ring structure as bridged group which have a wide applying prospect in anbacterial, antivirus, antituberculosis and anti-tumor activity field. Compounds were synthesized and tested in antibacterial activities, then classified according to different structure as follow:
     (1) The N-substituted phenyl-o-Hydroxyphenyl Schiff bases were synthesiszed by using salicylaldehyde as raw material, through bromination and condensation with aromatic amines. The test of antibacterial activity showed that 3,5-dibromo substituted compounds have better inhibitory ratio on Staphylococcus aureus, Escherichia coli and Monilia albican.
     (2) The N-substituted phenyl-halogeno-o-Hydroxybenzylamines were synthesiszed by using salicylaldehyde as raw material, through condensation with aromatic amines and reduction with NaBH4, respectively. The test of antibacterial activity showed that the compouds have a favorable extent antibacterial activities on Escherichia coli and Monilia albican, their antibacterial activities were enhanced by the substituted halogen groups of Ar-ring.
     (3) The o-Hydroxyphenyl aryl substituted hydrazones and their 5-bromo substituted derivatives were synthesiszed by using methyl salicylate as raw material, through bromination, hydrazination and condensation reactions, respectively. The test of antibacterial activity showed that they have 100% inhibitory ratio on Monilia albican and Bacillus subtilis. The analysis of structure activity relationship show that antibacterial activities relate to the kind of Ar-ring and its substituent groups. The antibacterial activities were reduced by electron-donating groups, such as o-,p-OH、-OCH3 of Ar-ring, however, they were enhanced by the m-substituted halogen groups of Ar-ring.
     (4)The N,N′-bis(-2-hydroxybenzyl) substituted imidazolidine derivatives were synthesized by using salicylaldehyd as raw materials, through condensation with 1,2-Diaminoethane, reduction with NaBH4 and condensation with aromatic aldehydes, respectively. The result shows that the reaction of salicylaldehyde and 1,2-Diaminoethane singled to obtain the symmetric Schiff base, The condensation activity of Aromatic Aldehyde were obviously affected by the kinds of substituents, the closing reaction of ring could be actived by o-,p-substituted electron-withdrawing groups of aromatic aldehyde and compounds of higher yield were be obtained, but o-,p-substitute electron-donating groups have opposite effects. The test of antibacterial activity showed that they have 100% inhibitory ratio on Monilia albican and Escherichia coli.
     The relationship between antibacterial activities and compounds structures were summed up, for establishing a base to design novel bactericide in broad-spectrum with highly active.
引文
[1]卢俊瑞靶向传染病防治药剂及其先导化合物的研究进展化工中间体2005,4:29-34
    [2]卢俊瑞高效广谱抗菌剂2,4,4’-三氯-2’-羟基二苯醚的合成与应用[J].日用化学工业, 2000, 6: 33-35
    [3]卢俊瑞,马霞苗,刘梅,等,邻氨基二苯醚类重氮盐的水解及分子内缩合反应[J].高等学校化学学报2007, 28 (11): 2081-2085
    [4]卢俊瑞,辛春伟,尹宁,等,氯代邻羟基二苯醚类化合物的合成工艺[J].天津大学学报2008 41(6) :714-719
    [5]丁明平,卢俊瑞,陈丽然,等邻苄基氨基苯酚的合成研究[J].天津理工大学学报,2007, 23(1):1-3
    [6]李俊萍.三氯生的应用及主要合成方法[J].山东化工, 2003 (32)
    [7]张彪.三氯生在抗菌洗洁精中的应用研究[J].精细化工, 2001(5)
    [8]孙俊.消毒技术与应用[M].北京:化学工业出版社, 2003
    [9] McMurray L. M., Oethinger M, Levy S. B.Triclosan targets lipid synthesis[J]. Nature, 1998, 394, 531-32
    [10] C.O. Rock, S. Jackowski. Forty years of bacterial fatty acid synthesis[J]. Biophys. Res. Commun, 2002, 292 ,1155-1166
    [11] Roberts C.W., McLeod R., Rice D.W., et al. Fatty acid and sterol metabolism: potential antimicrobial targets in apicomplexan and trypanosomatid parasitic protozoa[J]. Molecular&Biochemical Parasiteology, 2003, 126: 129-142
    [12] Levy C. W., Roujeinikovai A., Sedelnikova S., et al. Molecular Basis of Triclosan Activity[J]. Nature, 1999, 398: 383-384
    [13] Perozzo R.,Kuo M.,Sidhu A.S., et al. Stuctural Elucidation of the Specificity of the Antibacterial Agent Triclosan for Malarial Enoyl Acyl Carrier Protein Reductase[J]. The Journal Of Biological Chemistry, 2002, 277(15): 13106-13117
    [14] Heath,R.J.,Yu,Y.T.,Shapiro,M.A., et al.. Broad Spectrum Antimicrobial Biocides Target the FabI Component of Fatty Acid Synthesis[J]. The Journal OF Biological Chemistry, 1999, 273(46): 30316-30320
    [15] Sharada Sivaraman et al. Structure-Activity Studies of the inhibition of FabI,the Enoyl Reductase from Escherichia coli by Triclosan : Kinetic Analysis of Mutant FabI[J]. Biochemistry, 2003, 42, 4406-4412
    [16] Stewart M. J., Parikh S., Xiao G., et al. Structural Basis and Mechanism of Enoyl Reductase Inhibition by Triclosan[J] . J. Mol. Biol, 1999, 290, 859-865
    [17] Heath R. J., Rock C O. A triclosan-resisitant bacterial enzyme[J]. Nature, 2000, 406, 145-146
    [18] Ward, W. H., Holdgate, G. A,Rowsell, S.,et al. Kinetic and structural characteristicsof the inhibition of enoyl (acyl carrier protein) reductase by triclosan[J]. Biochemistry, 1999, 38, 12514-12525
    [19] Sivaraman, S., Zwahlen, J., Bell, A. F., et al. Structure-Activity Studies of the Inhibition of FabI, the Enoyl Reductase from Escherichia coli by Triclosan: Kinetic Analysis of Mutant FabIs[J]. Biochemistry , 2003, 42, 4406-4413
    [20] T.N.Srivastava,A.K.S.Chauhan,P.C.Kamboj.Molecular Adducts of Tripheny1tin Pseudohalides with Schiff Bases[J].J lnd Chem Soc, 1983, 60:625-627.
    [21] S.K.Agarwal,J.P.Tandon.Schiff Base derivatives of Lanthanides-Synthesis of La(III),Pr(III) and Md(III) complexes of Alkyllmines and Aryllminesderived from 2-hydroxyl-naphthaldehyde[J]. Synth React Inorg Met-Org Chem, 1974, 4:38-401.
    [22] T.N.Srivastava,A.K.S.Chauhan. Coordination Complexes of Organotin(Ⅳ) Chlorides with Schiff Bases derived from 2-hydroxy-1-naphthaldehyde[J]. Synth React Inorg Met-Org Chem, 1977, 7(4):373-385.
    [23]孙鑫泉,龚任秋.钯与席夫碱类配合物的合成与表征[J].杭州大学学报(自然科学版) ,1993,20(3):335-343.
    [24]胡秉方,李增民.水稻白叶枯病化学防治的新进展[J].化学通报,1986,11:1-7.
    [25]田君濂,毕思玮,高恩庆等.甲酰基甲酸氨基硫脲席夫碱二价金属离子配合物的研究[J].应用化学,1994,11(5):45-48.
    [26]周毓萍,于仁娟,杨正银等.3-醛基水杨酸缩氨基硫脲稀土配合物的合成、表征及抑菌活性的研究[J].无机化学学报,1998,4(2),162-167.
    [27]高山,施展,华佳等.配合物Cu(Cl4H9NO3)(C3H4N2)的合成、晶体结构及性质研究[J].高等学校化学学报,2000,21(2):177-180.
    [28]郑丽敏,张卫华,忻新泉.固相配位化学反应研究(LVI)[J].高等学校化学学报,1992,13(10):1205-1208.
    [29] Kimball, Das, et al. Heterocyclic Thrombin Inhibitors:U.S.A,5741799[P].1998-4-21.
    [30] Agarwala R.G, et al. Acyl Hydrazine Complexes of titanium and zirconium tetrachlorides[J]. J Inorg Nucl Chem ,1973, 35:653-655.
    [31] Dilworth J.R.. The Coordination Chemistry of Substituted Hydrazines[J].Chem Rev, 1976, 21:29-62.
    [32] Bipin B.Mahapatra,S.S.Dash,S.K.Pujari.Complexes of Cu(II) and Cd(II) withTetradentate Schiff Bases[J]. J. Indian. Chem Soc, 1980, 57:95-97.
    [33]龚任秋,陈成刚,黄肖峰. Synthesis and Structure of Gold(III),Palladium(II)and Platinum(IV) Complexes with the Schiff Base of Picollnal Dehyden-oxide and Semicarbazide[J].Synth React Inorg Met-Org Chem, 1994, 24:877-899.
    [34] Hodnett EM,dunn DJ. Strucreantitumor or acivity correlation of some Schiffbase[J]. J. Med. Chem, 1970, 13(4):768-770.
    [35] Hodnett EM,dunn WJ.Cobalt derivatives of Schiffbase of aliphatic amines as antitumor agents[J]. J.Med.Chem, 1972, 15(3):339
    [36] Desai S B,Desai p b,Desai k b. Synthesis of some Schiff bases thiazolidinones and azetidinones form 2,6-diaminobozol-[1,2-d:4,5-d]bisthiazole and their anticancer activities[J] Hetercyl Commun,2001,7(1):83-90
    [37]吴自慎,严振寰.钴、镍、铜、锌对(α-羟基乙基)水杨醛亚胺鳌合物的合成及其抗癌活性的初步试验[J]无机化学,1986,1:108-112
    [38]冯英,刘义. D-氨基葡萄糖Schif碱及其金属配体的抗菌活性[J].物理化学学报,1996,8:747。
    [39]郭应臣,陈欣,卓立宏.水杨酰肼席夫碱的合成、表征、抑菌活性[J]化学应用与研究,2004,16(4):580-583。
    [40]祝振富,黎植昌,张积霞等.胡椒醛甘氨酸席夫碱合成、表征、抑菌活性[J].西南师范大学学报,1997,22(1):50-53。
    [41]马兴铭,郑艳萍、麻宝成等.4-羟基-3-羧基苯甲醛水杨酸酞踪及其配合物抑菌活性初步试验[J」.兰州医学院学报,2003,29(9):3-12。
    [42]田华、韦敏捷、王麟生等人对氟苯甲醛缩乙醇胺席夫碱的合成、表征及抑菌活性的测试[J].化学试剂,2003,25(4):227-228。
    [43]杨海建. [N-(N-取代嘧啶-2-乙基)乙酰脲基邻酰亚胺衍生物的合成与生物活性测[J].华中师范大学学报(自然科学版),200,34(2):138-168。
    [44]陈德余,张义建,张平.甲硫氨酸席夫碱铜、锌、钴配合物的合成及抗O2_性能[J].应用化学,2000,17(6):607-610.
    [45]叶勇.2-氯代苯甲醛丙氨酸席夫碱及其3d-过渡金属配合物的合成与表征[J].湖北大学学报,2001,23(1):57-61.
    [46]鲁桂,姚克敏,张肇英.镧系与直链系-组氨酸Schiff碱配合物合成、波谱与生物活性[J].应用化学,2001,18(1):1-4.
    [47]张建民,李瑞芳,刘树祥.过渡金属配合物的稳定性及其杀菌活性[J].无机化学学报,1999,15(4):493-49.
    [48]叶勇,胡继明,曾云鹗. N-β-萘酚醛-D-氨基葡萄糖席夫碱金属配合物与DNA作用的谱学研究[J].无机化学学报,2000,16(6):951-958.
    [49] BASEER M A,JADHAV V D,PHULE R M .Synthesis and antibacterial activity of some new Schiff bases[J]. Oriental Journal of Chemistry, 2000, l6(3):553-556.
    [50] NYARKU S K,MAVUSO E.Preparation,characterisation and biological evaluation of a chromium(Ⅲ) Schiff bases complexe derived from 0-nitrobenzaldehyde and Paminophenol [J] .South African J of Chem,1998,51(4):168-172.
    [51]唐婷.席夫碱的研究新进展[J].杭州医学高等专科学校学报,2000,21(4):204-210.
    [52] (a) Mita, D. J. Kerai., John, A. T. Toxicology. 1997, 120, 221-230. (b) Fox, H. H.Gibas, J. T. J. Org. Chem. 1952, 17,1653-1660.
    [53] (a) Ferrari, M. B., Fava,GG,Pelizzi, C., Pelosi,G,Tarasconi, P.et al. Inorg. Chim. Acta. 1998, 269, 297-301.
    [54] Buu-Hol, N. P., Xuong, N. D., Nam, N. H., Binon,E, Royer, R. J Chem, Soc. 1953, 1358-1364
    [55] Carcelli, M.,Mn773,R,Pelizzi,C.,Pelizzi,G,Zani, F. et al. J Inorg. Biochem. 1995, 57(1): 43-62
    [56] Eisa, H .M .,Tantawy, A .S., El -Kerdawy, M .M .Synthesis of certain 2-amin- oadamantane derivatives as potential antimicrobial agents. Pharmazie. 1991, 46,182-184
    [57]. P.P.T.Sah,S.A. J. Am. Pharm. Ass. Sci. Ed.. 1954,43,513-524.
    [58] Parmar, S. S., Gupta, A. K., Gupta, T K., Stenberg, V I. J.Pharm. Sci. 1975, 64,154-157.
    [59] Kalsi, R., Pande, K., Bhalla, T. N., Bartwall, l. P.,Gupta,QP.,Parmar, S. S.. J. Pharm. Sci. 1990, 79, 317-320.
    [60] Ranford, J. D.,Vittal, l. J.,Wang, Y M. Inorg. Chem. 1998, 37,1226-1231
    [61]何水样,曹文凯,陈军利,等,铜(II)与2-基丙酸水杨酰腙配合物的合成、晶体结构和抑菌活性[J].高等学校化学学报,2002, 23,991-995.
    [62] Wang, D. B., Chen, B. H., Ma,YX.. Inorg. Met-Org. Chem. 1997, 17, 479 -486.
    [63]陈万义,薛振祥,王能武,新农药研究与开发[M].北京:化学工业出版社,1996,246
    [64]刘长令近几年开发的国外农药新品种(3).农药[J ],1999 , 38(5):45.
    [65]孙勇. 2-取代咪唑啉酮衍生物的合成与杀菌活性[D] .武汉:华中师范大学化学学院,2002 ,1-10.
    [66]黄志良.山梨酸衍生物的合成及抗菌活性的研究[A].广州:华南理工大学博士论文,2002,8-51。
    [67]张强华,纪丽莲.四种席夫碱抑菌活性的对比研究[J].淮阴工学院学报,2001,10 ( 3 ):29-32。
    [68]刘够生,宋兴福,于建国.氯代苯酚类衍生物对水生物发光细菌的定量结构-活性关系研究[J].江西师范大学学报.2001,25 (4):313-316。
    [69]田华,王昭松,黄锁义等.香草醛缩乙醇胺席夫碱的合成、表征与抑菌活性研究[J] .中国现代应用药学杂志,2004,12 (2):432-434
    [70]赵文岩,牛雪平,张蕊.新型水杨醛芳胺席夫碱化合物的合成及生物活性[J].中国药学杂志,2005,4 (1): 63-65
    [71] Liu B,Wang M X,Huang Z T.Tetrahedron Lett[J]. 1999, 40: 7399-7402.
    [72]单自兴,王铨.手性硼酸酯介入的不对称合成( R)-或(S)-1,1-联-2-萘酚硼酸-(S)-脯氨酸酐促进的前手性亚胺的不对称硼烷还原[J].有机化学,2005,6:720-723.
    [73] a)Willoughby C A,Buchwald S L.Asymmetric titanocene-catalyzed hydrogenation of imine[J].JAm Chem Soc,1992, 114: 7562-7563;b)Willoughby C A,Buchwald S L.Catalytic asymmetric hydrogenation of imines with a chiral titanocene catalyst:scope and limitations[J].J.Am Chem Soc, 1994, 116: 8952-8965;
    [74] Ireland T,Fontanet F,Tchao G.Tetrahedron Lett[J]. 2004, 45: 4383-4387.
    [75] Bazu B,Bhuiyan M M H,Das P,et a1. Tetrahedron Lett[J]. 2003, 44: 8931-8934.
    [76] Backvall J E.J Organometal Chem[J]. 2002, 652: 105-111;
    [77] Denmark S E,Nakajima N,Nicaise O J C.Asymmetric addtion of organolithium reagents to I mine[J].J.Am Chem Soc,1994,116:8797-8798
    [78] Hayashi T,Ishigedani M.Preparation of optically active aromatic sulfonylamines[J].J Am Chem Soc, 2000, 122: 976-977.
    [79]张克胜,穆林静,龙韫先.高等学校化学学报[J],1999,5:741-743
    [80]龙韫先,张克胜,邱德文.高等学校化学学报[J],1996,17(8):1247-1249.
    [81]宋宝安,吴扬兰,何湘琼,等.新型光学活性-氨基膦酸及其酯合成进展[J].有机化学,2003,9:933-943.
    [82] Grlger H,Saida Y,Arai s,et a1.Tetrahedron Lett[J],1999,52:9291-9292.
    [83] Bucking J(Executive editor).Dictionary of Organic Compunds,Fifth Edn[M].New York:Chapman and Hall Press, 1982, 1:808
    [84] Elzbieta C,Zygmunt E,Romuald K,et al. Bactericidal and fungicidal activity of Sehiff bases derived salicylaldehyde[J]. Dissertation Pharm,1964, 15(5):369-378.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700