用户名: 密码: 验证码:
邻苯二甲酸酯类化合物好氧生物降解的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章源水及饮用水中PAEs的定性分析
     目的:对长江、汉江(武汉段)水源水、饮用水中PAEs的污染状况和深度水处理工艺(臭氧—活性炭)处理后出水中的PAEs化合物进行定性分析。
     方法:以武汉自来水厂(宗关水厂、平湖门水厂)的源水、出厂水和管网末梢水为调查对象,分别于2007年、2008年平水期(3月)、丰水期(7月)、枯水期(12月)采集水样,采样量为100~120 L。用XAD-2树脂吸附水中的有机物,用二氯甲烷和丙酮进行洗脱,洗脱液经浓缩后(相对于水中的含量,其浓缩比例为1:5000),通过GC/MS对有机物的成份进行定性分析。2006年4月在南方某自来水厂的中试基地,将臭氧氧化,活性炭(生物活性炭)吸附工艺与传统水处理工艺(混凝沉淀、加氯消毒)相结合,通过不同的工艺组合对当地源水进行处理。源水和不同组合工艺处理后出水的采集、有机物的浓缩和检测与上面描述的方法相同。
     结果:GC/MS结果显示所有水样中都有PAEs检出。武汉两水厂的源水和饮用水中主要为DBP和DEP。同2007年相比,2008年新检出两种PAEs为DMP和BBP。南方某中试基地的源水和不同组合工艺处理后出水中均有DMP和DEP检出。
     结论:源水和饮用中的PAEs污染非常普遍,现有的自来水处理技术(常规水处理技术和深度水处理技术)难以将其彻底去除。
     第二章高效PAEs降解菌的驯化、筛选及鉴定
     目的:驯化活性污泥,从驯化污泥中分离出高效PAEs降解菌,并对其生物种属进行鉴定。
     方法:从武汉某印染厂取得活性污泥置于曝气池中,以DMP、DEP和DBP为唯一碳源,采用活性污泥曝气与密度梯度驯化方法,即从第1周开始,等量投加DMP、DEP、DBP作为细菌利用碳源。每周PAEs的投加浓度按10 mg/L、20mg/L、30 mg/L、40 mg/L、60 mg/L、80 mg/L、100 mg/L、140 mg/L依次递增,连续驯化8周。用灭菌采样瓶从曝气池采取污泥样本,用接种环蘸取污泥,在普通营养琼脂平板上分区划线以分离纯化细菌。在250 ml的锥形瓶中加入100 ml无机盐培养液,高压灭菌,加入等量DMP、DEP和DBP(各200 mg),按等生物量的原则加入分离出的细菌,置于37℃空气浴摇床中(140 rpm)连续降解7天。用二氯甲烷液液萃取各降解液,用GC法检测其浓度。比较各细菌7天降解率的大小,筛选出高效降解细菌。对筛选出的高效PAEs降解菌,进行革兰染色。结合染色结果,用全自动微生物鉴定仪对其进行生化鉴定。用电子显微镜拍摄高效降解菌的透射电镜照片,观察细菌形态学。提取细菌DNA,扩增16s rDNA序列,并进行碱基序列测定。将序列提交Genbank并进行Blast序列比对,通过比对结果进一步鉴定该菌种属。将细菌置于不同的温度和不同的渗透压下(不同的NaCl浓度)培养,以考察该高效降解菌的生长特性。
     结果:从印染厂活性污泥曝气池中分离得到7株细菌,命名为菌株L1~L7。菌株L1~L5对DMP、DEP和DBP(200 mg/L)的七天降解率分别为87.5%,99.1%,98.3%;31.9%,10.2%,0.0%;19.1%,14.2%,16.9%;99.0%,98.6%,99.2%与28.9%,20.0%,6.5%。L6、L7菌基本没有降解效果。确定L4为高效PAEs降解菌,对细菌L4进行鉴定,为赤红球菌(Rhodococcus ruber)。赤红球菌L4在12~42℃均有不同程度的生长,最适生长温度为37℃。赤红球菌L4生长的最佳盐浓度≤0.5%,但在盐浓度为0.5~3%时,亦能良好生长,耐受浓度可高达5%。
     结论:采用活性污泥曝气与密度梯度驯化方法,筛选出可高效降解PAEs的赤红球菌(Rhodococcus ruber)。该细菌生长温度范围广,能耐受较高的环境渗透压。
     第三章赤红球菌L4降解PAEs的特性研究
     目的:确定赤红球菌L4降解PAEs的适宜条件(pH值、温度和初始底物浓度),探索降解动力学,对赤红球菌L4降解相关特性进行初步研究。
     方法:通过正交设计(三因素、四水平表)探索赤红球菌L4降解PAEs的最佳温度、pH及初始PAEs浓度。以人工配制的不同初始浓度的PAEs实验水样为降解对象,每天取样检测残留量,以曲线拟合方法获得降解动力学方程。为确定PAEs在水中不同的存在状态对降解效果的影响,分别用直接投加和丙酮(超声)乳化的方法来配制PAEs实验水样(300 mg/L)。为研究赤红球菌L4的环境抵抗特性,将其接种于不同浓度的乙醇、二甲基乙酰胺、正辛烷和甲苯溶液,37℃培养24 h后进行菌落计数以调查其存活率。将赤红球菌L4分别接种于4 mmol/L的苯甲酸钠、苯酚、萘、对硝基酚、邻硝基酚和葡萄糖溶液中,以OD_(600)值作为观测指标,考察该细菌对有机物的利用谱。用油膜法测定PAEs降解液的表面活性。
     结果:正交试验显示赤红球菌L4降解PAEs的最佳条件为:pH 7.0~8.0,30~37℃,初始底物浓度≤450 mg/L。赤红球菌L4降解动力学可用方程lnC=—kt+θ’来描述(k为降解反应的速率常数,θ’为积分常数);当初始底物浓度小于300 mg/L时,其降解半衰期为1.30 d;赤红球菌L4在混合PAEs降解过程中,三种PAEs的降解速率,DMP>DEP>DBP。赤红球菌L4对乳化组与非乳化组实验水样5天降解率分别为90.9%和86.9%。赤红球菌L4对10%以下的乙醇和二甲基乙酰胺有较强的耐受能力,对直链烷烃如正辛烷24小时耐受浓度可高达60%,对芳香族化合物如甲苯的耐受能力相对较弱,在4%的甲苯水溶液中仅有少数菌可以存活。赤红球菌L4可分别以苯甲酸钠、苯酚、萘为唯一碳源和能源生长,对苯甲酸钠的利用速度较快,优于葡萄糖,其次为对苯酚和萘的利用,尚未观察到对邻硝基酚、对硝基酚有分解代谢作用。在PAEs的代谢过程中,赤红球菌L4可产生生物表面活性物质,其乳化效果相当于69.2 mg/L的SDS溶液。
     结论:赤红球菌L4对PAEs的降解有较强的环境适应性,在最适宜条件下降解效果最好。在最佳降解条件下,赤红球菌L4对不同初始浓度的PAEs的降解可以用一级动力学方程来描述。在降解过程中,较短侧链的PAE被优先利用。赤红球菌L4能产生降低水—油表面张力的表面活性物质,具有乳化能力,有利于生物降解。较宽的利用谱和较强的抗毒性意味着赤红球菌L4在环境污染的生物修复中具有较大的应用潜力。
     第四章赤红球菌L4代谢PAEs的机理探讨
     目的:应用化学分离、分析技术和分子生物学实验方法探讨赤红球菌L4降解PAEs的机理。
     方法:以初始浓度为300 mg/L的DEP实验水样为对象,投加赤红球菌L4进行降解试验,分别于降解24 h,48 h,72 h,96 h时收集降解液,用C18固相萃取柱吸附其中的有机物并用二氯甲烷进行洗脱,洗脱液经浓缩后进行GC/MS检测。用碱裂解法提取细菌质粒,通过琼脂糖凝胶电泳确定其分子量大小。将赤红球菌L4用普通营养肉汤连续传代5次,收集菌体作为对照组;经传代的细菌置于总浓度为300 mg/L的DMP、DEP、DBP混合溶液中培养24 h,收集菌体作为诱导组。用超声波裂解诱导组和对照组细菌,离心后取上清,即为提取的细菌总蛋白(酶)。以不同浓度的小牛血清溶液作为标准系列,用Bradford法测定各组蛋白含量。根据蛋白定量结果,等量投加对照组和诱导组蛋白酶至20μmol/L的邻苯二酚溶液,用分光光度法于260 nm和375 nm处分别测定上述溶液吸光度每分钟的变化值,即可求得邻苯二酚1,2—双加氧酶(C12O)和邻苯二酚2,3—双加氧酶(C23O)的酶活性;用聚丙烯酰胺凝胶电泳对对照组和诱导组细菌总蛋白进行分析。
     结果:DEP降解48 h时,其降解液中可以检测到两个中间产物,为邻苯二甲酸单乙酯(monoethyl phthalate)和邻苯二甲酸(phthalate acid)。从赤红球菌L4内提取到3个质粒,其大小分别为65 kb、75 kb和100 kb。酶活性测试说明诱导组细菌的邻苯二酚双加氧酶活性高于肉汤连续传代的对照组(P<0.05),其C12O活性为8.78±0.98 U/mg,C23O活性为3.97±0.55 U/mg。聚丙烯酰胺凝胶电泳显示诱导组有两条新增条带。
     结论:在降解初始阶段,赤红球菌L4首先水解其中一个酯键,生成邻苯二甲酸单乙酯,然后继续水解另外一个酯键,生成邻苯二甲酸,后者为主要的中间产物。赤红球菌L4体内拥有至少3条较大的质粒;邻苯二酚双加氧酶是赤红球菌L4降解过程中的关键性蛋白酶。赤红球菌L4经诱导后可同时表达C12O和C23O,但C12O活性增加更为明显。
     第五章固定化微生物对水中PAEs的降解
     目的:比较固定化微生物和游离微生物对水中PAEs的降解效果。
     方法:以10%的PVA和0.5%海藻酸钠溶液为包埋剂,以4%的活性炭为吸附剂,以饱和硼酸溶液作为交联剂,采用吸附—包埋法制备固定化微生物小球。配制含DMP、DEP、DBP的实验水样(300mg/L),以等生物量法,分别将固定化微生物小球或游离细菌投加于其中,然后置于35℃、115 rpm摇床上进行降解试验,测定48 h、72 h的残留量以评价固定化微生物和游离细菌的降解效果。
     结果:固定化微生物小球48 h降解率为DMP 72.6%、DEP 70.1%、DBP68.3%;72 h降解率为DMP 79.2%、DEP 94.9%、DBP 72.1%。游离细菌48 h降解率为DMP 48.2%、DEP 41.1%、DBP27.3%;72 h降解率为DMP 72.2%、DEP 71.3%、DBP 58.8%。
     结论:以10%的PVA和0.5%海藻酸钠作为包埋剂,以4%的活性炭作为吸附剂可以制备出降解效果良好的固定化微生物小球;固定化微生物对PAEs的降解效果优于游离微生物降解。
     第六章PAEs生物降解前后的类雌激素活性的比较
     目的:对PAEs混合物生物降解过程中的残留物进行类雌激素活性检测,以评价降解的安全性。
     方法:用重组酵母菌雌激素检测系统(Yeast Estrogen Screen,YES)对各样品进行检测。将含有人雌激素受体的重组酵母菌检测液和稀释成一定浓度梯度的DMP、DEP和DBP的单一及混合物在96孔板中培养,以17β—雌二醇作为阳性对照,以CPRG(黄色)作为指示剂,培养3天后,若受试物具有雌激素活性,则溶液由黄色变成红色,红色的深浅代表酶活性强度,用酶标仪在540 nm处予以测定(OD_(540))。用赤红球菌L4对初始总浓度为300 mg/L的DMP、DEP和DBP混合水样进行生物降解,收集降解0 h、24 h、48 h、72 h、96 h后的降解液,用二氯甲烷液液萃取提取其中的有机物。用YES对其进行类雌激素活性检测。
     结果:YES试验检测到DEP的类雌激素活性,其强度相当于雌激素(17β—雌二醇)的200万分之一水平,DMP和DBP未检出类雌激素活性。混合PAEs实验水样降解24 h,48 h,72 h,96 h后的残留物的最大类雌激素活性分别为:1.81,1.41,1.25和1.15,低于降解前(0 h)的2.97。
     结论:YES试验可以检测DMP,DEP,DBP及其混合物的类雌激素活性,就单一物质而言,DMP、DEP、DBP的类雌激素活性由强至弱依次为DEP>DMP>DBP,混合PAEs的类雌激素活性主要由DEP所致;赤红球菌L4降解PAEs的产物的类雌激素活性,随着降解时间的延长,其水平呈逐步下降趋势。
PartⅠPAEs pollution in source water and drinking water by qualitativeinvestigation
     Objective: To qualitatively investigate the kinds of PAEs in source water and drinkingwater of the Yangtze River and Hanjiang River (Wuhan section) by GC/MS. Toqualitatively investigate the kinds of PAEs in source water and effluents treated bydifferent advanced water treatment processes including ozone binding biologicalactivated carbon.
     Method: The source water and drinking water of Zongguan and Pinghumen waterplants in Wuhan city were collected in March, July and December in the year of 2007and 2008. The volume of each sample was between 100~120 L. The organiccompounds in water were extracted with XAD-2 resin and eluted by acetone anddichloromethane. The eluate was concentrated (1:5000) and qualitatively analyzed byGC/MS. The water samples of a pilot-scale water plant in the south of China werecollected in April, 2006 and the methods of the sample pretreatments were identicalwith the others.
     Results: All the water samples have been polluted by PAEs. The main PAEs in sourcewater and drinking water in Wuhan were DBP and DEP.Part of samples had DMP, DOP, and BBP.
     Conclusion: The pollution of PAEs in source water and drinking water was universal.The present water treatment processes regardless of conventional or advancedtechniques were hard to remove the PAEs completely.
     PartⅡAcclimation, screen and identification for dominant PAEsdegradation bacteria
     Objective: To obtain dominant PAEs degradation bacteria and identify it.
     Method: Activated sludge was collected at a dyeing plant of Wuhan, an industrial citylocated in central region of China. Eight L were mixed with 24 L of the inorganic saltsolution in an aerated basin. The acclimation process was conducted at roomtemperature. The DMP, DEP and DBP were equally added as sole carbon and energysource. The total concentration of PAEs was increased gradually from 30 to 420 mg/L.After eight weeks of acclimation, the activated sludge was used to inoculate nutrientagar plates under aseptic conditions. The plates were incubated at 37℃and differentcolonies grew after 36 h. The pure clones were obtained by plate streaking repeatedly.Then, each isolated bacterial strain was put into PAEs waste water in order to screendominant bacterium. All the flasks were put in swing bed with speed of 140 rpmunder 37℃. After one week degradation, the dominant PAEs-degrading bacteriumcould be confirmed in term of turbidity and degradation rate. After this screening test,we obtained a high-performance strain named strain L4. The dominant bacterial strainwas identified though analysis with its morphology, physiochemical characteristicsand 16S rDNA sequence. The characteristics of growth including environmentaltemperature and osmotic pressure of strain L4 were studied.
     Results: Seven strains have been isolated form the aerated basin, named strain L1~L7. The screen test showed the degradation rates of DMP, DEP and DBP by strainL1~L5 were 87.5%, 99.1%, 98.3%; 31.9%, 10.2%, 0.0%, 19.1%, 14.2%, 16.9%; 99.0%, 98.6%, 99.2% and 28.9%, 20.0%, 6.5%, respectively。L6 and L7 can notutilize DMP, DEP or DBP as sole carbon source. The strain L4 was recognized asdominant biodegradation bacterium. Strain L4 was identified as Rhocococcus ruber.This strain can grow at temperature between 16 and 42℃, but the optimaltemperature was 37℃. The best salinity for strain L4 growth was lower than 0.5%,but it also grew well with salinity of 0.5%~3%.
     Conclusion: The Rhodococcus ruber strain L4 had great ability in PAEs degradation.This strain had strong environmental adaptability.
     PartⅢThe characteristics of Rhodococcus ruber strain L4about PAEs degradation
     Objective: To explore the optimal environmental conditions (pH, temperature andinitial concentration of PAEs) for strain L4 degradaion and to study the kinetics andsome important characteristics related with degradation.
     Method: The optimal environmental conditions were explored by orthogonal test(three factors and four levels). The kinetic equations were studied by curve fittingthrough detection the degrading residue of PAEs with different initial concentrations.The PAEs synthetic water samples (300 mg/L) with non-emulsification and completedemulsification were prepared to investigate their effects on PAEs degradation rate.The biosurfactant produced by strain L4 during PAEs degradation was measured bythe repellent size of oil cycle. Frequent aromatic compounds including phenol, 2,4-dinitrophenol, p-nitrophenol, sodium benzoate and naphthalene were prepared withMSM solution (4 retool/L) to explore the utilization spectrum of strain L4. The strainL4 was inoculated to ethanol, acetdimethylamide, octane and toluene solution withdifferent concentrations to investigate the environmental tolerance throughcomparison of survive rate.
     Results: The degradation batch tests of DMP, DEP and DBP by the Rhodococcusruber strain L4 showed the optimal pH value, temperature and substrate concentration:pH 7.0~8.0, 30~37℃and PAEs concentration≤450 mg/L. Kinetics studies showedthat the half-life of degradation was about 1.30d when the concentration of PAEsmixture was lower than 300 mg/L. The degradation rates of DMP, DEP and DBP insame system were different, DMP>DEP>DBP during degradation process. Littledifference between the above two sample preparations was observed in terms ofultimate degradation rate. Biosurfactant can be produced by strain L4, which candecrease the surface tension between water and oil like 69.2 mg/L SDS solution. Thisstrain can also grow on phenol, sodium benzoate or naphthalene solution as solecarbon source and energy, but cannot utilizing 2, 4-dinitrophenol, p-nitrophenol. Themetabolism velocity of sodium benzoate was faster than that of glucose, phenol,sodium benzoate according to OD_(600) monitoring. Strain L4 can survive in ethanol andacetdimethylamide solution if their concentrations were lower than 10%; alkane waslitter harm to strain L4 as it can tolerate 60% octane solution; strain L4 was fragilewhen tested by 4% toluene as most bacteria were killed after 24 h exposure.Conclusion: Strain L4 had adaptability for various environments, but optimalenvironmental factors were benefit for biodegradation. The kinetics of PAEsdegradation by strain L4 can be described with exponential model under optimalconditions. During degradation, the PAE with shorter chain was prior to be utilized.Production of biosurfactant and mycolic acid by strain L4 were dominance fordegradation. That broad-spectrum utilization of organic compounds andenvironmental tolerance suggested strain L4 can be used as a potential candidate forremedying PAEs containing wastes.
     PartⅣThe mechanism of PAEs degradationby Rhodococcus ruber strain L4
     Objective: To approach the mechanism of PAEs degradation by strain L4 based on empirical methods of analytical chemistry and molecular biology.
     Method: The DEP solution with concentration of 300 mg/L was degraded by strainL4. The intermediate products after 24 h, 48 h, 72 h, 96 h were collected and extractedby C18 columnella, subsequently eluted by dichloromethane and detected by GC/MS.The plasmids of strain L4 were extracted with alkaline lysis method. The MW wasdetermined by agarose gel electrophoresis (AGE). The strain L4 was transferred 5times in nutrient broth culture, which then collected as control group. The abovebacteria were put into 300 mg/L PAEs solution and cultured at 37℃in 24 h, whichthen collected as induction group. The total proteins of strain L4 before and afterPAEs induction were extracted through ultrasound. Their concentrations weremeasured by Bradford method. The activity of C120 and C23O was determined bycolorimetry. The bands of total protein of strain L4 before and after PAEs induction inSDS-PAGE were compared.
     Results. Two intermediate products including phthalic acid and monoethyl phthalatewere detected. Three plasmids have been extracted from strain L4, whose MW were65 kb, 75 kb and 100 kb. The activities of C12O and C23O after PAEs induction werehigher than control group (P<0.05). In induced group, the activity of C12O(8.78±0.98 U/mg) was higher than that of C23O (3.97±0.55 U/mg). The SDS-PAGEshowed two more bands were found in induced group.
     Conclusion: Phthalic acid was the main intermediate product during DEP degradation.Strain L4 contains three big plasmids. C12O and C23O were critical enzymes forPAEs degradation.
     PartⅤDegradaion of PAEs in water by immobilized bacteria
     Objective: To compare the effect of immobilized cells and free cells of strain L4 inPAEs degradation.
     Method: The balls with immobilized bacteria were made by 10% PVA, 0.5% sodiumpolymannuronate, with adding 4% activated carbon powder. The balls was made byadding the mixture form injector, and cross linked in saturate boracic acid solution inabout 20 h. The DMP, DEP and DBP mixture (300 mg/L) in water were degraded byimmobilized bacteria and free cells. The removal rates of PAEs were compared.
     Results: The degradation rates of PAEs by immobilized bacteria were DMP 72.6%,DEP 70.1%, DBP68.3% in 48 h and 79.2%, DEP 74.9%, DBP 72.1% in 72 h。Thedegradation rates of PAEs by free cells were DMP 48.2%, DEP 41.1%, DBP27.3% in48 h and 72.2%, DEP 71.3%, DBP 58.8% in 72 h。
     Conclusion: The immobilized bacteria with good ability in removal of PAEs in watercan be made by 10% PVA, 0.5% sodium polymannuronate and 4% activated carbonpowder. Comparing the degradation effects, the immobilized bacteria were superior tofree cells.
     PartⅥEstrogenic activity of PAEs before and after biodegradation
     Objective: To evaluate the safety of the residuals of PAEs after degradation bydetermination of estrogenic activity with yeast estrogen screen (YES).
     Method: The estrogenic activities of DMP, DEP and DBP or their mixture weredetected by YES. The PAEs in water (300 mg/L) were degraded by strain L4. Theresiduals after 24 h, 48 h, 72 h and 96 h degradation were collected by Liquid-liquidextraction. The estrogenic activity of the residual was detected by YES subsequently.
     Results: The estrogenic activity of DEP can be detected, which was like the level of1/2000000 compared to 17β-E2. No obvious estrogenic activity can be found in DMPand DBP. The estrogenic activity of PAEs residues after degradation can be detectedby YES. The biggest activity of PAEs mixture were 1.81, 1.41, 1.25 and 1.15 after 24h, 48 h, 72 h and 96 h degradation, which were lower than the activity of PAEs mixture before degradation (2.97).
     Conclusion: The estrogenic activity of DMP, DEP and DBP can be detected by YES.The estrogenic activity of DEP was obvious, and stronger than DMP and DBP. Theestrogenic activity of PAEs mixture was caused by DEP and decreased afterdegradation by strain L4.
引文
[1]唐非,张水兵,汪亚洲等.东湖源水与自来水中致突变性物质比较[J].中国给水排水,2002,18(7): 5-7.
    [2]韩关根,吴平谷,王惠华等.邻苯二甲酸酯对城镇供水的污染及现行水处理工艺净化效果的评价[J].环境与健康杂志,2001,18(3):155-156.
    [3]Zeng F, Cui KY, Xie ZY, et al. Occurrence of phthalate esters in water and sediment of urban lakes in a subtropical city, Guangzhou, South China [J]. Euvironment International, 2008, 34(3): 372 - 380.
    [4]Sha YJ, Xia XH, Xiao XQ. Distribution characters of phthalic acid ester in the waters middle and lower reaches of the Yellow River [J]. China Environmental Science, 2006, 26(1): 120 -124.
    [5]Wang F, Sha YJ, Xia XH, et al. Distribution Characteristics of Phthalic Acid Esters in the Wuhan Section of the Yangtze River [J]. Environmental Science, 2008, 29(5): 1163 - 1169.
    [6]Li JD, Cai YQ, Shi Y, et al. Analysis of phthalates via HPLC-UV in environmental water samples after concentration by solid-phase extraction using ionic liquid mixed hemimicelles [J]. Talanta, 2008, 4(74): 498 - 504.
    [7]Fatoki OS, Ogunfowokan AO. Determination of phthalate ester plasticizers in the aquatic environment of southwestern Nigeria [J]. Enviromnent International, 1993, 19(6): 619 - 623.
    [8]Shen L, Lin GF, Tan JW, et al. Genotoxicity of surface water samples from Meiliang Bay, Taihu Lake, Eastern China [J]. Chemosphere, 2000, 41(1-2): 129 -132.
    [9]王家玲,运珞珈,郑红俭等.应用国产大孔树脂吸附水中有机质的研究[J].环境科学与技术,1983(3):1一3.
    [10]张述林,罗启芳.源水与自来水中主要有机污染物的确定[J].华中科技大学学报,2001,29(11):110-112.
    [11]贺道红,高乃云,曾文慧等.生物活性炭深度处理工艺挂膜研究[J].工业用水与废水,2006.37(2):16-19
    [12]Su DG, Tao CY, Liu ZH, et al. Removal of PAEs by combined activated carbon-fenton process [J]. Environmental Science, 2007, 28(12): 2734-2739.
    [13]Kim W H, Nishijima W, Baes A U, et al. Micropollutant removal with saturated biological activated carbon (BAC) in ozonation-BAC process [J]. Water Science and Technology, 1997, 36(12): 283 - 298.
    [14]Cheng AH, Wang L, Wang XD. Removal of trace phthalate acid esters in water by nanofiltration membrane [J]. Technology of Water Treatment, 2007, 33(11): 14 - 16.
    [15]Kiso Y, Kon T, Kitao T, et al. Rejection properties of alkyl phthalates with nanofitration membranes [J]. Journal of Membrane Science, 2001,182(1-2): 205-214.
    [16]Tawabini BS, Al-Suwaiyan MS. Removal of dimethyl phthalate from water by UV-H_2O_2 process [J]. Journal of Environmental Engineering and Science, 2004, 3(4): 289-294.
    [18]Pace NR, Stahl DA, Lane DT, et al. The analysis of natural microbial populations by ribosomal RNA sequences [J]. Advances in Microbial Ecology, 1986, 9:1-55.
    [19]Kisand V, Cuadros R, Wikner J. Phylogeny of culturable estuarine bacteria catabolizing riverine organic matter in the Northern Baltic Sea [J]. Applied and Environmental Microbiology, 2002, 68 (1): 379 - 388.
    [20]杨芳,刘利兵,刘芳娥等常用教学菌种保存方法[J].第四军医大学学报,2004,25(9):814.
    [21]郭海勇,吴静,许磊等.16S rRNA基因序列在动物消化道细菌鉴定中的应用研究[J].安徽农业科学,2008,36(17):7152-7154.
    [22]Garrity GM, Bell JA, Lilburn T. Bergey's manual of systematic bacteriology [M]. 2004, Springer, Berlin Heidelberg.
    [23]Li JX, Gu JD, Pan L. Transformation of dimethyl phthalate, dimethyl isophthalate and dimethyl terephthalate by Rhodococcus ruber Sa and modeling the processes using the modified Gompertz model [J]. International Biodeterioration & Biodegradation, 2005, 55 (3): 223 - 232.
    [24]刘正.高含盐废水生物处理技术探讨[J].给水排水,2001,27(11):54-56.
    [25]Kushner D J. Microbial Life in extreme environements [c]. London: Academic Press, 1978, 317 - 368.
    [26]刘岳峰.嗜盐微生物的应用现状和展望[J].微生物学通报,1992,19(2):108-111.
    [27]杨建.灌东盐场嗜盐细菌的分离与初步鉴定[J].上海农业科技,2007,6:20-21.
    [28]夏传涛,袁秉祥.无空列正交试验的设计及SPSS软件的数据处理[J].数理西药学杂志, 2006,19(1):91-92.
    [29]中华人民共和国卫生部.消毒技术规范[M].2002年版,北京,227.
    [30]沈锡辉,刘志培,王保军等.苯酚降解菌红球菌PNAN5菌株(Rhodococcus sp.strain PNAN5)的分离鉴定、降解特性及其开环双加氧酶性质研究[J].环境科学学报,2004,24(3):482-486.
    [31]傅时波,李尔炀.生物表面活性剂检测方法的研究[J].江苏工业学院学报,2007,19(2):23-25.
    [32]Wang JL, Zhao X, Wu WZ. Biodegradation of phthalic acid esters (PAEs) in soil bioaugmented with acclimated activated sludge [J]. Process Biochemistry, 2004, 39 (12): 1837-1841.
    [33]Chang BV, Yang CM, Cheng CH, et al. Biodegradation of phthalate esters by two bacteria strains [J], Chemophere, 2004, 55 (4): 533 - 538.
    [34]Whyte L G, Slagman S J, Pietrantonio F, et al. Physiological adaptations involved in alkane assimilation at a low temperature by Rhodococcus sp. strain Q15 [J]. Applied and Environmental Microbiology, 1999, 65(7): 2961 -2968.
    [35]Philp J, Kuyukina M, Ivshina I, et al. Alka-notrophic Rhodococcus ruber as a biosurfactant producer [J]. Applied Microbiology and Biotechnology, 2002, 59 (2-3): 318 - 324.
    [36]Carla CCR De Carvalho, Alexandra ARL Da Cruz, Marie-N(o|¨)elle Pons, et al. Mycobacterium sp., Rhodococcus erythropolis, and Pseudomonas putida Behavior in the presence of organic solvents [J], Microscopy Research and Technique, 64(3): 215 - 222.
    [37]Shafeeq M, Kokub D, Khalid ZM, et al. Degradation of different hydrocarbons and production of biosurfactant by Pseudomonas aeruginosa isolated from coastal waters [J], World Journal of Microbiology and Biotechnology, 1989, 5(4): 505 - 510.
    [38]陈燕,李寅,堵国成等.石油污染水体的生物修复[J].水处理技术,2002,29(5):249-252.
    [39]包贞,潘志彦,杨晔等.环境中多环芳烃的分布及降解[J].浙江大学学报,2003,31(5):528-533.
    [40]Komancov(?) M, ov(?) I J, Koch(?)nkov(?) L et al. Metabolic pathways of polychlorinated biphenyls degradation by Pseudomonas sp. 2 [J]. Chemoshpere, 2003, 50(4): 537 - 543.
    [41]Liang DW, Zhang T, Fang HHP, et al. Phthalates biodegradation in the environment [J]. Applied Microbiology and Biotechnology, 2008, 80(2): 183 - 198.
    [42]Nomura, Y., Takada, N., Oshima, Y. Isolation and identification of phthalate-utilizing bacteria [J]. Journal of Fermentation and Bioengineering 1989, 67(4):297- 299.
    [43]Eaton RW, Ribbons DW. Metabolism of dibutylphthalate and phthalic acid by Micrococcus sp. strain 12B [J]. Journal of Bacteriology, 1982, 151 (1): 48 - 57.
    [44]J.萨姆布鲁克,D.W.拉塞尔.SDS碱裂解法制备质粒DNA.分子克隆实验指南(第三版):28-30.
    [45]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analytical Biochemistry, 1976, 72 (1): 248-254.
    [46]周鑫淼,陈洁君,耿立召等.邻苯二酚2,3-双加氧酶的结构和功能研究进展[J].生物技术通讯,2007,4:51-54.
    [47]Kojimy Y, Itada N, Hayaishi O. Metapyrocatachase: a new catechol-cleaving enzyme [J]. Journal of Biological Chemistry, 1961, 236(8): 2223-2228.
    [48]刘涛,张长铠,薛勇等.L68菌株邻苯二酚2,3-双加氧酶纯化及性质[J].食品与生物技术,2002,21(1):53-57.
    [49]李饮,李丽,寇秀芬等.产胞外邻苯二酚1,2-双加氧酶的菌种筛选和发酵条件的研究[J].微生物学报,1989,29(1):39-44.
    [50]Murakami S, Nakanishi Y, Kodama N, et al. Purification, Characterization, and Gene analysis of catechol 2,3-dioxygenase from the aniline-assimilating bacterium Pseudomonas species AW-2 [J]. Bioscience, Biotechnology, and Biochemistry. 1998, 62 (4): 747 - 752.
    [51]Strachan P D, Freer A A, and Fewson C A. Purification and characterization of catechol 1, 2-dioxygenase from Rhodococcus rhodochrous NCIMB 13259 and cloning and sequencing of its catA gene [J]. Biochemical Journal. 1998. 333 (3):741 - 747.
    [52]周士新,顾健.细菌质粒与对消毒剂的耐药性[J].现代预防医学,2000,27(4):549-551.
    [53]Mu(?)oz R, Hern(?)ndez M, Segura A, et al. Continuous cultures of Pseudomonas putida mt-2 overcome catabolic function loss under real case operating conditions [J]. Applied Microbiology and Biotechnology, 2009, 83 (1): 189 - 198.
    [54]Samanta SK, Jain RK. Evidence for plasmid-mediated chemotaxis of Pseudomonas putida towards naphthalene and salicylate [J]. Canadian Journal of Microbiology, 2000, 46(1):1 - 6.
    [55]Kok M, Oldenhuis R, van der Linden, et al. The Pseudornonas oleovorans alkane hydroxylase gene, sequence and expression [J]. Journal of biological chemistry, 1989, 264(5): 5435 -5441.
    [56]刘芳,顾国维.废水生物处理技术新进展[J].煤矿环境保护,2002,16(3):17-20.
    [57]Larkin M J, Kulakov L A, Allen C C. Biodegradation and Rhodococcus - masters of catabolic versatility [J]. Current Opinion in Chemical Biology, 2005, 16(3): 282 - 290.
    [58]Li J, Chen JA, Zhao Q, et al. Bioremediation of environmental endocrine disruptor di-n-butyl phthalate ester by Rhodococcus ruber [J]. Chemosphere, 2006, 65(9): 1627 -1633.
    [59]潘自铁,刘华欣.不同细菌中邻苯二酚2,3-双加氧酶基因的研究[J].第四军医大学学报,2000,22(4):238-242.
    [60]Kita A, Kita S, Fujisawa I. An archetypical cxtradiol-cleaving catecholic dioxygenase the crystal structure of catechol 2, 3-dioxygenase (metapyrocateohase) from Pseudomonas putida mt-2 [J]. Structure, 1999, 7(1): 25 - 34.
    [61]Nq L C, Shingler V, Sze C C, et al. Cloning and sequences of the first eight genes of the chromosomally encoded (methyl) phenol degradation pathway from Pseudomonas putida P35X [J]. Gene, 1994, 151(1-2): 29-36.
    [62]谭佑铭,罗启芳.固定化反硝化菌去除水中硝酸盐氮的研究[J].环境与健康杂志,2001,18(6):371-373.
    [63]陈敏,罗启芳.聚乙烯醇包埋活性炭与微生物的固定化技术及其对水胺硫磷降解的研究[J].环境科学,1994,15(3):11-14.
    [64]王新,李培军,宋守志等.固定化微生物技术在环境工程中的应用研究进展[J].环境污染与防止,2005,27(7):535-537.
    [65]刘宏斌,刘转年,金奇庭.固定化微生物在废水处理中的应用[J].环境污染治理技术与设备,2002,3(5):61-65.
    [66]Jobling S, Reynolds T, White R, et al. A variety of environmentally persistent chemicals, including some phthalate plasticizers, are weakly estrogenic [J]. Environmental Health Perspectives, 1995, 103(6): 582 - 587.
    [67]Oishi S, Hiraga K. Testicular atrophy induced by phthalic acid esters: Effect on testosterone and zinc concentrations [J]. Toxicology and Applied Pharmacology, 1980, 53(1): 35 - 41.
    [68]Ema M, Miyawaki E, Kawashima K. Further evaluation of developmental toxicity of di-n-butyl phthalate following administration during late pregnancy in rats [J]. Toxicology Letters, 1998, 98(1-2): 87 - 93.
    [69]Poster PM, Mylchreest E, Gaido KW, et al. Effects of phthalate esters on the developing reproductive tract of male rats [J]. Human Reproduction Update, 2001,7 (3): 231 -235.
    [70]Parks LG, Ostby JS, Lambright CR, et al. The plasticizer diethylhexyi phthalate induces malformations by decreasing fetal testosterone synthesis during sexual differentiation in the male rat [J]. Toxicological Science, 2000, 58(2): 339 - 349.
    [71]Routledge EJ, Sumpter JP. Estrogenic activity of surfactants and some of their degradation products assessed using a recombinant yeast screen [J]. Environmental Toxicology and Chemistry, 1996, 15(3): 241 - 248.
    [72]鲁翌,汪亚洲,唐非等.不同工艺出水中有机物的致突变性及类雌激素效应[J].中国给水排水,2007,23(23):67-70.
    [73]Andrew C. Rastall, Anila Neziri, Zelko Vukovic, et al. The identification of readily bioavailable pollutants in Lake Shkodra/Skadar using semipermeable membrane devices (SPMDs), bioassays and chemical analysis [J]. Environmental Science and Pollution Research International, 2004, 11(4): 240 - 253.
    [74]Harris CA, Henttu P, Parker MG, et al. The estrogenic activity of phthalate esters in vitro [J]. Environmental Health Perspectives, 1997,105(8): 802 - 811.
    [1]邓瑛,涂晓明.酞酸酯类化合物毒理学效应及食品污染状况研究进展.首都公共卫生,2007,1(4):161-163.
    [2]Klausmeier R E. Microbiol Biodeterioration [M]. London, Academic Press, 1981,431-471.
    [3]Yin MC, Su KH. Investigation on risk of phthalate esters in drinking water and marketed foods [J]. Journal of Food and Drug Analysis, 1996, 4 (4): 313 - 318.
    [4]赵振华.我国环境中酞酸酯污染的研究[J].环境科学丛刊,1986,7(5):50-56.
    [5]Schiedek Thomas. hnpact of plasticizers (phthalic acid esters) on soil and groundwater quality [J]. IAHS Publication, 1995, 225: 149- 156.
    [6]Nagini S, Selvam S. Phthalate ester plasticizers: A review [J]. Trends Life Science, 1994, 9 (1): 9 -16.
    [7]Corea-T(?)llez KS, Bustamante-Montes P, Garc(?)a-F(?)bila M, et al. Estimated risks of water and saliva contamination by phthalate diffusion from plasticized polyvinyl chloride [J]. Journal of Environmental Health, 2008, 71 (3): 34 - 39.
    [8]史坚,徐鸿.杭州市大气总悬浮颗粒物中酞酸酯的污染[J].环境污染与防治,2000,22(6):44-45.
    [9]仝青,冯沈迎,阮玉英等.呼和浩特市不同粒径空气颗粒物上酞酸酯的污染[J].环境科学学报,1999,19(2):159-163.
    [10]王平,陈文亮,蔡维维等.南京市大气气溶胶中酞酸酯的分布特征[J].环境化学,2004,23(04).447-450
    [11]VikelsΦe J, Thomsena M, Carlsenb L. Phthalates and nonylphenols in profiles of differently dressed soils [J]. Science of the Total Environment, 2002, 296 (1-3): 105-116.
    [12]Ma LL, Chu SG, Xu XB. Phthalate residues in greenhouse soil from Beijing suburbs, Peoples's Republic of China [J]. Bulletin of Environmental Contamination and Toxicology, 2003, 71(2): 394 - 399.
    [13]包志成,张尊.长江(江阴段)水体有机物鉴定与分析[J].环境化学,1990,9(4):1-4.
    [14]黄志丹,田世忠.东湖水及其自来水中有机污染物的GC/MS鉴定[J].环境科学与技术,1992,1:19-23.
    [15]金子,李善日.松花江水中有机污染物的GC/MS定性定量分析[J].质谱学报,1998,19(1): 33-42.
    [16]吴平谷,韩关根,王惠华等.饮用水中邻苯二甲酸酯类的调查[J].环境与健康杂志,1999,16(06):338-339.
    [17]李东,吴惠勤,黄芳等.珠江广州河段水中有机污染物的GC/MS分析[J].分析测试学报,2002,21(3):86-88.
    [18]田怀军,张学奎,舒为群等.长江、嘉陵江(重庆段)源水有机污染物的研究[J].长江流域资源与环境,2003,12(2):118-123.
    [19]于涵,胡建英,金晓辉等.北方某水厂原水和处理过程中邻苯二甲酸酯类的监测[J].给水排水,2005,31(6):20-23.
    [20]郭志顺,罗财红,张卫东等.三峡库区重庆段江水中持久性有机污染物污染状况分析 [J].中国环境监测,2006,22(4):45-48.
    [21]王春,李晓东,杨自力等.南通市饮用水中邻苯二甲酸酯类含量的调查[J].环境与健康杂志,2007,24(6):438-440.
    [22]谭佑铭,刘燕群,宿飞等.某市自来水与原水中环境内分泌干扰物的调查[J].环境与健康杂志,2008,25(3):232-235.
    [23]张付海,张敏,朱余等.合肥市饮用水和水源水中邻苯二甲酸酯的污染状况调查[J].环境监测管理与技术,2008,20(2):22-24.
    [24]Di BG, Saitta M, Pellegrino M, et al. Contamination of Italian Citrus essential oils, Presence of phthalate esters. Journal of Agricultural and Food Chemistry, 1999, 47 (3): 1009 - 1012.
    [25]蔡智鸣,史馨,王枫华等.食品中酞酸酯类环境污染物的GC-MS测定[J].同济大学学报(医学版),2005,26(3):1-3.
    [26]蔡智鸣,王凤华,赵文红等.畜禽内脏食品中酞酸酯类环境污染物的测定[J].同济大学学报(医学版),2003,24(5):1-3.
    [27]Kueseng P, Thavarungkul P, Kanatharana P. Trace phthalate and adipate esters contaminated in packaged food. Journal of Environmental Science and Health, Part B, 2007, 42(5): 569 - 576.
    [28]张蕴晖,陈秉衡,郑力行等.人体生物样品中邻苯二甲酸酯类的含量[J].中华预防医学杂志,2003,37(6):429-434.
    [29]蔡智鸣,史馨,张前龙等.GC-MS测定人血清中酞酸酯类环境污染物[J].理化检验(化学分册),2006,42(2):115-117.
    [30]Bauer MJ, Herrmann R. Estimation of the environmental contamination by phthalic acid esters leaching from household wastes. Science of the Total Environment, 1997, 208 (1-2) : 49-57.
    [31]Sax NI, Lewis RJ. Dangerous properties of industrial materials [M]. 1989, 7th edition, Vol 11,Nostrand Reinhold, New York.
    [32]Adams WJ, Biddinger GR, Robillard KA, et al. A summary of the acute toxicity of 14 phthalates to representative aquatic organisms [J]. Environmental Science and Technology, 1995, 14(9): 1569-1574.
    [33]Duty SM, Silva MJ, Barr DB, et al. The relationship between environmental exposure to phthalates and human semen parameters [J]. Epidemiology, 2003, 14: 269- 277.
    [34]Duty SM, Singh NP, Silva MJ, et al. The relationship between environmental exposure to phthalates and DNA damage in human sperm [J]. Environmental Health Prospect, 2003, 11(9): 1164-1169.
    [35]Areadi FA, Costa C, Zmperatore C, et al. Oral toxicity of DEHP during pregnancy and suckling in the Long Evans rat [J]. Food Chemical Toxicology, 1998, 36(11): 963 - 970.
    [36]Gray LE, Ostby J, Furr J, et al. Perinatal exposure to the phthalates DEHEP, BBP and DINEP, but not DEEP, DMP or DOTEP, alters sexualdiferentiation of the male rat [J]. Toxicology Science, 2000, 58(2): 350 - 365.
    [37]Mylchreest E, Sar M, Russell CC, et al. Disruption of androgen-regulated male reproductive development by Di (n-Butyl) Phthalate during late gestation in rats is different from Flutamide [J]. Toxicology Applied Pharmacology, 1999, 156 (2): 81 - 95.
    [38]赵振华.酞酸酯对人与环境潜在危害的研究概况[J].环境化学,1991,10(3):64-68.
    [39]Tabacova S, Litter R, Balabaeva L. Maternal exposure to phthalates and complications of pregnancy [J]. Epidemiology, 1999, 10 (Suppl): S127.
    [40]Endocrine disruptors: effects on male and female reproductive systems [M]. Boca Raton: CRC Press, 1999. 57 - 88.
    [41]赵文红,厉曙光,石红军.单细胞凝胶电泳检测酞酸酯对DNA的损伤[J].中国公共卫生,2004,20(10):1164-1165.
    [42]Hauser R, Meeker JD, Singh NP, et al. DNA damage in human sperm is related to urinary levels of phthalate monoester and oxidative metabolites [J]. Human Reporduction, 2007, 22 (3):688 - 695.
    [43]Kleinsasser NH, Wallner BC, Kastenbauer ER, et al. Genotoxicity of di-butyl-phthalate and di-iso-butyl-phthalate in human lymphocytes and mucosal cells [J]. Teratogenesis Carcinogenesis Mutagenesis, 2001, 21 (3): 189- 196.
    [44]Douglas GR, Hugenholtz AP, Blakey DH. Genetic toxicology of phthalate esters: mutagenic and other genotoxic effects [J]. Environment Health Perspectives, 1986, 65 (3): 255 -262.
    [45]Butterworth BE, Bermudez E, Smith-Oliver T, et al. Lack of genotoxic activity of di (2-ethylhexyl) phthalate (DEHP) in rat and human hepatocytes [J]. Carcinogenesis, 1984, 5 (10): 1329- 1335.
    [46]Tsurmura Y, Ishimitsu S, Saito l, et al. Eleven phthalate esters and di (2-ethylhexyl) adipate in one-week duplicate diet samples obtained from hospitals and their estimated daily intake [J]. Food Additives and Contaminants, 2001, 18 (5): 449 - 460.
    [47]Staples C A, Peterson D R, Parkerton T F, et al. The environmental fate of phthalate esters: A literature review [J]. Chemosphere, 1997, 35(4): 667- 749.
    [48]徐刚,李发生,汪群慧.紫外光照射水中邻苯二甲酸二异辛酯的研究[J].给水排水,2006,32(z1):178-181.
    [49]陈济安,舒为群,张学奎等.邻苯二甲酸二(2-乙基己基)酯酶促降解研究[J].应用与环境生物学报,2004,10(4):471-474.
    [50]曾锋,傅家谟,盛国英.邻苯二甲酸酯类有机污染物生物降解性研究进展[J].环境科学进展,1999,7(4):1-13.
    [51]段春星,易筱筠,杨晓为等.两株邻苯二甲酸二丁酯降解菌的分离鉴定及降解特性的研究[J].农业环境科学学报,2007,26(5):1937-1941.
    [52]顾宗镰,谢思琴,周德智.城市生活垃圾中的酞酸酯的微生物降解[J].应用与环境生物学报,1995,1(3):244-251.
    [53]Kurane R. Microbial degradation of phthatate esters [J]. Molecular Microbiology, 3 (3): 92 -95.
    [54]Nomura Y, Takada N, Oshima Y. Isolation and identification of phthalate-utilizing bacteria [J]. Journal of Fermentation and Bioengineering, 1989, 67 (4): 297 -299.
    [55]Wu DL, Zheng P, Mahmood Q, et al. Isolation and characteristics of Arthrobacter sp. strain CW-1 for biodegradation of PALs [J]. Journal of Zhejiang University- Science A, 2006, 8: 1469 - 1474.
    [56]Jackson MA, Labeda DP, Becker LA. Isolation for bacteria and fungi for the hydrolysis of phthalate and terephthalate esters [J]. Journal of Industrial Microbiology and Biotechnology, 1996,16(5):301-304.
    [57]叶常明,田康.邻苯二甲酸酯类化合物生物降解动力学[J].环境科学学报,1989,9(1):37-41.
    [58]Chang BV, Wang TH, Yuan SY. Biodegradation of four phthalate esters in sludge [J]. Chemosphere, 2007, 69 (7): 1116 - 1123.
    [59]Quan CS, Liu Q, Tian W J, et al. Biodegradation of an endocrine - disrupting chemical, di-2-ethylhexyl phthalate, by Bacillus subtilis [J]. Applied Microbiology and Biotechnology, 2004, 66 (6): 702 - 710.
    [60]Juneson C, Ward OP, Singh A. Biodegradation of bis-(2-ethylhexyl) phthalate in a soil slurry-sequencing batch reactor [J]. Process Biochemistry, 2001, 37 (3): 305 - 313.
    [61]Chang HK, Zylstra GJ. Novel organization of the genes for phthalate degradation from Burkholderia cepacia DBO1 [J]. Journal of Bacteriology, 1998, 180 (24): 6529 - 6537.
    [62]秦华,林先贵,尹睿等.一株邻苯二甲酸二异辛酯高效降解菌的筛选及其降解特性的初步研究[J].农业环境和科学学报,2005,24(6):1171-1175.
    [63]Wang YY, Fan YZ, Gu JD. Aerobic degradation of phthalic acid by Comamonas acidovoran Fy-1 and dimethyl phthalate ester by two reconstituted consortia from sewage sludge at high concentrations [J]. World Journal of Microbiology and Biotechnology, 2003, 19 (8): 811 - 815.
    [64]Wang YZ, Zhou YM, Zystra GJ. Molecular analysis of isophthalate and terephthalate degradation by Comamonas testosteroni YZW-D [J]. Environment Health Perspectives, 1995, 103 (supplement): 9-12.
    [65]Chang BV, Yang CM, Cheng CH, et al. Biodegradation of phthalate esters by two bacteria strains [J]. Chemosphere, 2004, 55(4): 533 - 538.
    [66]Patil N, Karegoudar T. Parametric studies on batch degradation of a plasticizer di-n-butylphthalate by immobilized Bacillus sp [J]. World Journal of Microbiology and Biotechnology, 2005, 21(8-9): 1493 - 1498.
    [67]Perez JA, Hernandez MA, Ruiz RA. The utilization of the plasticizer dimethyl phthalate by an isolated strain of Enterobacter aerogenes [J]. Bulletin of Environmental Contamination and Toxicology, 1977, 18 (1): 104-107.
    [68]Engelhardt G, Wallnofer PR. Metabolism of di-normal-butyl phthalate and mono-normal-butyl phthalate by soil bacteria [J]. Applied and Environmental Microbiology, 1978, 35(2): 243 -246.
    [69]Chao WL, Cheng CY. Effect of introduced phthalate-degrading bacteria on the diversity of indigenous bacterial communities during di-(2-ethylhexyl) phthalate (DEHP) degradation in a soil microcosm [J]. Chemosphere, 2007, 67 (3) : 482 - 488.
    [70]Li H, Gu JD. Complete degradation of dimethyl isophthalate requires the biochemical cooperation between Klebsiella oxytoca Sc and Methylobacterium mesophilicum Sr Isolated from Wetland sediment [J]. Science of the Total Environment, 2007, 380(1-3): 181-187.
    [71]Chen JA, Li X, Li J. et al. Degradation of environmental endorine disruptor di-2-ethylhexyl phthalate by a newly discovered bacterium, Microbacterium sp. strain CQ0110Y [J]. Applied Microbiology and Biotechnology, 2007, 74 (3): 676 - 682.
    [72]Rani M, Prakash D, Sobti RC, et al. Plasmid-mediated degradation of O-phthalate and salicylate by a Moraxella sp [J]. Biochemical and Biophysical Research Communications, 1996, 220(2): 377 - 381.
    [73]Nakamiya K, Hashimoto S, Ito H, et al. Microbial treatment of bis (2-ethylhexyl) phthalate in polyvinyl chloride with isolated bacteria [J]. Journal of Bioscience Bioengineering, 2005, 99(2): 115- 119.
    [74]Kurane R. Microbial degradation of phthalate esters [J]. Molecular Microbiology, 3 (3): 92 -95.
    [75]鲁翌,徐轶鸣, 王琳等.高效酞酸酯降解菌的驯化、筛选及其降解的研究.卫生研究,2007,36(6):671-673.
    [76]李会茹,曾锋,崔昆燕.Pseudomonas fluorescens Z1999降解邻苯二甲酸酯的二级动力学特征[J].环境化学,2005,24(2):189-192.
    [77]沈萍萍,王莹莹,顾继东.活性污泥中细菌对邻苯二甲酸酯的降解及其途径[J].应用与环境生物学报,2004,10(5):643-646.
    [78]Kurane R. Microbial degradation and treatment of polycyclic aromatic hydrocarbons and plasticizers [J]. Annals of the New York Academy of Sciences, 1997, 829(1): 118 - 134.
    [79]Chao WL, Lin CM, Shiung Ⅱ, et al. Degradation of dibutyl-phthalate by soil bacteria [J]. Chemosphere, 2006, 63(8): 1377 - 1383.
    [80]Nalli S, Cooper DG, Nicell JA. Metabolites from the biodegradation of di-ester plasticizers by Rhodococcus rhodochrous [J]. Science of the Total Environment, 2006, 366 (1): 286 - 294.
    [81]Yi Lu, Fei Tang, Lin Wang, et al. Biodegradation of dimethyl phthalate, diethyl phthalate and di-n-butyl phthalate by Rhodococcus sp. L4 isolated from activated sludge. Journal of Hazardous Materials (2009), doi: 10.1016/j.jhazmat.2009.02.126.
    [82]Li JX, Gu JD, Pan L. Transformation of dimethyl phthalate, dimethyl isophthalate and dimethyl terephthalate by Rhodococcus ruber Sa and modeling the processes using the modified Gompertz model [J]. International Biodeterioration & Biodegradation, 2005, 55 (3): 223 -232.
    [83]Li J, Chen JA, Zhao Q, et al. Bioremediation of environmental endocrine disruptor di-n-butyl phthalate ester by Rhodococcus ruber [J]. Chemosphere, 2006, 65(9): 1627 -1633.
    [84]Naumova RP, Zaripova SK, Usmanova LP. Regulation of terephthalate catabolism in Rhodococcus rubropertinctus [J]. Microbiology, 1986, 55(6): 918 - 923.
    [85]Mathur SP, Rouatt JW. Utilization of the pollutant Di-2-Ethylhexyl phthalate by a bacterium [J]. Journal of Environmental Quality, 1975, 4:273 -275.
    [86]Kim DS, Um H-J, Lim E-S, et al. Degradation of diphenyl phthalate by Sphingomonas chungbukensis [J]. Biotechnology Letters, 2008, 30(1): 93 -96.
    [87]Li JX, Gu JD, Yao JH. Degradation of dimethyl terephthalate by Pasteurella multocida Sa and Sphingomonas paucimobilis Sy isolated from mangrove sediment [J]. International Biodeterioration & Biodegradation, 2005, 56(3): 158 - 165.
    [88]Wang YP, Gu JD. Degradability of dimethyl terephthalate by Variovorax paradoxus T4 and Sphingomonas yanoikuyae DOS01 isolated from deep-ocean sediments [J]. Ecotoxicology, 2006, 15(6): 549 - 557.
    [89]陈英旭,沈东升,胡志强等.酞酸类有机毒物在土壤中的降解规律规律的研究[J].环 境科学学报,1997,17(3):340-345.
    [90]Brand(?)o PF, Bull AT. Nitrile hydrolysing activities of deep-sea and terrestrial mycolate actinomycetes [J]. Antonie Van Leeuwenhoek, 2003, 84(2): 89 - 98.
    [91]Fredrickson JK, Zachara JM, Balkwill DL, et al. Geomicrobiology of high-level nuclear waste-contaminated vadose sediments at the Hanford site, Washington State [J]. Applied and Environlnental Microbiology, 2004, 70(7): 4230- 4241.
    [92]Takeuchi M, Hatano K, Sedlacek I, et al. Rhodococcus jostii sp. nov., isolated from a medieval grave. International Journal of Systematic and Evolutionary Microbiology [J]. 2002, 52(2): 409 - 413.
    [93]Bouchez-Naitali M, Abbad-Andaloussi S, Warzywoda M, Monot F. Relation between bacterial strain resistance to solvents and biodesulfurization activity in organic medium [J]. Applied Microbiology and Biotechnology, 2004, 65(4): 440 - 445.
    [94]Carla C.C.R. De Carvalho, Alexandra A.R.L. Da Cruz, Marie-N(o|¨)elle Pons, et al. Mycobacterium sp., Rhodococcus erythropolis, and Pseudomonas putida behavior in the presence of organic solvents [J]. Microscopy Research Technique, 2004, 64(3): 215 - 222.
    [95]Whyte LG, Slagman SJ, Pietrantonio F, et al. Physiological adaptations involved in alkane assimilation at a low temperature by Rhodococcus sp. strain Q15 [J]. Applied and Environmental Microbiology, 1999, 65(7): 2961 - 2968.
    [96]Philp JC, Kuyukina MS, Ivshina IB, et al. Alkanotrophic Rhodococcus ruber as a biosurfactant producer [J]. Applied Microbiology and Biotechnology, 2002, 59(2-3): 318 -324.
    [97]王琳.罗启芳.环境内分泌干扰物邻苯二甲酸二丁酯的生物降解特性[J].卫生研究,2003,32(3): 187-189.
    [98]柴素芬,曾锋.不同菌源的微生物对邻苯二甲酸二辛酯生物降解性的比较[J].环境科学研究,2000,13(5):11-13.
    [99]叶张荣,夏凤毅,马鲁铭.4种邻苯二甲酸酯的降解及其降解菌株生长特性的研究[J].江苏工业学院学报,2004,16(3):34-37.
    [100]孔繁翔等,环境生物学[M].第一版.北京:高等教育出版社,2000,210-211.
    [101]马毅,姜燕,吴桂峰.苯胺废水处理研究[J].上海化工,2007,32(8):20-22.
    [102]任大军,颜克亮,刘飞虎.不同共代谢基质对白腐菌降解吲哚的作用研究[J].环境科学学报,2007,27(2):206-212.
    [103]安淼,周琪,李晖等.2,4-二氯代酚的共代谢降解研究[J].中国给水排水,21(12):53-55.
    [104]Liang DW, Zhang T, Fang HHP, et al. Phthalates biodegradation in the environment [J]. Applied Microbiology and Biotechnology, 2008, 80(2): 183 - 198.
    [105]Eaton RW, Ribbons DW. Metabolism of dibutylphthalate and phthalic acid by Micrococcus sp. strain 12B [J]. Journal of Bacteriology, 1982, 151(1): 48 - 57.
    [106]周鑫淼,陈洁君,耿立召等.邻苯二酚2,3-双加氧酶的结构和功能研究进展[J].生物技术通讯,2007,4:51-54.
    [107]Larkin MJ, Kulakov LA, Allen CCR. Biodegradation and Rhodococcus - masters of catabolic versatility [J]. Current Opinion in Biotechnology, 2005, 16(3): 282 - 290.
    [108]Wang JL, Hou WH, Qian Y. Immobilization of microbial cells using polyvinyl alcohol (PVA)-polyacrylamide gels [J]. Biotechnol Techniques, 1995, 9(3): 203 -208.
    [109]崔明超,陈繁忠,傅家谟等.固定化微生物技术住废水处理中的研究进展.化工环保,2003,23(5):261-264.
    [110]王琳,罗启芳.硅藻土吸附固定化微生物对邻苯二甲酸二丁酯的降解特性研究[J].卫生研究,2006,35(1):23-25.
    [111]Wang JL, Ye YC, Wu WZ. Comparison of Di-n-methyl phthalate biodegradation by free and immobilized microbial cells [J]. Biomedical and Environmental Science, 16(2): 126- 132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700