用户名: 密码: 验证码:
应用于2G/3G移动通信的数字辅助单通道多模接收机研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着3G网络和智能终端的普及,射频芯片的集成度要求越来越高,采用CMOS工艺的单芯片多模收发机是当今研究的热门。将多模接收机完全以单通道实现,通过电路重构来满足不同协议的要求,可以在节省芯片面积的同时,更灵活的满足协议的更新换代。 CMOS工艺的进步带来了集成度的提高,但同时电源电压也越来越低,接收机的一些关键性能指标设计难度越来越大,需要采用数字辅助技术弥补传统射频模拟电路的不足,改进关键性能指标。
     基于以上背景,本文对比和总结了主流2G/3G协议对接收机结构和性能的要求,提出了适用于2G/3G移动通信的单通道多模接收机架构。整个接收通道包括射频前端、模拟基带、双通道ADC和数字前端,采用数字辅助技术,使整个通道实现多模支持并针对接收机关键性能指标进行改进。
     本文使用数字辅助技术对接收机中的二阶失真和IQ失配进行了校正,改进了系统的IIP2和IRR性能。首先量化了混频器开关管阈值电压失配产生的二阶失真,并论证了人为引入阈值电压失配抵消其他二阶失真的可行性。在此基础上设计了一款带数字IIP2校正的宽带射频前端,通过控制混频器开关管上的偏置电压,人为引入阈值电压失配来校正IIP2,校正后IIP2提高到48dBm。其次提出了应用于低中频接收机的自适应数字校正算法。该算法根据检测到的邻道干扰和有用信号的功率比,自适应地选择中频和应用IQ失配补偿,克服了使用训练信号进行补偿不适合实时校正和自适应补偿易受无线衰落影响的缺点。将该算法应用于GSM低中频接收机中,经过校正后相位误差从6.78。改进到3.23。,IRR从29.1dB改进到44.3dB。
     本文以GSM和TD-SCDMA协议为应用目标,在SMIC0.13um CMOS工艺下设计和实现了一款单通道多模接收机。使用ADS和VSA软件对接收机进行系统建模和仿真,采用数字辅助技术,在单通道中实现了多模支持,并有效改进了IIP2和IRR等关键性能指标。芯片在TD-SCDMA模式下与商用数字基带进行了联调,成功实现了网络接入和通话建立。
With the popularity of3G communications and smartphones, the integration of RF chips has become increasingly demanding. Nowadays single-chip multi-mode transceiver using CMOS technology is the hot research topic. Multi-mode receiver can be realized in single-channel by circuit reconfiguration. As a result, the chip area can be saved and the receiver is more flexible to meet the upgrade of the standards. The scaling down of CMOS technology raises the integration level, but at the same time the supply voltage is getting lower and lower. It is more difficult to reach the specifications of some key performances, so digital assistance is needed to make up the shortage of the traditional RF and analog circuits and improve the key performances.
     Based on the above background, the requirements on the receiver structure and performance raised by the mainstream2G/3G standards are compared and summarized. A single-channel multi-mode receiver architecture for2G/3G mobile communications is raised. The whole receiver channel includes a RF frontend, an analog baseband, a two-channel ADC and a digital frontend. Digital assistance is used to support multiple modes and improve the key performances of the receiver.
     Digital assistance is used to calibrate the second-order distortion and IQ mismatch in the receiver, and the IIP2and IRR performances are improved. Firstly the second-order distortion generated by the threshold voltage mismatch of the mixer switches is quantized, and the feasibility of cancelling out the other second-order distortions by artificially introducing the threshold voltage mismatch is demonstrated. On the basis a wideband RF frontend with digital IIP2calibration is designed. An artificially introduced mismatch by controlling the bias of the switches is used to calibrate the IIP2, and the IIP2after calibration is raised to48dBm. Secondly, an adaptive digital calibration algorithm is raised. The algorithm can adaptively select the intermediate frequency (IF) and compensate the IQ mismatch according to the power ratio of the adjacent channel interference to the desired signal. It can overcome the shortages that compensation using a training signal is not suitable for online calibration and adaptive compensation is easily impacted by wireless fading. After implemented in a low-IF GSM receiver, the phase error is improved from6.78degree to3.23degree, and the IRR is improved from29.1dB to44.3dB.
     Targeting GSM and TD-SCDMA standards, a single-channel multi-mode receiver is designed and implemented in SMIC0.13um RF CMOS process. Advanced Design System (ADS) and Vector Signal Analysis (VSA) software are used to model and simulate the system. By using digital assistance, multiple modes are supported, and the key performances such as the IIP2and IRR are effectively improved. The whole transceiver configured in TD-SCDMA mode has been verified by connecting to a commercial baseband processor and the test bench has successfully accessed the TD-SCDMA network and established conversation connections.
引文
[1]2012年1月中国电话用户净增993.6万户,http://www.askci.com/news/201202/27/17039_70.shtml.
    [2]深度解读:中国联通奠定3G市场龙头地位,http://www.cl 14.net/news/l 19/a674368.html.
    [3]Analog Devices Inc, SoftFone-LCR+Complete Chipset for Multimedia TD-SCDMA Handsets.
    [4]Spreadtrum Communications, Datasheet of QS 3200 TD-SCDMA/EDGE Transceivers.
    [5]RDA, Datasheet of RDA8208 Fully integrated TD-SCDMA/EDGE dual-mode radio frequency transceiver.
    [6]Rising Micro Electronics, Datasheet of RS3009 GSM/EDGE/TD-SCDMA RF Transceiver.
    [7]Tirdad Sowlati et al, "Single-Chip Multiband WCDMA/HSDPA/HSUPA/EGPRS Transceiver with Diversity Receiver and 3G DigRF Interface Without SAW Filters in Transmitter/3G Receiver Paths", IEEE International Solid-State Circuits Conference, 2009.
    [8]Kaczman, D. et al, "A Single-Chip 10-Band WCDMA HSDPA 4-Band GSM EDGE SAW-less CMOS Receiver With DigRF 3G Interface and+90 dBm IIP2", IEEE Journal of Solid-State Circuits, vol.44, no.3, pp.718-739,2009.
    [9]Alberto Cicalini et al, "A 65nm CMOS SoC with Embedded HSDPA/EDGE Transceiver, Digital Baseband and Multimedia Processor", IEEE International Solid-State Circuits Conference,2011.
    [10]Magnus Nilsson et al, "A 9-Band WCDMA/EDGE Transceiver Supporting HSPA Evolution", IEEE International Solid-State Circuits Conference,2011.
    [11]Giannini, V. et al, "A 2-mm20.1-5GHz Software-Defined Radio Receiver in 45-nm Digital CMOS", IEEE Journal of Solid-State Circuits, vol.44, no.12, pp. 3486-3498,2009.
    [12]Zhiyu Ru et al, "Discrete-Time Mixing Receiver Architecture for RF Sampling Software-Defined Radio", IEEE Journal of Solid-State Circuits, vol.45, no.9, pp. 1732-1745,2010.
    [13]Huang Qiuting et al, "A Tri-Band SAW-Less WCDMA/HSPA RF CMOS Transceiver with On-Chip DC-DC Converter Connectable to Battery", IEEE International Solid-State Circuits Conference,2010.
    [14]R.Bagheri et al, "An 800MHz-5GHz Software-Defined Radio Receiver in 90-nm CMOS", IEEE International Solid-State Circuits Conference,2006.
    [15]J. Mitola, "The software radio architecture", IEEE Communications Magazine, vol.33, no.5, pp.26-38,1995.
    [16]Hueber G. et al, "Smart Front-End Signal Processing for Advanced Wireless Receivers", Selected Topics in Signal Processing, IEEE Journal of, vol.3, no.3, pp. 471-487,2009.
    [17]Robert Bogdan Staszewski, "Digital RF and Digitally-Assisted RF", International Symposium on Radio-Frequency Integration Technology,2011.
    [18]Kenichi Okada et al, Digitally-Assisted Analog and RF CMOS Circuit Design for Software-Defined Radio, Springer,2011.
    [19]GSM/EDGE Radio Access Network; Radio transmission and reception (Release 8),3GPP TS 45.005,2008.
    [20]Radio Access Network; User Equipment (UE) radio transmission and reception (TDD) (Release 8),3GPP TS 25.102,2008.
    [21]Radio Access Network; User Equipment (UE) radio transmission and reception (FDD) (Release 8),3GPP TS 25.101,2008.
    [22]EPCOS, Datasheet of B9510 SAW Rx 2inl filter GSM 850/GSM 900.
    [23]Hussaini, A.S. et al, "Tunable RF filters:Survey and beyond", IEEE International Conference on Electronics, Circuits and Systems,2011.
    [24]Hashimoto, K. et al, "Tunable RF SAW/BAW filters:Dream or reality?", Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum,2011.
    [25]Sekar, V. et al, "A 1.2-1.6-GHz Substrate-Integrated-Waveguide RF MEMS Tunable Filter", IEEE Transactions on Microwave Theory and Techniques, vol.59, no. 4, pp.866-876,2011,
    [26]Entesari, K., "Advanced modeling of packaged RF MEMS switches and its application on tunable filter implementation", IEEE Annual Wireless and Microwave Technology Conference,2010.
    [27]Angel Ivanov, "TD-LTE and FDD-LTE-A Basic Comparison", http://www.aircominternational.com.
    [28]Meeting T3R4 Requirements in TD-SCDMA Handsets Using the MAX2392, Maxim Application Note.
    [29]Rudolf Tanner et al, WCDMA-Requirements and Practical Design, Wiley, 2004.
    [30]Radio Access Network; Modulation (Release 8),3GPP TS 45.004,2008.
    [31]John Proakis et al, Digital Communications (Fifth Edition), McGraw-Hill,2007.
    [32]Leon W.Couch, Ⅱ, Digital and Analog Communication Systems (Fifth Edition), Prentice Hall,1999.
    [33]Radio Access Network; Spreading and Modulation (FDD),3GPP TS 25.213, 2008.
    [34]Mischa Schwartz, Mobile Wireless Communications, Cambridge University Press,2005.
    [35]Francois Horlin et al, Digital Compensation for Analog Front-Ends, Wiley,2008.
    [36]Pui-In Mak et al, "Transceiver Architecture Selection Review, State-of-the-Art Survey and Case Study", IEEE Circuits and Systems Magazine,2007.
    [37]Jakonis, D. et al, "A 2.4GHz RF sampling receiver front-end in 0.18μm CMOS", IEEE Journal of Solid-State Circuits, vol.40, no.6, pp.1265-1277,2005.
    [38]Geis, A. et al, "A 0.5 mm2 Power-Scalable 0.5-3.8GHz CMOS DT SDR Receiver With Second-Order RF Band-Pass Sampler", IEEE Journal of Solid-State Circuits, vol.45, no.11, pp.2375-2387,2010.
    [39]Staszewski R. et al, "Software Assisted Digital RF Processor for Single-Chip GSM Radio in 90 nm CMOS", IEEE Journal of Solid-State Circuits, vol.45, no.2, pp. 276-288,2010.
    [40]Behzad Razavi, RF Microelectronics (Second Edition), Prentice Hall,2011.
    [41]EPCOS, Datasheet of SF1081A 71.00 MHz SAW Filter.
    [42]Giannini, V. et al, Baseband Analog Circuits for Software Defined Radio, Springer,2008.
    [43]Behzad Razavi, "Design considerations for direct-conversion receivers", Circuits and Systems II:Analog and Digital Signal Processing, IEEE Transactions on, vol.44, no.6, pp.428-435,1997.
    [44]Richard Chi-Hsi Li, Key Issues in RF/RFIC Circuit Design, Wiley,2003.
    [45]Behzad Razavi, "A study of injection locking and pulling in oscillators", IEEE Journal of Solid-State Circuits, vol.39, no.9, pp.1415-1424,2004.
    [46]Manstretta, D. et al, "Second-order intermodulation mechanisms in CMOS downconverters", IEEE Journal of Solid-State Circuits, vol.38, no.3, pp.394-406, 2003.
    [47]Chehrazi, S. et al, "Second-Order Intermodulation in Current-Commutationg Passive FET Mixers," Circuits and Systems I:Regular Papers, IEEE Transactions on, vol.56, no.12, pp.2556-2568,2009.
    [48]Savers, A.D. et al, "Analysis of Flicker Noise in a Multimode Radio for Cellular and Connectivity Applications", European Conference on Wireless Technologies, 2007.
    [49]Muhammad, K. et al, "The First Fully Integrated Quad-Band GSM/GPRS Receiver in a 90-nm Digital CMOS Process", IEEE Journal of Solid-State Circuits, vol.41, no.8, pp.1772-1783,2006.
    [50]Chi-yao Yu, "A SAW-less GSM/GPRS/EDGE receiver embedded in a 65nm CMOS SoC", IEEE International Solid-State Circuits Conference,2011.
    [51]Sao-Jie Chen et al, IQ calibration techniques for CMOS radio transceivers, Springer,2006.
    [52]Brandolini, M. et al, "Toward multistandard mobile terminals-fully integrated receivers requirements and architectures", Microwave Theory and Techniques, IEEE Transactions on, vol.53, no.3, pp.1026-1038,2005.
    [53]Elahi I. et al, "I/Q mismatch compensation using adaptive decorrelation in a low-IF receiver in 90-nm CMOS process", IEEE Journal of Solid-State Circuits, vol. 41, no.2, pp.395-404,2006.
    [54]Qizheng Gu, System Design of Transceivers for Wireless Communications, Springer,2005.
    [55]Sanduleanu, M.A.T. et al, "Receiver front-end circuits for future generations of wireless communications," IEEE Transactions on Circuits and Systems Ⅱ:Express Briefs, vol.55, no.4, pp.299-303,2008.
    [56]S. Chehrazi, "Broadband front-ends for software-defined radios," Ph.D. dissertation,2008.
    [57]RF and Analog/Mixed-signal Technologies, ITRS 2011.
    [58]Walter Tuttlebee, Software Defined Radio, Wiley,2002.
    [59]Kerr, R. et al, "The CDMA Digital Cellular System, An ASIC Overview", Proceedings of IEEE Custom Integrated Circuits Conference,1992.
    [60]Receiver Sensitivity Equation for Spread Spectrum Systems, Maxim Application Note.
    [61]Radio Access Networks; RF requirements for 1,28 Mcps UTRA TDD option (Release 5),3GPP TS 25.945,2007.
    [62]Jacques C. Rudell et al, An Integrated GSM/DECT Receiver:Design Specifications.
    [63]Woogeun Rhee, "Multi-bit delta-sigma modulation technique for fractional-N frequency synthesizers", Ph.D. dissertation,2001.
    [64]Yuyu Chang et al, "A Differential Digitally Controlled Crystal Oscillator With a 14-Bit Tuning Resolution and Sine Wave Outputs for Cellular Applications", IEEE Journal of Solid-State Circuits, vol.47, no.2, pp.421-434,2012.
    [65]Shafik, R.A. et al, "On the Extended Relationships Among EVM, BER and SNR as Performance Metrics", International Conference on Electrical and Computer Engineering, pp.408-411,2006.
    [66]Digital Modulation in Communications Systems-An Introduction, Agilent Application Note.
    [67]ADS Ptolemy Simulation, Agilent Application Note.
    [68]89600 Vector Signal Analysis Software, Agilent Application Note.
    [69]Chris W. Liu et al, IP2 and IP3 Nonlinearity Specifications for 3G/WCDMA Receivers, Broadcom Corporation Application Note.
    [70]Jim Karki, Active low-pass filter design, TI Application Note.
    [71]Willy Sansen, Analog Design Essential, Springer,2007.
    [72]Zhenbiao Li et al, "A Dual-Band CMOS Transceiver for 3G TD-SCDMA", IEEE International Solid-State Circuits Conference,2007.
    [73]Murthy Vinay et al, "Automatic gain control for a wireless receiver", Qualcomm, WIPO Patent Application WO/2006/099530.
    [74]Stephen H. Hall, High-Speed Digital System Design:A Handbook of Interconnect Theory and Design Practices, Wiley.
    [75]Momentum, Agilent Application Note.
    [76]Ahmed Helmy et al, Substrate Noise Coupling in RFICs, Springer,2010.
    [77]Ozev, S. et al, "Multilevel testability analysis and solutions for integrated Bluetooth transceivers", IEEE Design & Test of Computers, vol.19, no.5, pp.82-91, 2002.
    [78]DigRF Baseband/RF Digital Interface Specification Versionl.12.
    [79]S. Zhou et al, "A CMOS passive mixer with low flicker noise for low-power direct-conversion receiver," IEEE Journal of Solid-State Circuits, vol.40, no.5, pp. 1084-1093,2005.
    [80]Redman-White, W. et al, "1/f Noise in passive CMOS mixers for low and zero IF integrated receivers," Proceedings of European Solid-State Circuits Conference,2001.
    [81]Elahi, I. et al. "IIP2 Calibration by Injecting DC Offset at the Mixer in a Wireless Receiver", Circuits and Systems II:Express Briefs, IEEE Transactions on, vol.54, no. 12, pp.1135-1139,2007.
    [82]W. Zhuo et al, "Using Capacitive Cross-Coupling Technique In RF Low Noise Amplifiers and Down-Conversion Mixer Design," Proceedings of European Solid-State Circuits Conference,2000.
    [83]F. Bruccoleri et al, "Wide-band CMOS low-noise amplifier exploiting thermal noise canceling," IEEE Journal of Solid-State Circuits, vol.39, no.2, pp.275-282, 2004.
    [84]Borremans, J. et al., "Low-Area Active-Feedback Low-Noise Amplifier Design in Scaled Digital CMOS", IEEE Journal of Solid-State Circuits, vol.43, no.11, pp. 2422-2433,2008.
    [85]Poobuapheun N et al, "A 1.5-V 0.7-2.5-GHz CMOS quadrature demodulator for multiband direct-conversion receivers", IEEE Journal of Solid-State Circuits, vol.42, no.8, pp.1669-1676,2007.
    [86]M. Terrovitis et al, "Intermodulation distortion in current-commutating CMOS mixers," IEEE Journal of Solid-State Circuits, vol.35, no.10, pp.1461-1473,2000.
    [87]Khatri, H. et al, "Distortion in Current Commutating Passive CMOS Downconversion Mixers", IEEE Transactions on Microwave Theory and Techniques, vol.57, no.11, pp.2671-2681,2009.
    [88]Elahi, I. et al, "IIP2 and DC Offsets in the Presence of Leakage at LO Frequency", IEEE Transactions on Circuits and Systems II:Express Briefs, vol.53, no.8, pp.647-651,2006.
    [89]Bagheri, R. et al, "An 800-MHz-6-GHz Software-Defined Wireless Receiver in 90-nm CMOS", IEEE Journal of Solid-State Circuits, vol.41, no.12, pp.2860-2874, 2006.
    [90]Croon, J.A. et al, "An Easy-to-Use Mismatch Model for the MOS Transistor", IEEE Journal of Solid-State Circuits, vol.37, no.8, pp.1056-1064,2002.
    [91]Croon, J.A. et al, "Physical modeling and prediction of the matching properties of MOSFETs", Proceeding of European Solid-State Device Research conference, 2004.
    [92]H. Darabi et al, "An IP2 Improvement Technique for Zero-IF Down-Converters", IEEE International Solid-State Circuits Conference,2006.
    [93]A.V.Oppenheim et al, Signals and Systems (Second Edition), Prentice Hall,1996.
    [94]J. P. F. Glas, "Digital I/Q Imbalance Compensation in a low-IF Receiver", IEEE Proceeding on Global Telecommunications Conference, pp.1461-1466,1998.
    [95]Maeda K. et al, "Wideband image-rejection circuit for low-IF receivers", International Solid-State Circuits Conference,2006.
    [96]Elahi I. et al, "Parallel Correction and Adaptation Engines for I/Q Mismatch Compensation", Circuits and Systems Ⅱ:Express Briefs, IEEE Transactions on, vol. 56, no.1, pp.86-90,2009.
    [97]M. Valkama et al, "Advanced DSP for I/Q imbalance compensation in a low-IF receiver," IEEE International Conference on Communications,2000.
    [98]Lawrence Der et al, "A 2-GHz CMOS Image-Reject Receiver with LMS Calibration," IEEE Journal of Solid-State Circuits, vol.38, no.2, pp.167-175,2003.
    [99]Simon O. Haykin, Adaptive Filter Theory (4th Edition), Prentice Hall,2001.
    [100]Rozic, N. et al, "Adaptive algorithms for digital signal processing", European Conference on Electrotechnics,1988.
    [101]Kong-pang Pun et al, "The Correction of Frequency Dependent I/Q Mismatches in Quadrature Receivers by Adaptive Signal Separation", International Conference on ASIC,2001.
    [102]Widrow B. et al, "Adaptive noise cancelling Principles and Applications", Proceedings of the IEEE, vlo.63, no.12,1975.
    [103]Digital Down Converter V 1.0, Xilinx Application Note.
    [104]Hung Yan Cheung et al, "A low power monolithic AGC with automatic DC offset cancellation for direct conversion hybrid CDMA transceiver used in telemetering", IEEE International Symposium on Circuits and Systems,2001.
    [105]Seyeob Kim et al, "A 43dB ACR Low-pass Filter with Automatic Tuning for Low-IF Conversion DAB/T-DMB Tuner IC", Proceedings of European Solid-State Circuits Conference,2005.
    [106]Rijns, J.J.F., "CMOS Low-Distortion High-Frequency Variable-Gain Amplifier", IEEE Journal of Solid-State Circuits, vol.31, no.7, pp.1029-1034,1996.
    [107]Yonghui Tang et al, "A highly linear CMOS amplifier for variable gain amplifier applications", Midwest Symposium on Circuits and Systems,2002.
    [108]Hueber, G. et al, "On the Concept of a Multi-Mode Agile Receive Digital-Front-End for Cellular Terminals", International Symposium on Personal, Indoor and Mobile Radio Communications,2005.
    [109]Hogenauer E., "An economical class of digital filters for decimation and interpolation", IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 29, no.2, pp.155-162,1981.
    [110]Yomg Lim, "Frequency-response masking approach for the synthesis of sharp linear phase digital filters", IEEE Transactions on circuits and systems, vol.33, no.4, pp.357-364,1986.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700