用户名: 密码: 验证码:
TD-SCDMA演进系统及无线资源管理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了时分同步码分多址接入(Time Division Synchronous Code Division Multiple Access, TD-SCDMA)的演进系统及其先进的无线资源管理(Radio Resource Management, RRM)技术。所涉及的TD-SCDMA的演进系统主要可以分为两大类:基于码分多址接入(Code Division Multiple Access, CDMA)的系统以及基于正交频分多址接入(Orthogonal Frequency Division Multiple Access, OFDMA)的系统;而研究的RRM算法主要包括:基于TD-SCDMA高速下行分组接入(TD-SCDMA High Speed Downlink Packet Access, TD-HSDPA)反馈时延控制的快速调度(Fast Packet Scheduling, FPS)算法、基于TD-HSDPA的正交可变扩频因子(Orthogonal Variable Spreading Factor, OVSF)码字重用算法、TD-SCDMA长期演进(TD-SCDMA Long Term Evolution, TD-LTE)的二维调度和资源分配算法、基于干扰避免的OFDM自适应资源分配(Adaptive Resource Allocation, ARA)算法以及基于物理资源块(Physical Resource Block, PRB)重用的TD-LTE三维调度和资源分配算法,最后本文还分析了TD-SCDMA与TD-LTE共存的系统性能。
     TD-SCDMA演进不仅需要系统架构的升级优化,更需要物理(Physical, PHY)层和媒体接入控制(Medium Access Control, MAC)层关键技术的不断创新和优势组合。本文介绍的TD-SCDMA演进系统有基于CDMA的TD-HSPA/TD-HSPA+和基于OFDMA的TD-LTE/TD-LTE+,并且对其标准化过程和关键技术进行了分析,包括智能天线(Smart Antenna, S A)、联合检测(Joint Detection, JD)、自适应调制编码(Adaptive Modulation and Coding, AMC)、混合自动重传请求(Hybrid Auto Repeat reQuest, HARQ)、多输入多输出(Multiple Input Multiple Output, MIMO)天线和OFDM技术等;同时对于未来通信中的无线资源的基本结构和算法也做了简要的介绍。通过对系统结构及特性的研究,本文讨论了基于TD-SCDMA演进系统的系统级仿真方法论,提出了多种相应的仿真模型和参数假设;并针对TD-HSPA和TD-LTE的不同点,对仿真器进行了差异性设计。本文的研究点主要包含下几个部分:
     首先,在TD-HSDPA中,系统利用高速下行共享信道(High Speed Downlink Shared CHannel, HS-DSCH)作为业务信道来传输不同用户的数据流,并引入了两个共享控制信道:HS-DSCH的共享控制信道(Shared Control CHannel for HS-DSCH, HS-SCCH)和HS-DSCH的共享信息信道(Shared Information CHannel for HS-DSCH, HS-SICH),用于基站(NodeB)和用户设备(User Equipment, UE)控制信息的交互;在TD-HSDPA协议中规定了不同信令交互的定时关系,由于采用共享反馈的机制,信道质量指示(Channel Quality Indicator, CQI)的反馈在常规的调度策略模式下传输往往会有很大的时延;特别是当系统负载较大时,NodeB所接收到的反馈CQI已经无法准确体现用户当前的信道情况,因此本文提出了一种基于TD-HSDPA反馈时延控制的调度策略,通过有效地改善TD-HSDPA系统中的用户调度和信道资源分配方式来对抗信令交互的时延特性,提高反馈的实时性和有效性,从而提升通信系统性能。
     其次,TD-HSDPA采用了OVSF码作为其物理信道的扩频码,其扩频因子最大可取16;由于受到扩频码字数目的限制,TD-HSDPA和TD-SCDMA一样,是一种典型的资源受限的CDMA系统,本文通过智能天线波束赋形时产生的空间隔离特性,在TD-HSDPA引入空间维资源的概念,提出了一种OVSF码字重用算法,允许满足智能天线空间隔离度要求的用户群共享同一码字,从而大幅提升了系统容量,增进了用户满意度。
     第三,TD-LTE中所采用的OFDMA是一种很有前景的物理层技术,由于引入了频域资源,需要更复杂的时频调度算法来挖掘更丰富的多用户分集,本文研究了跨层设计的二维调度和资源分配算法,通过对MAC层的时域分组调度(Time Domain Packet Scheduling, TDPS)和PHY层的频域资源分配(Frequency Domain Resource Allocation, FDRA)的不同组合的性能评估,论证了跨层设计的方式能够很好的考虑HARQ重传,给重传数据较高的优先级,并且能保证用户之间的公平性,为系统带来较高的性能增益。
     第四,本文考虑了OFDMA系统中多径时延超过保护间隔(Guard Interval, GI)的场景,并分析了由此带来的相应符号间干扰(Inter-Symbol Interference, ISI)和载波间干扰(Inter-Carrier Interference, ICI);而为了完成OFDMA系统的小区内干扰消除,大多数的文献都将研究重心放在接收端的数字信号处理(Digital Signal Processing, DSP)算法上,本文创新性地提出了一种自适应的资源分配算法,通过利用非满载系统资源分配的灵活性来避免由GI不足带来的小区内干扰,从而不需要在接收端对DSP模块进行硬件升级,只需要通过软件升级即可完成干扰消除,降低了系统的复杂度。
     第五,本文在TD-LTE系统的原有资源基础上,研究通过新的关键技术来增加频谱利用效率。通过将智能天线应用在TD-LTE系统,在原有时频资源的基础上,引入空间资源,使TD-LTE的二维无线资源扩容成三维。新算法对满足空间隔离度的用户进行PRB重用,使系统性能得到了本质的提高。
     第六,本文研究了TD-SCDMA与TD-LTE双系统共存场景的系统性能,通过对于双系统的联合仿真,分析了不同方向业务之间的干扰情况,并且根据相应的结果曲线总结了不同场景下系统间对抗干扰所需的邻道干扰比(Adjacent Channel Interference power Ratio, ACIR)隔离度。
Time Division Synchronous Code Division Multiple Access (TD-SCDMA) evolution and advanced radio resource management (RRM) technologies are researched in this dissertation. The mainstream TD-SCDMA evolution can be categorized into two types:systems based on Code Division Multiple Access (CDMA) and systems based on Orthogonal Frequency Division Multiple Access (OFDMA). Several novel RRM technologies are involved here, such as the novel fast packet scheduling (FPS) algorithm considering feedback delay in TD-SCDMA High Speed Downlink Packet Access (TD-HSDPA) systems, the novel strategy of orthogonal variable spreading factor (OVSF) code reusing in TD-HSDPA, the packet scheduling and resource allocation schemes in TD-SCDMA Long Term Evolution (TD-LTE), the novel adaptive resource allocation (ARA) algorithm in OFDMA with insufficient guard interval. under fractional load, and the three-dimension scheduling and resource allocation scheme based on physical resource block (PRB) reusing. Moreover, the co-existence performance of TD-SCDMA and TD-LTE are studied.
     TD-SCDMA evolution not only needs the upgrade in system fundamental architecture, but also the innovation and optimization in key technologies on physical (PHY) layer and medium access control (MAC) layer. TD-HSPA/TD-HSPA+ based on CDMA and TD-LTE/TD-LTE+ based on OFDMA are introduced by this dissertation, while the standardization and key technologies of TD-SCDMA evolution are analyzed, such as smart antenna (SA), joint detection (JD), adaptive modulation and coding (AMC), hybrid auto repeat request (HARQ), multiple input multiple output (MIMO) antenna, and OFDM algorithm; the framework and schemes of future RRM are also mentioned. Through the analysis of the features and structures of TD-SCDMA evolution, the system level simulation methodology is discussed. The correlative simulation modules and assumptions of parameters are designed, and the simulator also takes the differences between TD-HSPA and TD-LTE into account. Our research work can be composed of following 6 parts:
     Firstly, TD-HSDPA adopts high speed downlink shared channel (HS-DSCH) as the traffic channel to transmit packet data for different users, and it has two shared control channels for interaction between base station (NodeB) and user equipment (UE):shared control channel for HS-DSCH (HS-SCCH) and shared information channel for HS-DSCH (HS-SICH). In TD-HSDPA, due to the timing relationship of high speed (HS) channels, the feedback information of channel quality indicator (CQI) are always delayed under the conventional scheduling schemes; especially, when the traffic load is heavy, the CQI received by NodeB can no longer represent the current channel condition for users. In order to maintain the efficiency of feedback information, a novel scheduling scheme for feedback delay control is proposed. As the new scheme utilizes users'scheduling and channel allocation, the interaction delay can be greatly shortened, and the system performance can be improved remarkably.
     Secondly, OVSF is adopted in TD-HSDPA for physical channel spreading, and the spreading codes can be up to 16. Similar to TD-SCDMA, TD-HSDPA is a kind of resource-limited systems whose spreading codes are finite in a given time slot. The proposed OVSF codes reusing algorithm introduces spatial domain into TD-HSDPA by using spatial filter of SA beam-forming, and the users who have passed the spatial filter can share same codes, which enhances the system capacity and improve the quality of service (QoS).
     Thirdly, OFDM is considered as one of the most promising technologies for future multimedia wireless systems that require reliable and high-rate data transmission. As subcarrier resource is exploited, more complicated scheduling algorithms are required to achieve richer multi-user diversity. We investigate the combined performance of HARQ aware cross-layer design RRM in TD-LTE downlink systems, which is generally composed of time domain packet scheduling (TDPS) at MAC layer and frequency domain resource allocation (FDRA) at PHY layer, and the simulation results shows that the cross-layer design algorithm can guarantee the users'fairness and bring more performance gain for TD-LTE downlink.
     Fourthly, a more practical scenario, in which multi-path delay is longer than the guard interval (GI), is considered in this dissertation, and the intra-cell inter-symbol interference (ISI) and inter-carrier interference (ICI) are re-analyzed. Most of the existing literatures focus on the digital signal processing (DSP) algorithms at the receiver for reducing the intra-cell interference of OFDMA systems. However, instead of the conventional complicated DSP algorithms, we propose a novel adaptive resource allocation scheme, in which RA flexibility of fractional load is utilized to avoid intra-cell interference.
     Fifthly, in TD-LTE, we adopt SA to improve spectrum utilizing efficiency. Through the beam-forming, spatial dimension resources are introduced into TD-LTE, and the RRM schemes are extended to three-dimension. The proposed scheme makes the users who have passed spatial filter reuse the same PRB, which enhances the system throughput remarkably.
     Finally, the co-existence performance of TD-SCDMA and TD-LTE are studied. By the cooperative simulation of double systems, we analyze the interference with different traffics, and find out the required adjacent channel interference power ratio (ACIR) value in different scenarios from the simulation results.
引文
[1]爱立信(中国)通信有限公司系统方案部,HSPA移动宽带商用业务模式剖析,通信世界周刊,第14期,2007年5月.
    [2]谢永斌,TD-SCDMA标准及技术的演进,数据通信,第4期,2004年4月,1-2页.
    [3]李文宇,顾听钰,TD-SCDMA标准的演进和发展,中国无线电,第3期,2005年3月,16-20页.
    [4]3GPP TS25.308 (V5.7.0): High Speed Downlink Packet Access (HSDPA); Overall description; Stage 2,2004.
    [5]3GPP TR25.858 (V5.0.0):Physical layer aspects of UTRA High Speed Downlink Packet Access,2002.
    [6]3GPP TS25.899 (V6.1.0):High Speed Downlink Packet Access (HSDPA) enhancements,2004.
    [7]3GPP TS23.246 (V7.4.0):Multimedia Broadcast Multimedia Multicast Service (MBMS):Architecture and functional description,2007.
    [8]3GPP TR25.903 (V7.0.0):Continuous connectivity for packet data users,2007.
    [9]3GPP TS25.346 (V7.5.0):Introduction of the Multimedia Broadcast Multicast Service (MBMS) in the Radio Access Network (RAN),2007.
    [10]3GPP TS25.827 (V7.1.0):1.28Mcps TDD enhanced uplink; Physical layer aspects, 2007.
    [11]3GPP TS25.319 (V7.3.0):Enhanced uplink; Overall description; Stage 2,2007.
    [12]3GPP TS36.201 (V8.0.0):Evolved Universal Terrestrial Radio Access (E-UTRA); Long Term Evolution physical layer; General description,2007.
    [13]3GPP TS36.211 (V8.0.0):Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation,2007.
    [14]3GPP TS36.212 (V8.0.0):Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding,2007.
    [15]3GPP TS36.213 (V8.0.0):Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures,2007.
    [16]3GPP TS36.214 (V8.0.0):Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer; Measurements,2007.
    [17]3GPP TS36.300 (V8.0.0):Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2,2007.
    [18]3GPP TS36.304 (V8.0.0):Evolved Universal Terrestrial Radio Access (E-UTRA) User Equipment (UE) procedures in idle mode,2007.
    [19]3GPP TS25.824 (v0.1.0):Study report on future HSPA Evolution for 1.28Mcps TDD, 2007.
    [20]3GPP TS25.999 (v7.1.0):High Speed Packet Access (HSPA) evolution; Frequency Division Duplex,2008.
    [21]ROHDE&SCHWARZ, Application Note 1MA121:HSPA+ Technology Introduction, http://www.rohde-schwarz.com/appnote/1MA 121.html.
    [22]Sallent O., Perez-Romero J., Agusti R., Casadevall F., Provisioning multimedia wireless networks for better QoS:RRM strategies for 3G W-CDMA, IEEE Communications Magazine, February 2003, pp.100-106.
    [23]Dongmei Z, Xuemin S, Mark, J. W., Radio resource management for cellular CDMA systems supporting heterogeneous services, IEEE Transactions on Mobile Computing, April 2003, pp.147-160.
    [24]Skehill R., Barry M., Kent W., The common RRM approach to admission control for converged heterogeneous wireless networks, IEEE Wireless Communications, April 2007, pp.48-56.
    [25]Bublin M., Konegger M., Slanina P., A Cost-Function-Based Dynamic Channel Allocation and Its Limits, IEEE Transactions on Vehicular Technology, July 2007, pp.2286-2295.
    [26]Santucci F., Pratesi M., Ruggieri M., A general analysis of signal strength handover algorithms with co-channel interference, IEEE Transactions on Communications, February 2000, pp.231-241.
    [27]Lei S, Mandayam N.B., Gajic Z., Analysis of an up/down power control algorithm for the CDMA reverse link under fading, IEEE Journal on Selected Areas in Communications, February 2001, pp.277-286.
    [28]Vincent K.N.Lau, A Proportional Fair Space Time Scheduling for Wireless Communications, IEEE Transactions on Communications, August 2005, pp.1353-1360.
    [29]杨运年,TD-SCDMA与其它CDMA技术的比较,电信快报,2003年1月,21-23页.
    [30]Liu Guangyi, Zhang Jianhua, Zhang Ping, Further Vision on TD-SCDMA Evolution, Communications,2005 Asia-Pacific Conference on, October 2005, pp.143-147.
    [31]Mugen Peng; Wenbo Wang, Technologies and standards for TD-SCDMA evolutions to IMT-advanced, Communications Magazine, vol.47, no.12, December 2009, pp.50-58.
    [32]彭木根,王文博,TD-SCDMA移动通信系统,机械工业出版社,2006年3月.
    [33]王莹张平,无线资源管理,北京邮电大学出版社,2005年.
    [34]Mugen P, Wenbo W, A framework for investigating radio resource management algorithms in TD-SCDMA systems, IEEE Communications Magazine, vol.43, no.6, June 2005, pp.12-18.
    [35]Tonguz O.K., Wang M.M, Cellular CDMA networks impaired by Rayleigh fading: system performance with power control, IEEE Transactions on Vehicular Technology, vol.43, no.3, August 1994, pp.515-527.
    [36]Tekinay S, Jabbari B, Handover and channel assignment in mobile cellular networks, IEEE Communications Magazine, vol.29, no.11, November 1991, pp.42-46.
    [37]顾听钰,李文宇,链路自适应技术在移动通信系统中的应用,电信网技术,第2期,2004年2月,11-14页.
    [38]陈书平,堵久辉,王文博TDD-HSDPA/SA系统链路自适应技术性能分析及改进,通信学报,第27卷,第1期,2006年1月,124-130页.
    [39]Jeong D.G, Jeon W.S., Congestion control schemes for reverse link data transmission in multimedia CDMA systems, IEEE Transactions on Vehicular Technology, vol.52, no.6,2003, pp.1489-1496.
    [40]郭思贝,TD-SCDMA系统无线资源管理,中兴通讯技术,2006年5月,36-39页.
    [41]肖登坤,张其善,李世鹤,TD-SCDMA系统中接纳控制算法研究,电子学报,2004年9月,pp.1536-1538.
    [42]沈嘉,姜涛,UMTS演进之路,移动通信,2006年12月,20-23页.
    [43]唐薇,陈发堂,3G增强技术在TD-SCDMA中的应用及发展,广西通信技术,2007年6月,27-30页.
    [44]林辉,TD-LTE/TD-LTE-Advanced技术,电信网技术,第12期,2009年12月.
    [45]邓筱罡,陈发堂,TD-SCDMA的HSPA+和长期演进,电信工程技术与标准化,第 8期,2008年8月,80-83页.
    [46]肖睿,LTE-Advanced及其关键技术,中国新通信-网络与应用,第12期,2009年12月,22-25页.
    [47]Dottling M., Michel J., Raaf B., Hybrid ARQ and adaptive modulation and coding schemes for high speed downlink packet access, IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, September 2002, pp.1073-1077.
    [48]Hong C, Pingzhi F., An adaptive coded modulation scheme associated with improved HARQ, IEEE Personal, Indoor and Mobile Radio Communications, September 2003, pp.1292-1296.
    [49]3GPP TS25.221 (V7.3.0):Physical channels and mapping of transport channels onto physical channels (TDD),2007.
    [50]S.Parkvall, J.Peisa, J.Torsner, WCDMA enhanced uplink-principles and basic operation, VTC-Spring, vol.3,2005, pp.1411-1415.
    [51]Richard Van Nee, Ramjee Prasad, OFDM for Wireless Multimedia Communications, Artech House,2000.
    [52]马志刚,MIMO原理及测试,电信网技术,第9期,2009年9月,67-70页.
    [53]3GPP TR25.814 (V7.1.0):Physical layer aspect for evolved Universal Terrestrial Radio Access (UTRA),2006.
    [54]彭木根,洪伟,王文博,TD-SCDMA的长期演进与HSPA+增强技术,电信科学,第6期,2007年6月,45-52页.
    [55]3GPP REV-080011, LTE Advanced Technical Proposals, Moto, April 2008.
    [56]3GPP REV-080013, Requirement for LTE-Advanced, ZTE, April 2008.
    [57]Liberti J. C., Rappaport T. S.,无线通信中的智能天线—IS95和第3代CDMA应用,机械工业出版社,2002.
    [58]Alexiou A, Haardt M, Smart antenna technologies for future wireless systems:trends and challenges, IEEE Communications Magazine, vol.42, no.9, September 2004, pp.90-97.
    [59]Ming-Ju H, Stuber G.L, Austin M.D., Performance of switched-beam smart antennas for cellular radio systems, IEEE Transactions on Vehicular Technology, vol.47, no.1, February 1998, pp.10-19.
    [60]Lupas R, Verdu S, Linear multiuser detectors for synchronous code division multiple access channels, IEEE Transaction on Information Theory, vol.35, no.1,1989, pp.123-136.
    [61]黄华生,蒋泽,TD-SCDMA系统中联合检测的原理和实现,重庆邮电学院学报(自然科学版),第17期,2001年2月,5-8页.
    [62]KLEIN A, Data detection algorithms specially designed for the downlink of CDMA mobile radio systems, VTC-Spring, May 1997, pp.203-207.
    [63]Nakamura M, Awad Y, Vadgama S, Adaptive control of link adaptation for high speed downlink packet access (HSDPA) in W-CDMA, Wireless Personal Multimedia Communications, The 5th International Symposium on,2002, pp.382-386.
    [64]Jinsock L, Arnott R, Hamabe K, Adaptive modulation switching level control in high speed downlink packet access transmission,3G Mobile Communication Technologies, Third International Conference on,2002, pp.156-159.
    [65]常永宇,崔杰等,TD-HSPA移动通信技术,人民邮电出版社,2008年11月.
    [66]Chase D, Class of algorithms for decoding block codes with channel measurement information, Information Theory, IEEE Transactions on,1972, pp.170-182.
    [67]R. S. Blum, J. H. Winters, N. R. Sollenberger, On the capacity of cellular systems with MIMO, IEEE Commun. Letter, vol.6, June 2002, pp.242-244.
    [68]T. M. Cover, J. A. Thomas, Elements of Information Theory, New York, Wiley,1991.
    [69]R. S. Blum, MIMO capacity with interference, Information Science and Systems, March 2002.
    [70]刘宁,李颖,王新梅,分层空时码检测算法的研究,电子学报,第31卷,第11期,2003年11月,pp.1754-1757.
    [71]GJ Foschini, Layered space time architecture for wireless communication in fading environment when using multiple antennas, Bell Labs Technical Journal,1996, pp.41-59.
    [72]王文博,郑侃,宽带无线通信OFDM技术,人民邮电出版社,2007.
    [73]Stuber G.L, Broadband MIMO-OFDM wireless communications, Proceedings of the IEEE, vol.92, no.2, February 2004, pp.271-294.
    [74]Bolcskei H, MIMO-OFDM wireless systems:basics, perspectives, and challenges. Wireless Communications, vol.13, no.4, August 2006, pp.31-37.
    [75]啜刚,CDMA无线网络规划与优化,机械工业出版社,2004.
    [76]3GPP TS25.222 (V5.7.0):Multiplexing and channel coding (TDD),2004.
    [77]3GPP TS25.223 (V5.3.0):Spreading and modulation (TDD),2003.
    [78]3GPP TS25.224 (V5.9.0):Physical Layer Procedures (TDD),2005.
    [79]杨光,杨大成,李璐,郭进军,宽带码分多址移动通信系统的系统级性能仿真,电子学报,第31卷,第7期,2001年4月,464-470页.
    [80]3GPP2 C.R1002-0 (V1.0):cdma2000 Evaluation Methodology,2004.
    [81]3GPP TR25.895 (V6.0.0):Analysis of higher chip rates for UTRA TDD evolution, 2004.
    [82]3GPP TR30.03U (V3.2.0):Selection procedures for the choice of radio transmission technologies of the UMTS,1998.
    [83]European Cooperative in the Field of Science and Technique Research EURO-COST 231, Urban transmission loss models for mobile radio in the 900 and 1800MHz bands, Revision 2, the Hague, September 1991.
    [84]杨大成,移动传播环境:理论基础,分析方法和建模技术,机械工业出版社,2003.
    [85]孙程君,张中兆,巴勇,曹鹏志,移动通信系统系统级仿真中慢衰落相关性的研究,通信学报,第8期,2002年8月,33-38页.
    [86]CCSA, TC5_WG8_2005_018B, Study Report for co-existence of TD-SCDMA and WCDMA v1.4.0 Final, April 2005.
    [87]3GPP TR25.892 (V6.0.0):Feasibility Study for Orthogonal Frequency Division Multiplexing (OFDM) for UTRAN enhancement,2004.
    [88]3GPP TR25.996 (V8.0.0):Spatial channel model for Multiple Input Multiple Output (MIMO) simulations,2008.
    [89]3GPP TR25.848 (V4.0.0):Physical layer aspects of UTRA High Speed Downlink Packet Access,2001.
    [90]3GPP TS25.321 (V8.4.0):Medium Access Control (MAC) Protocol Specification, 2009.
    [91]3GPP TS25.102 (V8.6.0):UE Radio Transmission and Reception (TDD),2009.
    [92]Song Xinghua, Hu Nan, A Cross-Layer Design for Downlink Scheduling in SDMA Packet Access Networks, VTC-Spring, April 2007, pp.1016-1020.
    [93]Christian Hartmann, CAC and blocking capacity of multi-service smart antenna CDMA systems with and without code re-use, IPCCC 2005, April 2005, pp.423-429.
    [94]Bartolome, D., Pirez-Neira, A.L., Performance analysis of scheduling and admission control for multiuser downlink SDMA, ICASSP 04, vol.2, May 2004, pp.ii333-ii336.
    [95]Christian Hartmann, Hierarchical DCA in SDMA systems-variations and Performance Comparison, VTC-Spring, vol.2, May 2000, pp.721-725.
    [96]Koutsopoulos, I., Ren, T., Tassiulas, L., The impact of space division multiplexing on resource allocation:a unified approach, INFCOM 2003, vol.1, April 2003, pp.533-543.
    [97]Tarcisio F. Maciel, Anja Klein, A Low-Complexity SDMA Grouping Strategy for the Downlink of Multi-User MIMO Systems, PIMRC 2006, September 2006, pp.1-5.
    [98]Golaup, A., Holland, O., Aghvami, A.H., Concept and Optimization of an Effective Packet, PIMRC 2005, vol.3, September 2005, pp.1693-1697.
    [99]C. Wong, R. Cheng, K. Letaief, and R. Murch, Multiuser OFDM with adaptive subcarrier, bit and power allocation, IEEE Journal on Selected Areas in Communications, vol.17, no.10,1999, pp.1747-1758.
    [100]Ying Jun Zhang, Letaief K.B., Multiuser adaptive subcarrier and bit allocation with adaptive cell selection for OFDM systems, Wireless Communications, IEEE Transactions on vol.3, no.5, September 2004, pp.1566-1575.
    [101]Jiang Yu, Yueming Cai, Yuehuai Ma, A cross-layer design of packet scheduling and resource allocation for multiuser MIMO-OFDM systems, Information, Communications & Signal Processing, pp.1-5, December 2007.
    [102]Weilan Huang, Letaief K.B., A cross-layer resource allocation and scheduling for multiuser space-time block coded MIMO/OFDM systems, ICC2005, vol.4, May 2005, pp.2655-2659.
    [103]Pokhariyal A., Kolding T.E., Mogensen P.E., Performance of Downlink Frequency Domain Packet Scheduling for the UTRAN Long Term Evolution. PIMRC2006, pp.1-5, September 2006.
    [104]Kivanc D., Guoqing Li, Hui Liu, Computationally efficient bandwidth allocation and power control for OFDMA, Wireless Communications, IEEE Transactions, vol.2, no.6, November 2003, pp.1150-1158.
    [105]J. Gross, F. Fitzek, Channel state dependent scheduling policies for an OFDM physical layer using a binary state model, TKN Technical Report, TKN-01-009, Berlin, June 2001.
    [106]Hoon Kim, Youngnam Han, A proportional fair scheduling for multicarrier transmission systems, Communications Letters, vol.9, no.3, March 2005, pp.210-212.
    [107]3GPP TS36.104 (V8.3.0):Base Station radio transmission and reception,2008.
    [108]S. Chen, T. Yao, Intercarrier interference suppression and channel estimation for OFDM system in time-varying frequency-selective fading channels, IEEE Trans. Consumer Electron., vol.50, May 2004, pp.429-435.
    [109]M. Russell, G. Stuber, Interchannel interference analysis of OFDM in a mobile environment, VTC-Fall, vol.2, July 1995, pp.820-824.
    [110]Sili Lu, Kalbasi R., Al-Dhahir, N., OFDM interference mitigation algorithms for doubly-selective channels, VTC-Fall, September 2006, pp.1-5.
    [111]Shaoping Chen, Tianren Yao, FEQ for OFDM systems with insufficient CP, PIMRC 2003, vol.1, September 2003, pp.550-553.
    [112]Texas Instruments, Performance of inter-cell interference mitigation with semi-static frequency planning for EUTRA downlink,3GPP TSG-RAN1, R1-060368, February 2006.
    [113]Seok Ho Won, Hyeong Jun Park, Neel J.O., Inter-Cell Interference Coordination/Avoidance for Frequency Reuse by Resource Scheduling in an OFDM-Based Cellular System, VTC-Fall, September 2007, pp.1722-1725.
    [114]Necker M.C., Local Interference Coordination in Cellular OFDMA Networks, VTC-Fall, September 2007, pp.1741-1746.
    [115]Bosisio R., Spagnolini U., Interference Coordination vs. Interference Randomization in Multicell 3GPP LTE System, WCNC 2008, March 2008, pp.824-829.
    [116]S. S. Jeong, D. G. Jeong, W. S. Jeon, Cross-layer design of packet scheduling and resource allocation in OFDMA wireless multimedia network, VTC-Spring, Session 1C:Scheduling & Resource Allocation,2006.
    [117]Van Duc Nguyen, Kuchenbecker H.P., Intercarrier and inter symbol interference analysis of OFDM systems on time-varying channels, SPAWC 2003, June 2003, pp.140-144.
    [118]Y. Ofuji, A. Morimoto, H. Atarashi, Sector Throughput Using Frequency and Time Domain Channel-Dependent Packet Scheduling with Channel Prediction in OFDMA Downlink Packet Radio Access, VTC-Fall, vol.3, September 2005, pp.1589-1593.
    [119]C. Wengerter, J. Ohlhorst, A. G E. v. Elbwart, Fairness and Throughput Analysis for Generalized Proportional Fair Frequency Scheduling in OFDMA, VTC-Spring, vol. 3,May 2005,pp.1903-1907.
    [120]Pokhariyal A., Monghal G, Pedersen K.I., Frequency Domain Packet Scheduling Under Fractional Load for the UTRAN LTE Downlink, VTC-Spring, April 2007, pp.699-703.
    [121]Haiying Julie Zhu, Hafez R.H.M., Scheduling schemes for multimedia service in wireless OFDM systems, Wireless Communications, vol.14, no.5, October 2007, pp.99-105.
    [122]Wenyi Shao, Jianfei Xie, Gang Wang, Structure and implementation of smart antennas based on software radio, Systems, Man and Cybernetics, vol.2, October 2003,pp.1938-1943.
    [123]S.Haykin, Adaptive Filter Theory, Prentice Hall, NJ,1991.
    [124]王建海,段军,TD-LTE与TD-SCDMA及GSM干扰共存的研究,电信网技术,第6期,2009年6月.
    [125]3GPP TR25.942 (V8.0.0):Radio Frequency (RF) system scenarios,2008.
    [126]3GPP TR36.942 (V8.2.0):Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Frequency (RF) system scenarios,2009.
    [127]3GPP TS25.105 (V8.4.0):Base Station (BS) radio transmission and reception (TDD), 2009.
    [128]CCSA, TC5_WG8_2008_104B,2GHz TD-HSDPA与TD-SCDMA宏蜂窝场景共存仿真假设,2008.
    [129]大唐移动移动通信设备有限公司,TD-SCDMA系统智能天线模型,2004年4月.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700