烟气钠碱脱硫吸收富液超声波解吸方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烟气脱硫是控制二氧化硫污染最有效的手段之一。目前常用的烟气脱硫技术存在着脱硫副产物大部分被废弃、利用率低,且对环境造成二次污染等问题,阻碍了现行烟气脱硫技术的发展。因此开发废弃物产生量少,且能同时回收SO_2资源的新型烟气脱硫技术尤为重要,其中SO_2气体的富集和吸收液的再生就成为关键技术问题。本文探索了一种脱硫富液超声波解吸再生的新方法,利用超声波的“空化作用”和“声喷流作用”促进钠碱脱硫富液中SO_2气体的脱除,对吸收富液再生的同时使SO_2气体得到富集。
     根据化学平衡和气液传质关系,推导得到了SO_2气体解吸过程中解吸平衡容量与溶液pH值、Na~+浓度和温度的相互关系,以及SO_2气体解吸过程传质速率方程,为后续解吸研究提供理论基础。
     通过对超声波解吸和传统的加热解吸进行实验对比,结果表明脱硫富液pH值为2.0~4.0范围内超声波对解吸具有显著的促进作用,且pH值越低超声波促进作用越大,当脱硫富液pH值为2.0时,超声作用的解吸速率比纯加热解吸时提高1.38倍。随着pH值的升高,解吸促进效果减弱,当pH值大于4.0后,超声波不再具有促进作用。对解吸过程脱硫溶液成分进一步研究表明超声波对脱硫富液的促进主要是加快了富液中H2SO3向SO_2的分解过程,从而提高解吸过程的总体积传质系数KL ? a。
     利用自行设计的超声波反应器进行钠碱脱硫富液解吸实验研究,重点考察了脱硫富液液面深度、富液初始pH值、温度、富液中Na~+浓度以及超声波功率等因素对SO_2解吸量和解吸率的影响;并对各参数进行了综合分析,得出较为经济、高效的操作条件,即脱硫富液深度7.9cm;初始pH值2.0,温度60℃,NaHSO3浓度1.0mol/L,超声波功率30W;在此条件下超声波解吸作用180min,就能够得到0.267mol/L的解吸量以及85%的解吸率。
     在解吸过程中发现,与纯加热解吸相比,超声波解吸虽然单位时间的水分蒸发量有所增加,但是由于超声波大幅度提高了SO_2解吸速率,因而能够最终减少解吸过程的整体水分蒸发量,节省了能量损耗。另外,对脱硫富液中硫酸根离子含量的研究表明,超声波解吸过程中硫酸根离子含量基本保持稳定,超声波能够抑制亚硫酸根离子向硫酸根离子的转化,从而避免吸收液在再生过程中的劣化。本论文主要对钠碱脱硫富液的超声波解吸方法进行探索和机理解析,可以为烟气脱硫富液的再生技术提供新的思路。
Flue gas desulfurization (FGD) is one of the most effective technologies to control sulfur dioxide pollution. Currently, FGD technology commonly used have some problems of abandonment or low utilization of most desulfurization by-product and secondary pollution for environment, which hinder the development of these existing FGD technologies. Therefore, the development of new FGD technology with small waste production and SO2 resources recovery is particularly important, in which, SO2 enrichment and FGD solution regeneration is a key point. In this thesis, a new ultrasonic desorption regeneration method of desulfurization rich solution was explored, by using“cavitation”and“fountain”of ultrasound to promote SO2 removal, thus SO2 gas was enriched and at the same time desulfurization rich solution was regenerated.
     Based on the chemical equilibrium and gas-liquid mass transfer equation, the relationship between desorption capacity with pH value, sodium ion concentration and temperature was deduced, and the mass transfer rate equation of SO2 gas was also obtained in the desorption process. These could provide the theoretical basis for future desorption research.
     According to the contrast of ultrasound desorption with conventional heating desorption experiments, the results showed that ultrasound could significantly promote the SO2 desorption from sodium alkali desulfurization rich solution in the pH value range of 2.0 to 4.0, and the promotion of ultrasound desorption increased with decrease of pH value. When the pH value of desulfurization rich solution was 2.0, the ultrasound desorption rate increased by 1.38 times than that of heating desorption. The effect of ultrasonic desorption weakened with the pH value increased, and when the pH value was higher than 4.0, the promotion was ignored. Furthermore, by analyzing the composition of desulfurization rich solution with different pH value, the results indicated that the use of ultrasound accelerated mainly the decomposition from H_2SO_3 to SO2, thus total volume mass transfer coefficient K L?a was enhanced in the desorption process.
     The experiments of ultrasonic desorption of sodium alkali desulfurization rich solution were carried out in the self-designed ultrasonic reactor. The influence of various parameters, including the depth of desulfurization rich solution, the initial pH value, temperature, sodium ion concentration and ultrasonic electric power, on SO_2 desorption amount and desorption rate were researched. Moreover, through the comprehensive analysis of above parameters, a economical and efficient operating condition was obtained, which was depth of desulfurization rich solution of 7.9 cm; initial pH value of 2.0, temperature of 60℃, NaHSO3 concentration of 1.0 mol/L and ultrasonic electric power of 30 W. Under this optimal condition, 0.267 mol/L of desorption amount and 85 % of desorption efficiency were yielded after 180 min ultrasonic vibration.
     In the desorption process, the water evaporation amount per minute under ultrasound desorption was slightly higher than that with pure heating desorption. Conversely, the total water evaporation amount was lower than that heating desorption at the same SO_2 desorption amount. Therefore, the energy consumption was saved owing to the higher SO_2 desorption rate under ultrasound. In addition, the study on sulfate radical content in desulfurization rich liquid showed that it remained stable level generally, thus it could be considered that ultrasound could restrain the conversion from sulfite radical to sulfate radical, and avoid deterioration of desulfurization solution in the regeneration process.
     This thesis mainly focused on the method and mechanism explorations of ultrasound desorption from sodium alkali desulfurization rich solution, and it could provide new ideas for the regeneration technology of FGD rich solution.
引文
[1]林肇信.环境保护概论[M].北京:高等教育出版社, 1999.
    [2]郝吉明,贺克斌.中国燃煤二氧化硫污染控制战略[J].中国环境科学,1996, 16 (3): 208~212.
    [3]李德华.化学工程基础[M].北京:化学工业出版社, 2008.
    [4]郝吉明,王书肖,陆永琪.燃媒二氧化硫污染控制技术手册[M].北京:化学工业出版社, 2001.
    [5]童志权.工业废气净化与利用[M] .北京:化学工业出版社, 2001.
    [6]曾庭华,杨华,马斌,等.湿法烟气脱硫系统的安全性及优化[M].北京:中国电力出版社, 2004.
    [7]孙克勤,钟秦.火电厂烟气脱硫系统设计、建造及运行[M].北京:化学工业出版社, 2005.
    [8]李晓芸,赵毅,王修彦.火电厂有害气体控制技术[M].北京:北京水利水电出版社, 2005.
    [9]钟秦.燃煤烟气脱硫脱硝技术及工程实例[M].北京:化学工业出版社, 2007.
    [10]雷仲存.工业脱硫技术[M].北京:化学工业出版社, 2001.
    [11] Wang D. X., Deng W..Atmospheric SO2 pollution and acidity of rain in Changchun China [J]. Water Air and Soil Pollution, 2001, 130 (1-4): 1631 ~1634.
    [12] Yang L., Stulen I., De Kok L.J., et al.SO2, NOx and acid deposition problems in China impact on agriculture [J].Phyton-Annales Rei Botanicae,2002,42(3): 255~264.
    [13]杨飏.二氧化硫减排技术与烟气脱硫工程[M].北京:北京冶金工业出版社, 2004.
    [14]中华人民共和国环境保护部.中国环境状况公报[R] .2009.
    [15]赵鹏高.燃煤电厂烟气脱硫有关问题的思考[J].中国电力,2004, 37 (10): 1~3.
    [16] Kaneko S.,Fujii H.,Sawazu N., et al.Financial allocation strategy for the regional pollution abatement cost of reducing sulfur dioxide emissions in the thermal power sector in China[J].Energy Policy,2009, 38 (5): 2131~2141.
    [17]中华人民共和国环境保护部.全国环境统计公报(2008)[R].2009.
    [18]中华人民共和国环境保护部.全国环境统计年报(2006)[R]. 2007.
    [19]中国环境监测总站.2003年环境统计年报[R].火电厂二氧化硫排放情况,2004.
    [20]中国环境监测总站.2004年环境统计年报[R].火电厂二氧化硫排放情况,2005.
    [21] Fang Y. P., Zeng Y., Li S. M..Technological influences and abatement strategies for industrial sulphur dioxide in China [J]. International Journal of Sustainable Development and World Ecology, 2008, 15 (2): 122~131.
    [22] Streets D. G., Waldhoff S. T..Present and future emissions of air pollutants in China: SO2, NOx, and CO [J] .Atmospheric Environment, 2000, 34 (3): 363~374.
    [23] Xu X. C., Chen C. H., Qi H. Y., et al.Development of coal combustion pollution control for SO2 and NOx in China [J]. Fuel Processing Technology, 2000, 62 (2-3): 153~160.
    [24]徐正中.目前火电厂脱硫的几种流行方法[J].热力发电,1991 (3): 53~60.
    [25] Srivastava R. K., Jozewicz W..Flue gas desulfurization: The state of the art [J]. Journal of the Air & Waste Management Association,2001, 51 (12): 1676~1688.
    [26] Weaver E. H., Confuorto N.,胡小云.烟气排放控制技术的工艺现状[J].硫酸工业, 2003 (6): 7~13.
    [27]肖文德,吴志泉.二氧化硫脱除与回收[M].北京:化学工业出版社, 2001.
    [28] Karatepe N..A comparison of flue gas desulfurization processes [J]. Energy Sources, 2000, 22 (3): 197~206.
    [29] Nolan P. S..Flue gas desulfurization technologies for coal-fired power plants [C]. In Coal-Tech 2000 International Conference, Jakarta Indonesia, 2000, Vol. 13-14, p 1~13.
    [30] Anon.Tail- gas desulfurization operations successful [J]. Oil and Gas Journal, 1972, 70 (6): 65~66.
    [31] Sun X., Meng F., Yang F..Application of seawater to enhance SO2 removal from simulated flue gas through hollow fiber membrane contactor [J]. Journal of Membrane Science, 2008, 312 (1-2): 6~14.
    [32] Tomas-Alonso F..A new perspective about recovering SO2 offgas in coal power plants: Energy saving. Part III. Selection of the best methods [J]. Energy Sources, 2005, 27 (11): 1051~1060.
    [33] Tomas-Alonso F..A new perspective about recovering SO2 offgas in coal power plants: Energy saving. Part II. Regenerable dry methods [J]. Energy Sources, 2005, 27 (11): 1043~1049.
    [34] Tomas-Alonso F..A new perspective about recovering SO2 offgas in coal powerplants: Energy saving. Part I. Regenerable wet methods [J]. Energy Sources, 2005, 27 (11): 1035~1041.
    [35]吴基荣,李晋睿.可再生无机缓冲溶液烟气脱硫技术概述[J].硫酸工业,2009 (3): 13~16.
    [36]蒋利桥,陈恩鉴.可回收硫资源的烟气脱硫技术概述[J].工业锅炉,2003, 77 (1): 4~6.
    [37] Zhou J. H., Huo C. X..Study on desulfurization (H2S) capacity of regenerated activated carbon [C]. FBIE 2009 - 2009 International Conference on Future BioMedical Information Engineering, Sanya, China, 2009, p 518~520.
    [38] Pandey R. A., Biswas R., Chakrabarti T., et al.Flue gas desulfurization: Physicochemical and biotechnological approaches [J]. Critical Reviews in Environmental Science and Technology, 2005, 35 (6): 571~622.
    [39] Tong R. L. N., Keenan J. D..Cost-effectiveness evaluation of flue gas desulfurization processes [J]. Journal of Environmental Systems, 1982, 12(4): 289~302.
    [40] Pandey R. A., Malhotra S..Desulfurization of gaseous fuels with recovery of elemental sulfur: An overview [J]. Critical Reviews in Environmental Science and Technology, 1999, 29 (3): 229~268.
    [41] Murthy K. S., Rosenberg H. S., Engdahl R. B..Status and problems of regenerable flue gas desulfurization processes [J]. Journal of the Air Pollution Control Association, 1976, 26 (9): 851~855.
    [42]叶奕森.美国回收法烟气脱硫工艺介绍[J].环境与可持续发展,1985 (5): 4~6.
    [43]蒋利桥,赵黛青,陈恩鉴.亚硫酸钠循环法烟气脱硫工艺实验研究[J].热能动力工程,2005, 20 (4): 384~386.
    [44] Mitachi K., Murakami K., Sato J..Thermal decomposition/regeneration of desulfurization liquor [J] .Chemical Engineering Progress, 1981, 77 (4): 56~61.
    [45] Leckner P., Pearson R. O., Wood R. T..Wellman-Lord SO2 recovery process [J] .Chemical Engineering Progress, 1982, 78 (2): 65~70.
    [46] Slimane R. B., Abbasian J..Regenerable mixed metal oxide sorbents for coal gas desulfurization at moderate temperatures [J]. Advances in Environmental Research, 2000, 4 (2): 147~162.
    [47] Wang Y., Yang R. T..Desulfurization of liquid fuels by adsorption on carbon-based sorbents and ultrasound-assisted sorbent regeneration [J] .Langmuir, 2007, 23 (7): 3825~3831.
    [48] Ellison W..Limiting of SO2 and NOx emissions in worldwide coal-power production [J] .Radiation Physics and Chemistry, 1995, 45 (6): 1003~1011.
    [49] Xu Y., Williams R. H., Socolow R. H..China's rapid deployment of SO2 scrubbers [J] .Energy & Environmental Science, 2009, 2 (5): 459~465.
    [50] Gao C. L., Yin H. Q., Ai N. S., et al.Historical Analysis of SO2 Pollution Control Policies in China [J] .Environmental Management,2009, 43 (3): 447~457.
    [51] Anon, China Power Investment Grp Co.Situation and future of De-SO2 and De-NOx technologies applicable to China's coal-fired power generations [J].Proceedings of the World Engineers' Convention, 2004, F-B: 96~102.
    [52]南京化学工业公司研究院《硫酸工业》编辑部.低浓度二氧化硫烟气脱硫[M].上海:上海科学技术出版社, 1981.
    [53]谢建治.钠碱法烟气脱硫废液的膜电解再生技术及机理研究[D].天津:天津大学环境科学与工程学院博士学位论文, 2006.
    [54]保积庆,张启修.二室双极膜电渗析器在低浓度二氧化硫净化工艺中应用的可行性[J].膜科学与技术,2003, 23 (2): 32~36.
    [55]谢建治,张书廷,赵新华,等.钠碱法烟气脱硫膜电解再生研究[J].燃料化学学报,2006, 34 (1): 91~95.
    [56]谢建治,张书廷,赵新华,等.二室单阴膜电解再生钠碱脱硫废液研究[J].天津大学学报,2006, 39 (4): 490~495.
    [57]李廷盛,尹其光.超声化学[M].北京:科学出版社, 1995.
    [58] Mason T. J., Lorimer J. P..An introduction to sonochemistry [J]. 1989, 13 (3): 123~128.
    [59] Mason T. J..Sonochemistry and sonoprocessing: The link, the trends and (probably) the future [J]. Ultrasonics Sonochemistry, 2003, 10 (4-5): 175~179.
    [60] Mason T. J..Industrial sonochemistry: potential and practicality [J]. Ultrasonics, 1992, 30 (3): 192~196.
    [61] Mason T. J..Current trends in sonochemistry [J]. Ultrasonics Sonochemistry, 1994, 1 (2): S133~S133.
    [62] Henglein A..Sonochemistry: historical developments and modern aspects [J]. Ultrasonics, 1987, 25 (1): 6~16.
    [63] Yanagida H..The effect of dissolve gas concentration in the initial growth stage of multi cavitation bubbles: Differences between vacuum degassing and ultrasound degassing [J].Ultrasonics Sonochemistry, 2008, 15 (4): 492~496.
    [64] Xu H. B.,Meek T. T.,Han Q. Y..Effects of ultrasonic field and vacuum ondegassing of molten aluminum alloy [J]. Materials Letters, 2007, 61 (4-5): 1246~1250.
    [65]冯若.声化学及其应用[M].安徽:安徽科技出版社, 1992.
    [66]薛娟琴,兰新哲,杜士毅,等.超声波作用下柠檬酸盐溶液中SO2的解吸机理[J].化工学报,2007, 58 (4): 944~950.
    [67] Servant G., Caltagirone J. P., Gerard A., et al.Numerical simulation of cavitation bubble dynamics induced by ultrasound waves in a high frequency reactor [J]. Ultrasonics Sonochemistry, 2000, 7 (4): 217~227.
    [68] Naji Meidani A. R., Hasan M..Mathematical and physical modelling of bubble growth due to ultrasound [J].Applied Mathematical Modelling, 2004, 28 (4): 333~351.
    [69] Leighton T. G..Bubble population phenomena in acoustic cavitation [J]. Ultrasonics Sonochemistry, 1995, 2 (2): S123~S136.
    [70] Laborde J. L., Bouyer C., Caltagirone J. P.,et al.Acoustic cavitation field prediction at low and high frequency ultrasounds [J]. Ultrasonics, 1998, 36 (1-5): 581~587.
    [71] Jones S. F., Evans G. M., Galvin K. P..Bubble nucleation from gas cavities- a review [J].Advances in Colloid and Interface Science,1999, 80 (1): 27~50.
    [72] Ilinskii Y. A., Wilson P. S., Hamilton M. F..Bubble growth by rectified diffusion at high gas supersaturation levels [J]. Journal of the Acoustical Society of America, 2008, 124 (4): 1950~1955.
    [73] Eller A. I..Growth of bubbles by rectified diffusion [J]. Journal of the Acoustical Society of America, 1969, 46 (5): 1246~1250.
    [74] Church C. C..Prediction of rectified diffusion during nonlinear bubble pulsations at biomedical frequencies [J]. The Journal of the Acoustical Society of America, 1988, 83 (6): 2210~2217.
    [75]王伟,袁守谦.超声波在冶金工业中的应用进展[J].金属材料与冶金工程,2007, 35 (5): 52~56.
    [76]彭万金.超声波在冶金中的应用研究[J].上海有色金属,2008, 29 (3): 135~138.
    [77]刘金刚,刘浏,王新华.超声波在钢铁冶金中的应用[J].铁合金,2006,37(1): 31~34.
    [78]冯海阔,于思荣.超声波在冶金及金属基复合材料制备过程中的应用[J].特种铸造及有色合金,2006, 26 (1): 31~33.
    [79] Mason T.,唐晓燕.高功率超声波在钢铁工业中的应用及能效[J].世界钢铁,1995 (4): 77~79.
    [80] Mezhidov V. K., Arsanov A. M. A., Kudrin I. V..Effect of ultrasonic cavitation on the solidification front in the presence of insoluble impurities in the melt [J]. Physics and Chemistry of Materials Treatment, 1991, 25 (5): 570~572.
    [81] Abramov O. V..Ultrasound in liquid and solid metals [J]. Applied Mechanics Reviews, 1995, 48 (5): B54~B54.
    [82] Abramov V. O., Abramov O. V., Sommer F., et al.Properties of Al-Pb base alloys applying electromagnetic forces and ultrasonic vibration during casting [J]. Materials Letters, 1995, 23 (1-3): 17~20.
    [83] Meidani A. R. N., Hasan M..A study of hydrogen bubble growth during ultrasonic degassing of Al-Cu alloy melts [J]. Journal of Materials Processing Technology, 2004, 147 (3): 311~320.
    [84] Gallo R..Correlating inclusion sizes with aluminum casting quality [J]. Modern Casting, 2004, 94 (6): 27~30.
    [85] Eskin G. I..Cavitation mechanism of ultrasonic melt degassing [J]. Ultrasonics Sonochemistry, 1995, 2 (2): 137~141.
    [86] Eskin G. I..Principles of ultrasonic treatment: Application for light alloys melts [J]. Advanced Performance Materials, 1997, 4 (2): 223~232.
    [87] Xu H. B., Han Q. Y., Meek T. T..Effects of ultrasonic vibration on degassing of aluminum alloys [J]. Materials Science and Engineering: A, 2008, 473 (1-2): 96~104.
    [88] Xu H. B.,Jian X. G.,Meek T. T., et al.Degassing of molten aluminum A356 alloy using ultrasonic vibration[J]. Materials Letters, 2004, 58 (29): 3669~3673.
    [89] Xu H. B., Jian X, Meek T. T., et al.Investigation of ultrasonic degassing in molten aluminum A356 alloy [C]. Light Metals 2004 - Proceedings of the Technical Sessions, 133rd Technical TMS Annual Meeting, Carlotte,United states, March 2004,p 731~735.
    [90] Puga H., Barbosa J., Seabra E., et al.The influence of processing parameters on the ultrasonic degassing of molten AlSi9Cu3 aluminium alloy [J]. Materials Letters, 2009, 63 (9-10): 806~808.
    [91] Puga H., Teixeira J. C., Barbosa J., et al.The combined effect of melt stirring and ultrasonic agitation on the degassing efficiency of AlSi9Cu3 alloy [J]. Materials Letters, 2009, 63 (24-25): 2089~2092.
    [92]郄喜望,李捷,马晓东,等.超声场作用下Al-Si合金的除气效果及晶粒细化[J].金属学报,2008, 44 (4): 5~10.
    [93]王建龙,柳萍,施汉昌,等.声化学在水污染控制中的应用研究现状[J].化学通报,1997, 60 (4): 35~38.
    [94] Kapustina O. A..Interrelationship of the processes of degassing and cavitation [J]. Soviet Physics-Acoustics, 1970, 15 (3): 328~331.
    [95] Gondrexon N., Renaudin V., Boldo P., et al.Degassing effect and gas-liquid transfer in a high frequency sonochemical reactor [J]. Chemical Engineering Journal, 1997, 66 (1): 21~26.
    [96] Gondrexon N., Renaudin V., Petrier C., et al.Experimental study of the hydrodynamic behaviour of a high frequency ultrasonic reactor [J]. Ultrasonics Sonochemistry, 1998, 5 (1): 1~6.
    [97] Kumar A.,Gogate P. R.,Aniruddha B. P., et al.Gas-Liquid Mass Transfer Studies in Sonochemical Reactors[J]. Industrial & Engineering Chemistry Research, 2004, 43 (8): 1812~1819.
    [98] Laugier F., Andriantsiferana C., Wilhelm A. M., et al.Ultrasound in gas-liquid systems: Effects on solubility and mass transfer [J]. Ultrasonics Sonochemistry, 2008, 15 (6): 965~972.
    [99] Lekhal A., Chaudhari R. V., Wilhelm A. M., et al.Gas-liquid mass transfer in gas-liquid-liquid dispersions [J]. Chemical Engineering Science, 1997, 52 (21-22): 4069~4077.
    [100] Monnier H., Wilhelm A. M., Delmas H..The influence of ultrasound on micromixing in a semi-batch reactor [J]. Chemical Engineering Science, 1999, 54 (13-14): 2953~2961.
    [101] Ratoarinoro N., Wilhelm A. M., Berlan J., et al.Effects of ultrasound emitter type and power on a heterogeneous reaction [J]. The Chemical Engineering Journal, 1992, 50 (1): 27~31.
    [102] Sochard S., Wilhelm A. M., Delmas H..Gas-vapour bubble dynamics and homogeneous sonochemistry [J]. Chemical Engineering Science, 1998, 53 (2): 239~254.
    [103] Yang Z., Maeda R..Ultrasonic micro-degassing device. 14th IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2001), Interlaken, Switzerland, 2001, p 471~474.
    [104] Yang Z., Matsumoto S., Maeda R..A prototype of ultrasonic micro-degassing device for portable dialysis system [J]. Sensors and Actuators A: Physical,2002, 95 (2-3): 274~280.
    [105] Seiden L. W., Epstein M. J., Seiden S. A..Degassing techniques applied to sealed containers for beverages, waste water and respirometers for bacteria [J]. Biotechnology Advances, 1997, 15 (3-4): 741~746.
    [106]徐晓鸣,王有乐,李焱.超声吹脱处理氨氮废水工艺条件的试验研究[J].兰州理工大学学报,2006, 32 (3): 67~69.
    [107]王有乐,翟钧,谢刚.超声波吹脱技术处理高浓度氨氮废水试验研究[J].环境污染治理技术与设备,2001, 2 (2): 59~63.
    [108]白晓清,张林,李东辉,等.超声波对流动液体中夹杂物去除效果的实验研究[J].东北大学学报(自然科学版),2002, 23 (4): 348~352.
    [109]陶美君,吴晓辉,陆晓华,等.垃圾渗滤液中氨氮的超声处理研究[J].华中科技大学学报,2005, 22 (1): 70~72.
    [110]薛娟琴,亢淑梅,洪涛.超声解吸柠檬酸盐溶液中SO2的影响因素[J].过程工程学报,2006, 6 (1): 42~45.
    [111] Xue J. Q.,Wang K. F.,Yang J. J., et al.Effects of solution properties on desorption of SO2 with ultrasonic wave [J]. Journal of Xi'an University of Architecture and Technology, 2008, 40 (2): 284~289.
    [112] Xue J. Q., Hong T.,Wang, Z. Q., et al.Theoretical study on sulfur dioxide absorption with citrate solution[J]. The Chinese Journal of Process Engineering, 2006, 6 (3): 388~391.
    [113] Xue J. Q.,Meng L. A.,Shen B. B., et al. Study on Desorbing Sulfur Dioxide from Citrate Solution by Ultrasonification [J]. Chinese Journal of Chemical Engineering, 2007, 15 (4): 486~491.
    [114]王正烈,周亚平.物理化学[M].北京:高等教育出版社, 2001.
    [115]刘凤志,林肇信,于学舜,等(译).气体吸收[M].北京:化学工业出版社, 1985.
    [116]胡洪营,张旭,王伟.环境工程原理[M].北京:高等教育出版社, 2005.
    [117] Saboni A., Alexandrova S..Sulfur dioxide absorption and desorption by water drops [J]. Chemical Engineering Journal, 2001, 84 (3): 577~580.
    [118] Buzek J., Jaschik M., Podkanski J., et al.A non-isothermal model of thermal desorption with chemical reaction in the liquid phase [J]. Chemical Engineering and Processing, 1998, 37 (3): 233~247.
    [119] Buzek J., Jaschik M..Gas-liquid equilibria in the system SO2-aqueous solutions of NaHSO3/Na2SO3/Na2SO4 [J]. Chemical Engineering Science, 1995, 50 (19): 3067~3075.
    [120]郝吉明.大气污染控制工程[M].北京:高等教育出版社, 1996.
    [121] Zidar M..Gas-liquid equilibrium-operational diagram: Graphical presentation of absorption of SO2 in the NaOH-SO2-H2O system taking place within a laboratory absorber [J]. Industrial & Engineering Chemistry Research, 2000, 39 (8): 3042~3050.
    [122] Van den Broeke W., Lefers J..Absorption and desorption of SO2 into/from aqueous solutions [J]. Chemie-Ingenieur-Technik, 1984, 56 (10): 792~793.
    [123]姚玉英,陈常贵,曾敏静,等.化工原理[M].天津:天津大学出版社, 1999.
    [124]中国环境保护总局,水和废水监测分析方法编委会.水和废水监测分析方法[M].北京:中国环境科学出版社, 2002.
    [125]宋仁元,张亚杰,王维一.水和废水标准检验法[M].北京:中国建筑工业出版社, 1985.
    [126]华中师范大学,东北师范大学,陕西师范大学.分析化学[M].北京:高等教育出版社, 1986.
    [127] Mahulkar A. V., Riedel C., Gogate P. R., et al.Effect of dissolved gas on efficacy of sonochemical reactors for microbial cell disruption: Experimental and numerical analysis[J]. Ultrasonics Sonochemistry, 2009, 16 (5): 635~643.
    [128] Ince N. H., Tezcanli G., Belen R. K., et al.Ultrasound as a catalyzer of aqueous reaction systems: the state of the art and environmental applications[J]. Applied Catalysis B: Environmental, 2001, 29 (3): 167~176.
    [129] Hamdaoui O., Naffrechoux E., Tifouti L., et al.Effects of ultrasound on adsorption-desorption of p-chlorophenol on granular activated carbon[J]. Ultrasonics Sonochemistry, 2003, 10 (2): 109~114.
    [130] Gorshkov A. S..Diffusion of a dissolved gas in a flow with a stationary cavity [J]. Journal of Engineering Physics, 1967, 13 (5): 691~694.
    [131] Breitbach M., Bathen D..Influence of ultrasound on adsorption processes [J]. Ultrasonics Sonochemistry, 2001, 8 (3): 277~283.
    [132]李林.超声场下空化气泡运动的数值模拟和超声强化传质研究[D].重庆:四川大学化工学院硕士学位论文, 2006.
    [133] Fowlkes J. B., Carson P. L..Systems for degassing water used in ultrasonic measurements [J]. Journal of the Acoustical Society of America, 1991, 90 (2): 1197~1200.
    [134] Clark A., Dewhurst R. J., Payne P. A., et al., Degassing a liquid stream using an ultrasonic whistle [C]. 2001 IEEE Ultrasonics Symposium Proceedings, Atlanta,Unite State, 2001, Vols 1 and 2, p 579~582.
    [135] Bello R. A., Robinson C. W., Moo-Young M..Gas holdup and overall volumetric oxygen transfer coefficient in airlift contactors [J]. Biotechnology and Bioengineering, 1985, 27 (3): 369-381.
    [136] Mason T. J..Sonochemistry and the environment - Providing a "green" link between chemistry, physics and engineering [J]. Ultrasonics Sonochemistry, 2007, 14 (4): 476~483.
    [137] Majumdar S., Kumar P. S., Pandit A. B..Effect of liquid-phase properties on ultrasound intensity and cavitational activity [J]. Ultrasonics Sonochemistry, 1998, 5 (3): 113~118.
    [138]王伟之.钠碱法烟气脱硫吸收过程气液传质及反应特性研究[D].天津:天津大学环境科学与工程学院博士学位论文, 2007.
    [139] 2006年- 2009年国内硫酸价格走势图.2009, http://www.sn110.cn/news_show_wyxKHJM0G22gTg22EU-aSg==.htm.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700