超声场对铝合金凝固作用机制试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
功率超声形成的能量可以使物质的物理、化学、生物特征或状态发生改变,或者使其速率加快。通过在金属凝固过程施加功率超声可以改变金属凝固过程特性,细化组织,减少成分偏析,提高力学性能等。本论文重点研究了超声场对铝合金凝固过程作用机制及其对凝固组织的影响。
     首先论述了超声空化效应、声流效应以及超声场衰减特性,探索了功率超声对金属熔体凝固过程作用机制,分析了功率超声对铝熔体凝固过程热力学、动力学以及形核过程和宏观成分偏析的影响,为试验的开展及其结果的分析提供了理论基础。
     其次通过热分析方法研究了超声场对纯铝凝固过程特性影响。通过热分析方法分析了冷却曲线、冷却速率曲线,确定了金属临界形核、最大形核速率、形核结束以及凝固结束的特征温度点。实验结果表明随着施振超声功率的增加,形核时间t_N减小,且整个凝固时间t_S缩短,经过超声场处理的铝熔体温度场更加均匀,温度梯度减小。通过对动态凝固曲线分析表明纯铝熔体未经超声场处理时为逐层凝固方式,经过超声波处理后转变为体积凝固方式。
     另外研究了超声场对7050铝合金中Zn、Mg、Cu主要元素宏观分布的影响,在铝合金熔体凝固过程中施加超声场,合金元素的宏观分布趋于均匀,其中Cu元素的负偏析减弱,Mg元素的偏析大大减少,超声振动减小了铝合金中Zn、Mg、Cu元素的宏观偏析。
     再次分析了超声施振功率与细化晶粒尺寸关系。在铝熔体中导入不同功率超声场,其凝固组织均有显著细化,随着施振超声功率的增大,晶粒细化效果越好,但超声功率增大到一定程度后,晶粒进一步细化效果不再明显。试验证明在铝熔体凝固过程不同温度区间施加超声振动,温度过高、过低都将减弱细化效果,最佳施振温度区间为760~660℃,施振功率240W时平均晶粒尺寸可达67μm。最后对平均晶粒尺寸与超声功率二者分析表明超声功率与细化晶粒尺寸近似满足指数递减关系,为超声细晶技术在工业应用提供了试验依据。
     最后采用不同超声施振功率对7050合金进行处理,对比不同功率下沿超声传播方向铸件凝固组织的变化,发现铸锭纵向上随着距离的增加凝固组织的晶粒尺寸不断变大,超声细晶效果越来越差,当施振功率240W时细晶最大距离可达265mm。最后分析得出超声功率与细晶距离之间的数学关系式,这对功率超声应用于工业领域具有一定的指导价值。
High intensity ultrasonic is based on physics、mechanics、material and so on.it is an applied technology that changes some aspects of objects or properties, or its speed is changed by ultrasonic energy. High intensity ultrasonic treatment is one of the effective ways to improve solidification struction、macro-segregation and mechanical properties of the metal in the process of metal solidification. This paper main study aluminum ultrasonic effect in the process of metal solidification was shown as follows:
     First of all, it is Describe the power ultrasonic cavitation, acoustic streaming and attenuation characteristics, The effect of power ultrasound on solidification process of melt metal mechanism and aluminum melt thermodynamics、kinetics as well as the nucleation and The macro-segregation of the elements were reserched in the end, which provided a academic basis for the proceeding of experiments and their results analysis.
     Secondly, The effects of ultrasonic treatment on solidification characteristics was studied bases on the thermal analysis method.The critical nucleus, maximum nucleation rate, characteristic points involving the final temperatures of nucleation and solidification have been determined on the basis of the thermal analysis cooling and cooling rate curves.The experiment results show that ultrasound field has a significant effect on the solidification process of pure Al. Increasing the power of ultrasound can decrease the cooling temperature is increase and decrease the nucleation time so as the overall solidification time is. solidification process mode of aluminum melt without ultrasound treatment is the layer-by-layer,under ultrasonic treatment tend to volume solidification model. and the temperature field can become more uniform and decrease temperature gradient with the application of ultrasonic field.
     Besides, 7050 aluminum alloy of Zn, Mg, Cu elements of macro-distribution under ultrasonic field were studied.the solute elements in 7050 alloy could be made homogeneous under ultrasonic field,the negative segregation phenomena of Cu was deleted and the segregation of Mg was decreased.The macro-segregation of the elements Zn、Mg and Cu in 7050 Al alloy was decreased with the application of ultrasonic field with different powers during solidification.
     In the present thesis, The casting ingot structure refining laws of the different ultrasonic powers was analyzed.With increasing of ultrasonic power,more refined structure can be obtained. However, when the ultrasonic power reaches a certain value,the effect of refining grains is not increased significantly.experiment results showed: different temperatures range of the aluminum melt applying vibration,tmperature too high, too low will weaken the effect of refinement,there is an optimal temperature range 760~660℃applying vibration, ultrasonic power 240W and grain size is 67μm .There is a law between ultrasonic power and the average grain size, meeting exponential relationships , which provide an experimental basis for industrial applications of ultrasonic Fine-grained technology.
     Finally,Using different ultrasonic power on solidification process of aluminum alloy, comparison of different power ultrasound propagation direction along the solidification structure changes in the sample and found that the grain size of solidification structure of continuous decline in fine-grained effect getting worse, Fine-grained distance up to 260mm when ultrasonic power 240W. Came to the conclusion that the mathematical relationship between ultrasonic power and Fine-grained distance in the end, It has certain guide value for power ultrasonic effective treating metal melt used in industrial filed.
引文
[1]沈宁福,汤亚力,关绍康等.凝固理论进展与快速凝固[J].金属学报,1996,32(7)673-684.
    [2]刘江龙.环境材料导论[M].冶金工业出版社,1999
    [3]周尧和,孙宝德.生态材料学[M].冶金工业出版社,2001
    [4]郝维昌,王天民.钢铁材料的环境负荷评价[M].冶金工业出版社,2001
    [5]O.V.Abramov.Ultrasound in liquid and solid metals[M].CRC Press,1994
    [6]G.Marcel.Electron magnetic Processing of liquid materials in Europe[J].ISU international,1990,30:1-7
    [7]H.K.Moffatt,W.R.Proctor.Metallurgical application of magnetohydrod-dynamics [C].Proceedings of a symposium of the international union of theoretical and applied mechanics.Metal Society,1984:346-349
    [8]张伟强.金属电磁凝固原理与技术[M].冶金工业出版社,2004
    [9]H.Conrad.Effects of electric current on solid state Phase transformations in metal[J].Materials Science and Engineering A,2000,287:227-237
    [10]S.Asai.Recent development and prospect of electromagnetic processing of materials[J].Science and Technology of advanced Materials,2000,1:191-200
    [11]韩至成.电磁冶金学[M].冶金工业出版社,2001
    [12]傅恒志,张军.电磁流体力学与材料工程[C].中国科学技术前沿论文集,2000:186-224
    [13]C.C.Koch.Experimental evidence for magnetic or electric field effects on 287:213-218
    [14]李廷举,金俊泽.材料电磁加工的现状与未来展望[J].材料导报,2000,14:12-19
    [15]O.V.Abramov.Action of high intensity ultrasonic on solidifying metals[J].ultrasonics.1987,25:73-77
    [16]S.Z.Hao,B.Gao,A.Wu,et al.Surface modification of steels and magnesium alloy byhigh current pulsed electron beam[J].Nuclear Instruments and Methods in Physics Research Section B,2005,240:646-652
    [17]王家炘,黄积荣,林建生.金属的凝固及其控制[M].北京:机械工业出版社,1983.24-29
    [18]李新涛,赵建强.功率超声对水平连铸Al-1%Si合金凝固的影响[J].稀有金 属材料与工程,2006:35(2),294-287
    [19]李新涛,高学鹏,李廷举等.连铸造过程中超声细晶技术的研究[J].稀有金属材料与工程,2007,36(3):377-380
    [20]X.Jiang,H.Xu,Effect of Power Ultrasound on Solidification of Aluminum A356 Alloy[J].Material Letters,2005,59(3):190-193
    [21]林仲茂.20世纪功率超声在国内外的发展[J].声学技术,2000,19(2)
    [22]Plesset MS,Chapman R B.Collapse of an Initially Spherical Vapour Cavity in the Neighborhood Of a Solid Boundary[J].J Fluid Mech 1971,47(5),283-290
    [23]H.Flynn,Physics of Acoustic Cavitation in Liquids[J].Physical Press,New York:1964,JB,167
    [24]H.Y.Feng,L.Ke,W.Jun,et al.Effect of high-intensity ultrasonic on the microstructure and grain refinement of Al-5Ti-IB master alloy[J].Journal of Materials Scienceand Engineering A,2005,85:8-14
    [25]C.Jeng,R.Chen.The study of metal-water interface and the acoustic cavitation.Proceeding of 13~(th) international conference on Dielectric liquid[C].Japan:Nara,1999:20-25
    [26]L.Jun wen,T.Momono.Effect of ultrasonic out put power on refining the Crystal Structures of ingots and its experimental simulation[J].Journal of Materials Science& Technology,2005,21:47-52
    [27]H.B.Zhang,Q.J.Zhai,F.P.Qi,et al.Effect of side transmission of power ultrasonic on Structul of AZ81 magnesium alloy[J].Transactions of Nonferrous Metals Society of China,2004,14:302-305
    [28]L.S.Fan,G.Q.Yang,D.J.Lee,et al.Some aspects of high-pressure phenomena of Bubbles in liquids and liquid-solid suspensions[J].Chemical Engineering Science,1999.54:4681-4709
    [29]J.L.Laborde,A.Hita,A.Gerard.Fluid dynamics Phenomena induced by Power Ultrasounds[J].Ultrasonics,2000,38:297-300
    [30]G..Madelin,D.Grueker,J.M.Franconi,et al.Magnetic resonance imaging of acousticStreaming:absorption coefficient and acoustic field shape estimation[J].Ultrasonics 2006,44:272-278
    [31]S.Echert,G.Gerbeth,V.L.Melin k.Velocity measurements at high temperatures by ultrasound Doppler velocimetry using an acoustic wave guid.[J].experiments in fluid,2003,35:381-388
    [32]冯若主编.超声手册[M].南京:南京大学出版社.2001
    [33]《超声波探伤》编写组.超声波探伤[M].北京:电力工业出版社,1980:10-13
    [34]Eskin.G.1.Ultrasonic Treatment of Molten Aluminum.Metallurgia[J].Moscow:1985,4:105-110
    [35]H.K.Feng.Effect of ultrasonic treatment on microstructures of hypereutectic Al-Si alloy[J].journal of materials processing technology,2008
    [36]J.Pan,M.Yoshida,G..Sasakietal.Ultrasonic Insert Casting of Aluminum Alloy[J].Seripta mater,2000,43:155-159
    [37]VAbramov,O Abramov,V Bulgakov,F Sommer.Solidification of Aluminium Alloys under Ultrasonic Irradiation Using Water-cooled Resonator[J].Materials Leters,1998:27-34
    [38]Dobatkin V l,Eskin G l.The Effect of High Intensity Ultrasound on the Phase Interfaceln Metals Nauka[J].Moscow,1986,3:87-93
    [39]何德坪,陈锋,舒光冀等.振动凝固细化晶粒新进展.兵器材料科学与工程[J].1989,(6):4-11
    [40]李英龙,李宝绵,刘永涛等.功率超声对Al-Si合金组织和性能的影响[J].中国有色金属报,1999,9(4):719-722
    [41]赵忠兴.超声波对合金结晶过程的均匀化作用.热加工工[J].1999,5:10-11
    [42]冯伟俊,李喜孟.功率超声对Pb-Sn合金凝固行为的影响[J].铸造,2004,(6)
    [43]胡化文,陈康华,黄兰萍等.超声溶体处理对7055铝合会铸态组织和性能的影响[J].铝加工技术,2004,(3):1-3
    [44]胡化文,陈康华,黄兰萍等.超声波熔体处理对铝合金组织和性能的影响[J].特种铸造及有色合余,2004,(4):11-13
    [45]陈康华,黄兰萍,胡化文等.熔体超声波处理对超强铝合金组织和性能的作用[J].中南大学学报(自然科学版),2005,36(3):354-357
    [46]李军文,付莹,桃野正.金属超声铸锭细化机理的试验研究[J].特种铸造及有色合金,2006年会专刊,2006:70-71
    [47]戚飞鹏,高守雷,侯旭等.功率超声对锡锑合金凝固组织的影响[J].上海大学报,2003,9(1):42-46.112
    [48]聂朝辉,毛大恒,张云芳.超声波处理对铸轧铝板带组织的影响[J].轻合金加工术.2006.34.10-13
    [49]蒋日鹏,李晓谦,张立华等.超声施振方式对纯铝凝固组织细化规律的研究[J].材料工程
    [50]李晓谦,蒋日鹏,刘荣光等.功率超声对工业纯铝凝固过程的影响[J].特种铸造及有色合金
    [51]Jones J,Thomas J,Presco C.The Effect of Ultrasonic on Molten Metals[J]. Aeroprojects,1955,15(9),64-66
    [52]O.V.Abramov,E.N.Milemin,V.E.Neymark.Ultrasonic Method for Improved Manufacturing Process[M].Moscow:Mashinostroenie,1970,349
    [53]Li Junwen,T.Momono,FU Ying.Effect of ultrasonic stirring on temperature distribution and grain refinement in Al-1.65%Si alloy melt[J].Transactions of Nonferrous Metals Society of China,2007:691-697
    [54]高学鹏,李新涛,郄喜望.功率超声对Al-Si合金凝固过程中溶质偏析的抑制效应[J].物理学报.2007,2(56),1188-1193
    [55]李喜孟.无损检测[M].北京:机械工业出版社,2001
    [56]王捷.单一超声空化气泡动力学过程的数值分析[D].太原:陕西师范大学,物理学院,2006,1-3
    [57]马力群,廖恒成.金属熔体中超声空化气泡运动的数值模拟[J].东南大学学报,1998,28(4):145-149
    [58]冯诺,李化茂.声化学及应用[M].合肥:安徽科技出版社,1990,112-115
    [59]钱祖文.非线性声学[M].北京:科学出版社,1992,63-64
    [60]赵学端.粘性流体力学[[M].北京:机械工业出版社,1983
    [61]王俊,周尧和,舒光冀.用高能超声制备金属基复合材料的形状与发展[J].铸造,1997(12):40-42
    [62]刘青梅.超声波对金属凝固特性及组织影响的研究[D].2007
    [63]徐签君.凝固过程动力学与交界面稳定性理论引导[M].科学出版社,2006,25-27.
    [64]应崇福.超声学[M].科学出版社,1990
    [65]荆天辅.材料热力学与动力学[M].哈尔滨工业大学出版社,2003
    [66]王家昕.金属的凝固及其控制[M].北京:机械工业出版社,1988
    [67]阂乃本.晶体生成的物理基础[M].上海:上海科学技术出版社,1982
    [68]胡汉起.金属凝固原理[M].北京:机械工业出版社,1999,190
    [69]班春燕.电磁场作用下铝合金凝固理论基础研究[D].2002,96-98
    [70]Bruce Chalmers.Principles of solidification,cacifomia:John,Inc.Wiley&sons,Inc.1964.176-194
    [71]高守雷.功率超声对金属凝固组织的影响[M].上海:上海大学,材料工程学院,2003,79-83
    [72]徐雁允,顾根大,安阁英.电场对Al-Cu合金共晶片间距的影响[J].铸造,1991,40(3):5-9
    [73]李庆春.铸件形成理论基础[M].哈尔滨;哈尔滨工业大学出版社,1980,97
    [74]Ahmed S,Bond R,McKannan E.Solidification processing superalloys in an electric field[J].Adv Mater Proc,1991,10:30-32
    [75]王广厚.团簇物理的新进展[J].物理学进展,1994,14(2):121-136
    [76]张林,边秀房,马家骥.铝硅合金的液相结构转变[J].铸造,1995,10:7-12
    [77]李基永,刘让苏,周征谢.液态金属铝及其凝固过程的微观结构转变特性[J].中国有色金属学报,1997,7(3):81-84
    [78]潘学民,边秀房,秦敬玉等.Cu-12%Al合金熔体内中程有序原子团簇[J].物理化学学报 2001,17(8):708-712
    [79]巴瑞特C S,马萨尔斯基T B.金属的结构[M].北京:机械工业出版社,1987,158-159
    [80]崔忠圻.金属学与热处理[M].北京:机械工业出版社,1989,1-19
    [81]大野笃美.金属凝固学[M].北京:机械工业出版社,1983,72-77
    [82]Cahoon J R,Tandon K N.Chatarued M C.Effect of gravity level on grain refinement in Al alloys[J].Metal Trans A,1992,23A(10):3399-3404
    [83]Mats J,Lennart B,Sigworth G K.Study of mechanism of grain refinement of Al after additions of Ti-and B-containing master alloys[J].Metall Trans A,1993,20A(2):481-491
    [84]黄良余.铝及其合金的晶粒细化处理简述[J].特种铸造及有色合金,1997,3:41-44
    [85]高泽生.铝晶粒细化机理研究的进展(1)[J].轻合金加工技术,1997,25(6):1-5
    [86]高泽生.铝晶粒细化机理研究的进展(2)[J].轻合金加工技术,1997,25(7):1-7
    [87]周婷嫣.金属凝固过程中的热分析技术及其应用,上海大学硕士论文 2004
    [88]刘玉敏.金属凝固过程热力学研究[M].北京科技大学硕士论文,2002,33-36
    [89]张宙庆.相场法模拟纯铝枝晶生长的研究进展[J].模具技术,2008,3
    [90]周尧和,胡壮麒,介万奇.凝固技术[M].北京:机械工业出版社,1998,23-24
    [91]李新涛,高学鹏,李廷举等.连铸造过程中超声细晶技术的研究[J].稀有金属材料与工程,2007,36(3):377-380
    [92]赵忠兴,毕鉴智,郑一等.铝合金超声铸造技术[J].特种铸造及有色合金,1999(1):13-15
    [93]潘蕾,陈锋,吴申庆.高能超声作用下金属基复合材料的制备[J].机械工程材料,2003,27(7):1-2.
    [94]杜功焕,朱哲民,龚秀芬.声学基础(下册)[M].上海科学技术出版社,1981
    [95]李庆春.铸件形成理论基础[M].机械工业出版社,1982
    [96]卓启杰.功率超声对钢铁凝固行为的影响[J].2006,69-70
    [97]ASEFFSR GV,SPROAT WH,KREMHELLERA.High-intensity[J].IEEE Trans Sonics Ultrasonics,1970,17(1):7-12
    [98]Dalecki,Diane,CarolH,Child.Sallyz-Thresholds for Prematurcontractions in murine hearts exposed to Pulsed[J].Ultrasond in Medicine and Biology,1997,23(5):761-765
    [99]李大宝.计算声学-声场的方程与计算方法[M].科学出版社,2005,249-256

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700