大跨斜拉桥施工状态抖振响应现场实测研究与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着斜拉桥向大跨度、超大跨度的发展,对抖振问题的研究愈加重要。本文首先回顾了大跨桥梁抖振分析的现状以及目前存在的问题,明确了气动导纳是桥梁抖振分析中至关重要的气动参数,它的研究是今后桥梁抖振精细化分析中的一个重要的研究方向。本文利用现场实测和风洞试验相结合的方法,对苏通大桥最大单悬臂施工状态抖振响应进行了详细深入的研究。主要研究内容有:
     1.回顾总结了土木工程结构现场实测研究发展历程及现状;
     2.介绍了抖振气动力、气动导纳函数以及桥梁断面气动导纳的识别方法,并结合前人的研究成果,建立了基于现场识别气动导纳函数的大跨度桥梁抖振响应频域分析方法;
     3.利用现场实测对苏通大桥桥址处的紊流风场进行了深入细致的研究,并以实测结果为指导,对风场采用了两种被动模拟方法进行了模拟,指出了实测结果与规范及两种方法模拟结果之间的异同,同时指出了风场被动模拟方法的不足之处;
     4.利用专门研制的同步测压系统,对苏通大桥主梁断面的平均压力和脉动压力分布特征、静力三分力系数进行了现场实测研究,讨论了实测结果和风洞试验结果之间的区别,分析了可能的原因;
     5.利用专门研制的同步测压系统,对苏通大桥主梁断面的气动导纳函数进行了现场识别研究,讨论了现场识别结果与风洞试验结果及Sears函数之间的区别,指出现场识别结果与尖塔紊流场下识别结果更为接近,并且其并不在传统上的1和Sears函数之间,同时,探讨了影响气动导纳函数的关键因素,并对现场识别气动导纳函数进行了经验拟合;
     6.利用GPS测量系统对苏通大桥最大单悬臂施工状态抖振位移进行了实测,并将实测结果与本文提出的基于现场识别气动导纳函数的大跨桥梁抖振响应频域分析方法分析结果及风洞试验结果进行了比较,探讨了抖振分析结果及风洞试验结果的可靠性。
The research of buffeting problem became more important because the main span of cable-stayed bridge was getting longer. This dissertation reviewed actuality and problems of long span bridges buffeting analysis. And the aerodynamic admittance research was a very important aerodynamic parameter in bridge buffeting analysis. This dissertation fully researched buffeting response of the single longest cantilevered building state of Su-tong Bridge. The main research was shown as follow:
     1. The dissertation reviewed the development course and actuality of field measurement of civil engineering structures.
     2. The dissertation introduced the buffeting aerodynamic force and aerodynamic admittance function, and proposed the frequency analysis method of long span bridge buffeting response basing on field measured aerodynamic admittance function.
     3. The turbulence wind field of Su-tong Bridge was field measured to get the accurate turbulence wind field characteristics, and give accurate datum to the latter wind tunnel test research and actual identification. Two types of turbulence wind field were passively simulated in wind tunnel. And then the turbulence wind field characteristics were got to analyse the characteristics. The comparison of characteristics between simulated wind field and actual wind field proved the shortage of the passive simulation equipment.
     4. Using the particularly designed self-developed 60 channels synchronization pulse pressure measurement system, the aerodynamic force of Su-tong bridge deck was field measured to get the time history and frequency curve of average press distribution characteristics, fluctuating press distribution characteristics, static force coefficient and dynamic loads. And the results were compared with those of wind tunnel test.
     5. The aerodynamic admittance function of Su-tong Bridge deck section was identified in actual site and wind tunnel with the particularly designed self-developed 60 channels synchronization pulse pressure measurement system. The difference of aerodynamic admittance function was discussed between two types of turbulence wind field and actual condition. And the aerodynamic admittance functions were compared with Sears function. Then the aerodynamic admittance function of Su-tong Bridge deck was not between the traditional 1 and Sears function. Moreover, the aerodynamic admittance function of spire turbulence wind field was more closed to that of actual wind field. Lastly, several possible reasons were analyzed.
     6. Comparing buffeting response calculated by actually tested aerodynamic admittance function with GPS displacement measure results and wind tunnel test results, the actually tested aerodynamic admittance function was proved to be much better in analyzing the buffeting response of Su-tong bridge. And the reliability of research was discussed about the buffet response and wind tunnel test.
引文
[1]严国敏编著.现代斜拉桥.西南交通大学出版社,1989
    [2]铁道部大桥局桥梁科学研究所.斜拉桥.科学技术文献出版社,1992
    [3]H. Svensson. The development of cable-stayed bridge in Europe. International Symposium on Cable-stayed Bridge,Shanghai,1994:12-24
    [4]小西一郎.钢桥(第十分册).人民铁道出版社,1989
    [5]周念先,杨共树.预应力混凝土斜拉桥.人民交通出版社,1989
    [6]W. podoiny, J. J. Scalzi. Construction and design of cable-stayed bridges. New York, John Willey & sons.1986
    [7]蔡国宏泽.斜拉桥的发展经验和展望.国外公路.1997,17(4):19-24
    [8]林元培.斜拉桥.人民交通出版社,2004
    [9]Tang M. C. Cable-stayed bridges in north America. Cable-stayed Bridge. Elsevier Science Publisher.1991
    [10]万国朝.90年代桥梁工程发展趋势.国外公路.1995,15(4):24-28
    [11]金增洪编译.日本多多罗大桥简介.国外公路.1999,19(4):8-13
    [12]金增洪.斜拉桥的历史和美学(下).国外公路.1997,17(6):26-32
    [13]Lin Y.P. Cable-stayed bridges in china. International Symposium on Cable-stayed Bridge, Shanghai,1994:25-35
    [14]陈政清.桥梁风工程.人民交通出版社,2005
    [15]项海帆.现代桥梁抗风理论与实践.人民交通出版社.2005
    [16]Board of Engineers 1941, The faile of the Tacoma Narrow Bridge, A reprint of the original report, Bull of the Agricultural and Mechanical College of Texas, Fourth Series, Vol.15(1), Bull. No.78.1944
    [17]Wagner H. Uber die entstehung des dynamischen auftriebes von tragflugeln. Zeitschrift fuer Angewandte Mathematik und Mechanik,1925,5(17):17-35
    [18]Theodorson T. General theory of aerodynamic instability and the mechanism of flutter [R]. NACA Report No.496,1935
    [19]伏欣等.气动弹性力学原理.沈克扬译.科学出版社,1981
    [20]Garrick I E. On some fourier transforms in the theory of non-stationary flows. Proc. 5th Int. Congress for Applied Mechanics, Wiley, New York,1939
    [21]T. Theodorson and I.e. Garrick, Mechanism of flutter:a theoretical and expermental investigation of the flutter problem, NACA TR 685,1940
    [22]Sears W. R. Some aspects of non-stationary airfoil theory and its practical application. J. Aeronautical Science.1941,8:104-108
    [23]F. Blech. Dynamic instability of truss-stiffened suspension bridges under wind action, Transactions of ASCE,1949,114:1177-1222
    [24]N Ukeguchi,H Sakata and H. Nishitani, An investigation of aeroelastic instability of suspension bridges, Proc. Int. symp. on Suspension Bridges, Lisbon,1966,273-284
    [25]R. H. Scanlan and A Sabzevari, Suspension bridge flutter revisited, Preprint No.468. ASCE National Meeting on Structural Engineering, Seattle, May 1967
    [26]Ito M. (1995), Suppression of wind-induced vibrations of structures, State of the art volume, Proc. of the 9th International Conf. on Wind Engineering, New Delhi, India,111-123
    [27]Scanlan R H, Tomko J. Airfoil and bridge deck flutter derivatives. Mech., ASCE, 1971,97(6):1717-1737
    [28]Davenport A.G. The application of statistical concepts to the wind loading of structures. Proc. ICE,1961,19(2):449-472
    [29]Davenport A. G. The response of slender line-like structures to a gusty wind. Proc. ICE,1962,23(6):389-408
    [30]Davenport A.G. Buffeting of suspension bridge by storm winds. J. Struct. Div. ASCE.1962,88(6):233-264
    [31]Davenport A. G. The dependence of wind load upon meteorological parameters. Proc. Int. Res. Seminar on Wind Effects on Build and Struct. University of Toronto Press, Toronto,1968:19-82
    [32]Scanlan R. H., Gade, R. H. Motion of suspended bridge spans under gusty wind. J. Struct. Div., ASCE.1977,103ST9:1867-1883
    [33]Scanlan R. H. The action of flexible bridges under wind I:Flutter theory. J. Sound and Vibration.1978,60(2):187-199
    [34]Scanlan R. H. The action of flexible bridges under wind II:buffeting theory. J. Sound and Vibration.1978,60(2):201-211
    [35]Scanlan R. H. Interpreting aeroelastic models of cable-stayed bridges. J. Engrg. Mech., ASCE.1987,113(4):555-575
    [36]Scanlan R. H., Jones N. P. Aeroelastic analysis of cable-stayed bridges. J. Struct. Engrg., ASCE.1990,116(2):279-297
    [37]Lin Y K. Motion of suspension bridges in turbulent wind. J. Engineering Mech. Div. ASCE,1979,100(4):921-932
    [38]Lin Y K, Ariaratnam S. T. Stability of bridge motion in turbulent winds. J. Struct. Mech,1980,8(1):1-15
    [39]Lin Y K, Yang J N. Multimode bridge response to wind excitations. J. Engrg. Mech. ASCE.1983,109(2):586-603
    [40]Lin Y K, Bucher C G. Effects of wind turbulence on motion stability of long span bridges. Journal of Wind Engineering and Industrial Aerodynamics,1990,36(2):
    1355-1364
    [41]Sarker P P. et al. System identification for estimation of flutter derivatives. J. Wind. Eng. Ind. Aerodyn.1992,41-44:1243-1254
    [42]Davenport A G. Progress in Wind Engineering. Proceedings of the 8th International Conference on Wind Engineering,1991
    [43]Walther J H. Discrete Vortex Method for Two-dimensional Flow Past Bodies of Arbitrary Shape Undergoing Prescribed Rotary and Translation Motion. Department of Fluid Mechanic, Technical University of Denmark,1993
    [44]Walther J H, Larsen A.2D Discrete vortex method for application to bluff body aerodynamics. Journal of Wind Engineering and Industrial Aerodynamics,1997,67-68: 183-193
    [45]Wyatt T A, Walshe D E. Bridge aerodynaics 50 years after Tacoma Narrows. Journal of Wind Engineering and Industrial Aerodynamics,1992,40:317-326
    [46]Matsumoto M. Aerodynamics derivatives of coupled/hybrid flutter of fundamental structural sections. Journal of Wind Engineering and Industrial Aerodynamics,1993, 49:575-584
    [47]Larsen A, Walther J H. Aeroelastica analysis of bridge girder sections based on discrete vortex simulations. Journal of Wind Engineering and Industrial Aerodynamics,1997,67(2):253-265
    [48]顾明,周印,张锋,等.用高频动态天平方法研究金茂大厦的动力风荷载和风致响应.建筑结构学报,2000,21(4):55-61
    [49]Samali B, Kwok C S, Wood G S, et al. Wind tunnel tests for wind-excited benchmark building. J. Eng. Mech, ASCE2004,130(3):447-450
    [50]Davenport A. G. The spectrum of horizontal gustiness near the ground in high winds. J. RoyalMeteoro.1 Soc.,1961,87:194-211
    [51]Kaimal J C, et al. Spectral characteristics of surface-layer turbulence. J. RoyalMeteoro.1 Soc.,1972,98:563-589
    [52]Simiu E, Scanlan R H. Wind Effects on Structures:fundamentals and Applications to Design. Third Edition, John Wiley and Sons Inc.,1996
    [53]Goswami I, Scanlan R H, Jones N P. Vortex-Induced Vibrations of Circular Cylinders. I:ExperimentalData; Ⅱ:NewModel. J. Eng. Mech., ASCE 1993,119:2270-2302
    [54]Ehsan F, Scanlan R H. Vortex-Induced Vibration of Flexiblebridges. J. Eng. Mech., ASCE 1990,116:1392-1411
    [55]Richardson G M, Surry D. Comparisons of wind-tunnel and full-scale surface pressure measurements on low-rise pitched-roofbuildings. J. Wind Eng. Indust. Aerody.,1991, 38:249-256
    [56]Meecham D, Surry D, Davenport A G. The magnitude and distribution of wind-induced pressures on hip and gable roofs.J. Wind Eng. Indust. Aerody.,1991,38:257-172
    [57]Levitan M L, Mehta K C, Vann W P, et al. Field measure-ments of pressure on the Texas Tech Building. J. Wind Eng. Indust. Aerody.,1991,38:227-234
    [58]Surry D. Pressure measurements on the Texas Tech Building:Wind tunnel measurements and comparisons with full scale. J. Wind Eng. Indust.Aerody.,1991,38:235-247
    [59]Hisashi Okada, Young-Cheol Ha. Comparison of Wind Tunnel and Full-Scale Pressure Measurement Tests on the Texas Tech Building. J. Eng. Mech., ASCE 1992,41-42: 1601-1612
    [60]李秋胜,戴益民,李正农.可移动式低矮房屋风压的实测研究.第十三届全国结构风工程学术会议论文集.2007
    [61]Miros Pirner. Wind pressure fluctuations on a cooling tower. J. Wind Eng. Indust. Aerody.,1982,10:343-360
    [62]Sun T F, Zhou L M. Wind Pressure Distributions on a Rib-lessHy-perbolic Cooling Tower. J. Wind Eng. Indust. Aerody.,1983,14:181-192
    [63]Kawarabata Y, Nakae S, Harada M. Some Aspects of the wind Design of Cooling Towers. J. Wind Eng. Indust. Aerody.,1983,14:167-180
    [64]Miros Pirner. Wind Pressure Fluctuations on a cooling Tower. J. Wind Eng. Indust. Aerody.,1982,10:343-359
    [65]Kawamura S, kiuchi T, Taniguchi T. Full scale measurement on a triangular tower supported stack with two flues. J. Wind Eng. Indust. Aerody.,1992,41-44:2177-2186
    [66]Satoshi Sanada, Masayase Suzukie, et al. Full scale measurements of wind force acting on a 200m concrete chimney, and the chimneys' response. J. Wind Eng. Indust. Aerody.1992,41-44:2165-2176
    [67]Lee Y, Tanaka H, Shaw C Y.Distribution of wind and tem perature induced pressure differences across the walls of a twenty-storey compartmenta- lized building. J. Wind Eng. Indust. Aerody.,1982,10:287-301
    [68]Matsui G, Suda K, Higuchi K. Full scale measurement of wind pressures acting on a high rise building of rectangular plan. J. Wind Eng. Indus.t Aerody,1982,10: 267-286
    [69]Ohkuma T, Marukawa H. Full-scale measurement of wind pressures and response accelerations of a high-rise building. J. Wind Eng. Indust. Aerody.,1991,38: 185-196
    [70]Jun. Kanda, Takeshi Ohkuma. Recent developments in full-scale wind pressure Measurements in Japan. J. WindEng. Indust. Aerody.,1990,33:243-252.
    [71]孙天风,周良茂.无肋双曲线型冷却塔风压分布的全尺寸测量和风洞研究.空气动力学学报.1983,12(4):68-76
    [72]周良茂,李培华.两个邻近全尺寸双曲冷却塔风压分布的测量气动实验与测量制.1992,
    6 (3):37-44
    [73]Xu Y L, Zhan S. Field measurements of DiWang Tower during Typhoon York. J. Wind Eng. Indust. Aerody.2001,89:73-93
    [74]Li Q S, Xiao Y Q, Wong C K, Jeary A P. Field measurements of typhoon effects on a super tall building. Eng. Struct.,2004,26:233-244
    [75]Li Q S, Xiao Y Q, Wong C K. Full scale monitoring of typhoon effect on super tall building. J. Wind Eng. Indust. Aerody.,2005,20:697-717
    [76]Li Q S, et al. Field measurements of wind and structural responses of a 70 storey tall building under typhoon conditions. Struct. Design TallBuild,2000,9:325-342
    [77]李秋胜,等.广州中信广场台风特性与结构响应同步监测研究.第十二届全国结构风工程学术会议论文集.778-784
    [78]肖仪清,等.深圳帝王大厦台风特性与风致振动同步观测研究.第十二届全国结构风工程学术会议论文集.792-797
    [79]李秋胜,等.沿海城市中心风场特性及香港国际金融中心风致振动现场实测.第十三届全国结构风工程学术会议论文集.2007
    [80]武占科,赵林,朱乐东.上海市环球金融中心工程场地风环境特性观测分析.第十三届全国结构风工程学术会议论文集.2007
    [81]Miyata T, Yamada H, Kasuchi H, et al. Full scale measurement of Akashi-Kaikyo Bridge during typhoon. J. WindEng. Indust. Aerody.,2002,90:1517-1527
    [82]Lau C K, Wong K Y, Chan K W Y. preliminary monitoring results of Tsing Ma Bridge. The 14th National Conference on Bridge Engineering, Shang-hai,1998,2,730-740.
    [83]陈政清.斜拉索风雨振现场观测与振动控制.建筑科学与工程学报.2005,4:5-10
    [84]陈政清,等.南京长江大桥长期健康监测系统方案设计.第十五届全国桥梁学术会议论文集.2002,11:491-496
    [85]陈政清,等.洞庭湖大桥拉索风雨振中的风场参数.铁道科学与工程学报.2004,7:52-57
    [86]Yoshida M, Kondo K, Suzuki M. Fluctuating wind pressure measured with tubing system. J. Wind Eng. Indust. Aerody.,1992,41-44:987-998
    [87]Howard H T Ng, Kishor C. Mehta. Pressure Measuring System for Wind Induced Pressures on Building Surfaces. J. Wind Eng. Indust. Aerody.,1990,36:351-360
    [88]陈伏彬,等.广州国际会展中心钢屋盖现场实测研究.第十三届全国结构风工程学术会议论文集.2007
    [89]Tracy Kijewski-Correa Michael Kochly. Monitoring the wind-induced response of tall buildings:GPS performance and the issue of multipath effects, Journal of Wind Engineering and Industrial Aerodynamics, Volume 95, Issues 9-11, (2007)1176-1198
    [90]J W Lovse, W F Teskey, G Lachapelle, M E Canon. "Dynamic deformation monitoring of a tall structure using GPS technology", ASCE Journal of Surveying Engineering, Vol.121. No.1, (1995)35-40
    [91]Y. Tamura, M. Matsui, Luisa-Carlotta, Pagnini, R.Ishibashi, A. Yoshida. "Measurement of wind-induced response of buildings using RTK-GPS", Journal of Wind Engineering and Industrial Aerodynamics, Vol.90:(2002)1983-1973
    [92]P. Breuer, T. Chmielewski, P. Gorski, E. Konopka. "Application of GPS technology to measurements of displacements of high-rise structures due to weak winds", Journal of Wind Engineering and Industrial Aerodynamics, Vol.90:(2002)223-230
    [93]V. Ashkenazi, G.W.Roberts. "Experimental monitoring of the Humber Bridge using GPS", Proc. of the Institution of Civil Engineers, Vol.120:(1997).177-182
    [94]Y Fujino, M Murata, S Okano, M. Takeguchi. "Monitoring system of the Akashi Kaikyo Bridge and displacement measurement using GPS",Nondestructive Evaluation of Highways,Utilities, and Pipelines IV, SPIE, Newport Beach, CA, (2000)229-236
    [95]S. Nakamura. "GPS measurement of wind-induced suspension bridge girder displacements", ASCE Journal of Structural Engineering, Vol.126, No.12, (2000)1413-1419
    [96]K.Y.Wong, K.L.Man, W.Y.Chan. "Application of Global Positioning System to structural health monitoring of cable-supported bridge", Health Monitoring and Management of Civil Infrastructure Systems, SPIE, Newport Beach, CA, (2001)390-401
    [97]李秋胜,马存明.沿海城市中心风场特性及香港国际金融中心风致振动现场实测第十三届全国结构风工程学术会议论文集,2007,208-215
    [98]郅伦海,等.基于远程监控系统的广州中信广场风特性及风致响应实测研究.第十三届全国结构风工程学术会议论文集.2007
    [99]李正农,等.多个地区风场和建筑结构风致响应的远程监控实测系统.第十三届全国结构风工程学术会议论文集.2007
    [100]李宏男,李东升,赵柏东.光纤健康监测方法在土木工程中的研究与应用进展.地震工程与工程振动,2002,22(6):76-83
    [101]李宏伟.结构健康监测的无线传感器网络系统研究及应用.博士学位论文.哈尔滨:哈尔滨工业大学,2005
    [102]欧进萍,周智,等.黑龙江呼兰大桥的光纤光栅智能检测技术.土木工程学报,2004,37(1):45-49
    [103]张启伟.大型桥梁健康监测概念与监测系统设计.同济大学学报.2001,29(1):65-69
    [104]Weng Jian-Huang, Chin-Hsiung Loh, Jerome P. Lynch, et al. Out put only modal identification of cable-stayed bridge using wireless monitoring systems. Eng. Struct.,2007,12:1-11
    [105]申建红,李春详.土木工程结构风场实测及新技术研究的进展.振动与冲击,2008,27(10):115-120
    [106]Xu Y L, Sun D K, Ko J M, Lin J H. Buffeting analysis of long-span bridges:a new algorithm Computers and Structures 1998,68:303-313
    [107]陈伟.大跨度桥梁抖振反应谱研究.博士学位论文.上海:同济大学,1993
    [108]丁泉顺.大跨度桥梁耦合颤抖振响应的精细化分析.博士学位论文.上海:同济大学,2001
    [109]Liepmann H W. On the application of statistical concepts to the buffeting proplem. J. Aeronautical Science.1952,19(12):793-800
    [110]Larose G L, Mann J. Gust loading on streamlined bridge decks. J of Fluid and Structure, 1998,12:511-53
    [111]蒋永林.斜拉桥抖振响应分析.博士学位论文.成都:西南交通大学,2000
    [112]Xie J, Identification of the aerodynamic admittance functions for bridge road decks. Proc.2nd Asia-Pacific symposium on wind engineering, Beijing,1989
    [113]李明水.连续大气紊流中大跨度桥梁的抖振响应.博士学位论文.成都:西南交通大学,1993
    [114]顾巍.钝体和桥梁断面的气动导纳试验技术与研究,研究报告,上海:同济大学,2000
    [115]Sankaran R, Jancankas E D. Direct measurement of the aerodynamic admittance of 2-D rectangular cylinders in smooth and turbulent flows. J Wind Eng. and Aerodyn.1992, 41-44(1):601-611
    [116]Kawatani M, Kim H. Evaluation of aerodynamic admittance for buffeting analysis. J Wind Eng. and Aerodyn.1992,44(1):317-326
    [117]Kawashima & Fujimoto. A investigation of the sinusoidal gust loads. Pro.3rd international conference on wind effects on building and structure. Tokyo,1971: 1049-1087
    [118]Drabble M J, Grant I. The aerodynamic admittance of square plate in a flow with fully coherent fluctuation. Phys Fluids A,1990,2(6):1005-1013
    [119]Alfredo Cigada, Giorgio Diana, Emanuele Zappa. On the response of a bridge deck to turbulent wind:a new approach, J. Wind Eng. Ind. Aerodyn.,2002, (90):1173-1182
    [120]Scanlan R. H. Re-examination of sectional aerodynamic force functions for bridges. J Wind Eng. and Aerodyn.2001,89(3):1457-1266
    [121]靳欣华.桥梁断面气动导纳识别理论及试验研究.博士学位论文.上海:同济大学,2003
    [122]赵林.风场模式数值模拟与大跨桥梁抖振概率评价.博士学位论文.上海:同济大学,2003
    [123]张若雪.桥梁断面气动参数识别理论和试验研究.博士学位论文.上海:同济大学,1998
    [124]秦仙蓉,顾明.桥梁结构气动导纳识别的随机子空间方法. 同济大学学报.2004,32(4):421-425
    [125]项海帆,林志兴等.公路桥梁抗风设计指南.人民交通出版社.1996
    [126]范立础.桥梁抗震.同济大学出版社.1997
    [127]L D Zhu, H F Xiang, Y L Xu. Triple-girder model for modal analysisof cable-stayed bridges with warping effect. Engineering Structures.2000,22:1313-1323
    [128]John C. Wilson, Wayne Gravelle. Modelling of a cable-stayed bridge for dynamic analysis. Earthquake Engineering and Structual Dynamics.1991,20:707-721
    [129]王乐文.大跨度斜拉桥的动力分析模型.华南理工大学硕士学位论文.1999
    [130]马存明.流线箱型桥梁断面三维气动导纳研究.博士学位论文.成都:西南交通大学,2007
    [131]Von Karman T. Progress in the statistical theory of turbulence, Proc. National Aca-demci Society, Washington D C,530-539
    [132]DavenPort A G. Gust loading factors,J. the Structural Division, ASCE,93:11-34
    [133]Harris R I. The nature of the wind, in Seminar on Modern Design of Wind Sensitive Structures, Consturction Industry Reseaerh&Information, ClRIA, London, UK,29-55
    [134]Busc N E, Panofsky H A, Recent Spectra of Atmospheric Turbulence, J. Royal Meteorological Society,94:132-148
    [135]Simiu, E(1974), Wind Spectra and dynamic alongwind response, J. Structural Division, ASCE,100:ST9,1897-1910
    [136]John B Roberts. Coherence of grid-generated turbulence. J. of The engineering mechanics division,12.1973:1227-1245
    [137]王维新,谢壮宁.测压传压管路系统动态特性的试验分析.西北大学学报(自然科学版).2005,35(4):P392-396
    [138]E. B. Mock, The UEDA H. Multi-channel simultaneous fluctuating pressure measurement system and its applications. J Wind Eng. and Aerodyn.1994, (51):93-104
    [139]谢壮宁,顾明,倪振华.复杂测压管路系统动态特性的通用分析方法.同济大学学报(自然科学版).2003,31(6):702-708
    [140]顾志福,孙天风.大紊流度高雷诺数时并列双圆柱的平均和脉动压力分布.力学学报.1992,24(3):522-528
    [141]LETCHFORD CW. Frequency response requirements for fluctuating wind pressure measurements. J Wind Eng. and Aerodyn.1992,40:263-276
    [142]周晅毅,顾明.单通道测压管路系统的优化设计.同济大学学报.2003,31(7):798-802
    [143]Irwin H. P. Correction of distortion effects caused by tubing systems in measurements of fluctuating pressures. Journal of Induct Aerodynamic.1979, (5):93-107
    [144]Gumley S J. Tubing systems for pneumatic averaging of fluctuating pressures. Journal of Wind Engng Indust Aerodynam,1983,12:189-228
    [145]Gumley S J. A detailed design method for pneumatic tubing systems. Journal of Wind Engng Indust Aerodynam,1983,13:441-452
    [146]Holmes J D, Lewis R E. Optimization of dynamic pressure measurement systems. Ⅰ. Single point measurements. J Wind Eng. and Aerodyn.1987,25:249-273
    [147]Holmes J D, Lewis R E. Optimization of dynamic pressure measurement systems. Ⅱ. Parallel tube2manifold systems. Journal of Wind Endgng Indust Aerodynam,1987,25: 275-290
    [148]Holmes J D. Effect of frequency response on peak pressure measurements. Journal of Wind Engng Indust Aerodynamic,1984,17:1-9
    [149]Gerstoft P. A new tubing system for the measurement of fluctuating pressures. Journal of Wind Engng Indust Aerodynam,1987,25:335-354
    [150]Yoshida M, Kondo K, Suzuki M. Fluctuaing wind pressure measured with tubing system. J Wind Eng Ind Aerodyn,1992,41-44:987-998
    [151]Surry D, Stathopoulos T. An experimental approach to the economical measurement of spatially-averaged wind loads. J Wind Eng. and Aerodyn.1979,2:385-397
    [152]Gumley S J. Tubing systems for pneumatic averaging of fluctuating pressrures. J Wind Eng. and Aerodyn.1983,12:189-228
    [153]Gumley S J. A detailed design method for pneumatic tubing systems. J Wind Eng. and Aerodyn.1983,13:441-452
    [154]Gerstoft P. A new tubing system for the measurement of fluctuating pressures. J Wind Eng Ind Aerodyn,1987,25:335-354
    [155]SU Er-huang. Tubing system dynamic analysis and fluid numerical computational method. Harbin:Harbin Institute of Technology Press,1985
    [156]周晅毅,顾明.并联管道耗散模型的理论研究. 振动与冲击.2004,23:79-82
    [157]西南交通大学风工程试验研究中心.苏通大桥施工阶段主梁节段模型试验报告.西南交通大学.2006
    [158]陶奇,廖海黎,李明水,刘明.苏通长江公路大桥最大单悬臂施工状态结构模态参数识别.四川建筑科学研究.2009,35(5):40-44
    [159]西南交通大学风工程试验研究中心.苏通大桥主桥施工阶段试验报告.西南交通大学.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700