突变风实验模拟与荷载特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现行结构抗风设计方法主要是以对良态风气候(如季风)的观测为基础,平稳来流和拟定常气动力是这类方法的基本假定。而实际建筑风灾害绝大多数是由极端风气候引起的,包括台风、雷暴和龙卷风等。这些极端风气候有一个共同特点,即风速和风向会产生瞬时急剧改变(本文称之为突变)。显然,平稳来流和拟定常气动力假定已不适用于描述突变风作用,基于现行规范的结构抗风设计也不能够有效地防范这类风灾害的发生。对于极端风气候及其作用的研究是近年来国内外风工程领域的热点问题之一,但是由于一些客观因素的制约,进展较为缓慢。这些困难主要表现在:由于极端风的发生具有偶然性,作用范围具有区域性,作用时间又通常较短,因此实测资料较少;不仅如此,对于极端风的风洞实验和数值模拟技术也均不成熟,这就使得研究人员很难获得实验资料;此外,由于极端风的非平稳非高斯特性,也给相关的数据分析和处理带来困难。
     针对以上问题,本文首先建立了一种概念化的阶跃型突变气流模型,并且研究了这种气流的风洞实验实现方法;然后通过一系列模型风洞实验,对突变风作用下的结构风荷载特性进行研究,揭示了相关作用机理,建立了一种突变风荷载模型;最后,对建筑物的抗突变风设计方法进行探讨,给出了一些设计建议。本文主要研究内容包括以下几方面:
     针对极端风气候的突变特点,提出一种阶跃气流模型,除了可改变气流加速度外,还可以改变加速后的流场形态,从而得到“下击暴流型阶跃流”和“平滑流型阶跃流”两种可能的形式。在此基础上,以日本宫崎大学的多风扇主动控制风洞为实验平台,通过对不同位置风扇的转速及相位进行反复调试,获得了与目标气流功率谱一致的风洞流场,实现了对上述气流形式的模拟。
     为探究突变气流作用下的结构风荷载特性,设计了一系列风洞实验。具体考察的参数包括:二维圆柱体和方柱体,三维高层建筑、多层建筑和低矮建筑模型,不同来流加速度以及流场形态,不同来流风向等,实验工况共计190余种。通过以上试验,为揭示突变气流荷载的作用机理提供基本数据。
     根据风洞实验结果,采用“先二维后三维、先局部后整体、先静力后动力、先均匀流后阶跃流”的分析步骤,分别从时域和频域两方面对结构表面的突变气流荷载进行了细致研究。具体参数包括:点风压系数、面风压系数、阻力系数、侧力系数,脉动风压的空间相关性、滑动相关性和频谱特性等。在此基础上,重点探讨了在气流加速段结构表面气动力所出现的“峰值”现象,得到了突变气流作用下结构荷载整体和局部特征的定量描述。
     针对突变气流荷载的非平稳特点,引入希尔伯特-黄变换(HHT)时频分析方法,研究了突变气流风荷载的时变特点,得到加速全过程的时频能量分布图,揭示了突变气流荷载的作用机理。在此基础上,利用经验模(EMD)方法提取了突变气流作用下结构风荷载的趋势项,作为风荷载的时变平均分量;并对利用斜度和峰度的概念对突变气流荷载脉动分量的非高斯特征进行了研究,建立了突变气流作用下的结构风荷载模型。
     在以上研究的基础上,对建筑物抗突变风设计方法进行了初步探讨。在风荷载部分,将突变气流荷载分为时变平均风荷载和脉动风荷载两部分,通过引入非平稳风压系数来表示时变平均风荷载,并利用脉动风压谱的经验式并结合谐波合成法得到了非高斯脉动风荷载。结合一算例,探讨了在突变风作用和在规范风荷载作用下的结构风荷载及风响应差别,说明按照规范方法不能够保证结构在突变风作用下的安全性。通过这些探讨,希望能够为进一步研究建筑物抵御极端风气候下的抗风设计方法提供有益的参考。
Current structure wind-resistant design methods are based on observation of normal climate condition (e.g. monsoon), steady inflow and quasi-steady aerodynamics are the basic hypotheses of these methods. Building disasters are actually caused by extreme wind climate, including typhoon, thunderstorm and tornado etc. These extreme wind climates share a common feature that wind velocity and direction could transform rapidly. (It is called transient in this paper.) Obviously, steady inflow and quasi-steady aerodynamics assumption cannot be applied to the study on wind loading with transient characteristics, and current wind-resistant design could not effectively prevent structures from disasters. The research on extreme wind climate and its effect become one of the cutting edge issues in wind engineering field in both domestic and overseas, but its development is slow because of some object factors. The major difficulty is shown as following: observed data are scarcely available because of contingency, regional characteristics and short acting time; moreover, the technology of both wind tunnel experiment and numerical simulation are quite immature so that experimental data are difficult to obtain by researchers; non-stationary and non-Gaussian characteristics of extreme winds also pose great difficulty for data analyzing and processing.
     Focusing on these problems, firstly, a conceptualized model of step transient flow is proposed, and wind tunnel experiment and its implementation method are studied in this paper; secondly, related mechanism of transient flow is revealed by studying the characteristics of wind load of construction under transient flow; finally, wind-resistant design methods are researched, and some design suggestions are presented.
     The main content includes the parts as follows:
     According to transient characteristic of extreme wind climate, a conceptualized model of step transient flow is proposed. Both the acceleration of air flow and flow field form after accelerating could be changed so that down-burst step flow and slipping stream step flow can be obtained. On this basis, by applying the multiple fans active control system in the turbulent wind tunnel in Miyazaki University, the above mentioned flow forms are successfully simulated through repeating debugging of fan rotational speed and phase in different positions to obtain flow field in wind tunnel with same power spectrum density as target flow.
     A series of wind tunnel experiments are designed in order to investigate the characteristics of wind loading of structure under transient flow. Specific investigated parameters includes: 2-D cylinder section and square section, 3-D high-structure, middle-structure and low-structure models, different acceleration and flow field form of inflow, different wind direction of inflow and etc. The number of experimental scenarios is about 190. Based on the above work, it is intended to accumulate the experimental data, on which the mechanism of transient flow is studied.
     According to the experimental results, adopting the analysis procedure of " from two-dimension to three-dimension, partial to integral, static to dynamic, stationary flow to step flow", wind loading of structure surface under transient flow is studied in both time domain and frequency domain in detail. The specific parameters include: point wind pressure coefficient, surface wind pressure coefficient, drag coefficient, side force coefficient, spatial correlation and running correlation of fluctuating wind pressure, spectrum characteristics of fluctuating wind pressure and etc. On the base of which, this paper mainly discusses the phenomena of Peak-Value of aerodynamics on structure surface during flow accelerating, and quantitative description of integral and local features of wind load of structure under transient flow.
     According to its non-stationary characteristics of transient flow, by introducing Hibert-Huang Transform (HHT) spectral analysis, the time-varying characteristic of wind load of transient flow is studied, and the time-frequency scalogram during the whole process of acceleration is obtained, thus the mechanism of wind load of transient flow is revealed. Based on this, trend in the wind load of structure under transient flow is extracted by applying theempirical mode decomposition (EMD), and this extraction is regarded as time-varying average component of wind load; by adopting the concept of skewness and kurtosis to study the non-Gaussian characteristics of fluctuation component of transient flow loading, the model of wind load of structure under transient flow is build.
     Based on the above studies, preliminary study on structural design methods against transient flow is carried out. In wind load, wind load of transient flow are composed of two parts, which are mean wind load with time varying and fluctuant wind load. Mean wind load with time varying can be expressed by coefficient of non-stationary wind pressure, and non-Gaussian fluctuating wind load is obtained by applying empirical formula of spectrum density of fluctuating winds combined with harmonic component representation. Based on an example, the difference of wind load and wind response under transient flow and normal wind in codes is discussed, and it demonstrates that structural safety under transient flow cannot be guaranteed using the methods in design code. The study could be valuable reference for further research on wind resistant design method of structure against extreme wind climate condition.
引文
1黄本才.结构抗风分析原理及应用.同济大学出版社, 2001: 1
    2埃米尔·希缪,罗伯特·H·斯坎伦,刘尚培等译.风对结构的作用—风工程导论.同济大学出版社. 1992: 66
    3王润,姜彤, Lorenz King, Marco Gemmer, Anja Holl. 20世纪重大自然灾害评析.自然灾害学报. 2000, 9(4): 9-15
    4姜彤,许朋柱,高俊峰. 1996年全球自然灾害分析.自然灾害学报. 1997, 6(4): 14-17
    5许朋柱,姜彤. 1995年全球自然灾害评析.灾害学. 1996, 11(3): 73-78
    6姜彤,许朋柱. 1997年全球自然灾害回顾与分析.自然灾害学报. 1998, 7(3): 1-5
    7姜彤,王润, Lorenz King. 1998年全球自然灾害回顾与分析.自然灾害学报. 1999, 8(3): 1-6
    8姜彤,王润, Lorenz King. 2000年全球重大自然灾害概述.自然灾害学报. 2002, 11(1): 15-19
    9秦年秀,姜彤. 2003年重大自然灾害回顾.自然灾害学报. 2005, 14(1): 38-44
    10郑远长.全球自然灾害概述.中国减灾. 2002, 10(1): 14-19
    11 http://www.guam.net. 1997
    12 http://www.erh.noaa.gov/cae/svrwx/downburst.htm. 1983
    13 http://www.wired.com/wiredscience/2009/11/from-the-fields-storm-chaser/. 2009
    14顾明.土木结构抗风研究进展及基础科学问题.第七届全国风工程和工业空气动力学学术会议论文集. 2006,成都: 67-83
    15项海帆.结构风工程研究的现状和展望[J].振动工程学报. 1997, 10(3): 258-263
    16 J.D.Holmes. Emerging Issues in Wind Engineering. Proc. 10th International. Conference. on Wind Engineering. Texas, 2-5 June, 2003
    17陈波.大跨屋盖结构等效静风荷载精细化理论研究.哈尔滨工业大学博士学位论文. 2006
    18中华人民共和国建设部.建筑结构荷载规范(GB50009-2001).中国建筑工业出版社. 2002
    19 American Society of Civil Engineers. Minimum Design Loads for Buildings and Other Structures, ANSI/ASCE Standard 7-98. American Society of Civil Engineers, New York, 1998
    20 AIJ Recommendations for Loads on Buildings (in Japanese). Architectural Institute of Japan. 2004
    21 National Research Council of Canada. National Building Code of Canada. 1995
    22 Standards Australia/ Stand New Zealand Standard Structural design actions Part2:Wind actions (AS/NZS1170.2: 2002). 2002
    23刘庆宽,杜彦良,乔富贵.日本列车横风和强风对策研究.铁道学报. 2008, 30(1): 82-88
    24王肇民.高耸结构振动控制[M].同济大学出版社. 1997
    25贺德馨等.近代空气动力学丛书——风工程与工业空气动力学.国防工业出版社. 2006: 63-64
    26舒新玲,周岱,王泳芳.风荷载测试与模拟技术的回顾及展望.振动与冲击. 2002, 21(3): 6-10
    27 J. D. Mcclintock. G. S. Pond, L. W. Dacidson. Offshore wind gust climatologies. Sea Consult Limited, Report prepared for Atmospheric Environment, Service Canadian Climate Center Marine Applied Unit.1993
    28 J. A. B. Wils, A. Grant, C. F. Boyack. Offshore mean wind profile. Department of Energy, Offshore Technical Report. 1986, OTH86226
    29 O. J. Andersen, J LOVSETH. Gale force maritime wind, the Froya data base. Part 1: sites and instrumentation, review of the database. Journal of Wind Engineering and Industrial Aerodynamics. 1995, 57: 97-109
    30 P. R. Sparks. G. T. Reid, W. D. Reid, S. Welsh, N. Welsh. Wind Scenarios in hurricane Hugo by measurement, inference, and experience. Journal of Wind Engineering and Industrial Aerodynamics. 1992, 41-44: 55-66.
    31 N. Kato, T. Ohukuma, J. R. Kim, H. Marukama, Y. Niihori. Full scale measurements of wind velocity in two urban areas using an ultrasonic anemometer. Journal of Wind Engineering and Industrial Aerodynamics. 1992, 41-44: 67-78
    32 S. Mackye, P. K. L. Ko. Spatial configuation of gust. Proceedings of the 4th International Conference to Wind Effects on Buildings and Structure. 1975: 31-40
    33 E. C. C. Choi. Gradient Height and Velocity Profile During Typhoon. 6th ICWE. Australia, 1983
    34 T. Amano, H Fukushima, T Ohkuma, A Kawaguchi, S Goto. The observation of typhoon winds in Okinawa by Doppler sodar. 1999, 83: 11-20
    35王立治,章小平,王晓晞等.城郊大气近地面湍流特征的初步研究.大气科学. 1985, 9(a): 11-17.
    36张霭琛,吕杰,张兵等.北京市郊及城区边缘的大气边界层湍流结构.大气科学. 1991, 15(4): 87-86
    37王存忠,曹文俊.天津市郊大气边界层湍谱特征分析.气象学报. 1994, 52(4): 484-491
    38王介民.山谷城市的近地层大气湍流谱特征.大气科学, 1992, 16(1): 11-17
    39马耀明,王介民等.南沙海域近海层大气湍流结构及输送特征研究.大气科学. 1997, 21(3): 357-365
    40庞加斌,林志兴,葛耀君.浦东地区近地强风特性观测研究.流体力学实验与测量. 2002, 16(3): 32-39
    41 Q. S. Li. J. R. Wu, S. G. Liang, et al. Full-scale measurements and numerical evaluation of wind-induced vibration of a 63-story reinforced concrete super tall building[J]. Engineering Structures. 2004, 26(12): 1779-1794
    42 Q. S. Li, Y. Q. Xiao, C. K. Wong, et al. Field measurements of typhoon effects on a super tall buildings[J]. Engineering Structures. 2004, 26(2): 233-244
    43李正农,李秋胜,郅伦海等.多个城市风场和建筑结构风致响应的远程监控实测系统[C].地十三届全国结构风工程学术会议论文集.大连: 222-227.
    44刘小红,洪钟祥.北京地区一次特大强风过程边界层结构的研究.大气科学. 1996, 20(2): 223-228
    45 Q. S. Li, Y. Q. Xiao, C. K. Wong. Full-scale monitoring of typhoon effects on super tall buildings. Journal of Fluids and Structures.2005, 20(5): 697-717
    46杨杰.广东汕尾9810号台风实测分析.合肥工业大学学报. 1999, 22(S1): 1-4
    47 T. T. Fujita.下击暴流.气象出版社. 1978
    48杨国祥.中小尺度天气学.气象出版社. 1983
    49 T. T. Fujita. Downbursts and Microbursts-An aviation hazard. American Meteorological Society 19th Radar Meteorology Conference (Miami). 1980: 102-109
    50刘峰,刘式达,文丹青.广州白云机场721低空风切变天气过程综合分析.北京大学学报(自然科学版). 2007, 43(1): 23-29
    51吴芳芳王慧韦莹莹王群.一次强雷暴阵风锋和下击暴流的多普勒雷达特征.气象. 2009, 35(1): 55-64
    52武麦凤,张弘,王旭仙,安中浩.一次下击暴流过程的多普勒天气雷达特征分析. http://www.cnki.net
    53刘银峰,蒋骏,雷正翠,马天骄. 2009年6月14日的一次飑线天气过程分析. http://www.cnki.net.2009
    54陈炯,郑永光,徐枝芳,杨毅.应用多种资料对2007年8月1日北京飑线过程的分析和模拟. http://www.cnki.net.2008
    55陶林科,胡文东,杨有林,杨侃.西北干旱区一次下击暴流天气过程分析. http://www.cnki.net.2008
    56漆梁波,陈春红,刘强军.弱窄带回波在分析和预报强对流天气中的应用.气象学报. 2006, 64(1): 112-120
    57刘洪恩.微下击暴流的特征及其数值模拟.气象学报.2001, 59(2): 183-195
    58贺德馨等.近代空气动力学丛书——风工程与工业空气动力学.国防工业出版社, 2006: 70-72
    59松本勝.非平稳気流中における非平稳空気力について:竜巻など瞬発性気象災害の実態とその対策に関する研究.京都大学工学部. 1984: 102~114
    60 E. Savory, G. A. R. Parke, M. Zeinoddini, et al.Modelling of tornado and microburst-induced wind loading and failure of a lattice transmission tower. Engineering structures. 2001, 23(4): 365-375
    61 L. Chen, C. W. Letchford. A deterministic-stochastic hybrid model of downbursts and it impact on a cantilevered structure. Engineering Structures. 2004, 26(5): 619-629
    62 F. H. proctor. Numerical simulations of an isolated microburst, Part I: dynamics and structure[J]. Jounal of the atmospheric sciences. 1988, (45): 3137-3159
    63 R. E. Selvam, J. D. Holmes. Numerical simulation of thunderstorm downdrafts[J]. Wind Eng. Ind. Aerodyn. 1992, (44): 3137-2825
    64 J. D. Holmes. Physical modeling of thunderstorm downdrafts by wind tunnel jet[C]. Second AWES Workshop. Monash University. 1992: 29-32
    65 R. J. Cassar. Simulation of a thunderstorm downdraft by a wind tunnel jet[R]. Summer Vacation Report, DBCE92/22(M) CSIRO. Australia, 1992
    66 G.. S. Wood, K. C. Kwok, N. A. Motteram, D. F. Fletcher. Physical and numerical modeling thunderstorm downbursts [J]. Journal of wind engineeringand industrial aerocynamics. 2001, (89): 535-552
    67 A. Sengupta, P. P. Sarkar, G. Rajagopalan. Numerical and physical simulation of thunderstorm downdraft winds and their effects on buildings[C]. First American Conference on Wind Engineering. 2001
    68 C. W. Letchford,G. Illidge.Turbulence and topographic effects in simulated thunderstorm downdrafts by wind tunnel jet[C]. Wind Engineering into the 21st Century. Balkema, Rotterdam. 1999
    69 C. W. Letchford, C. Mans. Translation effects in modeling thunderstorm downbursts[C]. Fourth International Colloquium on Bluff Body Aerodynamics and Applications. Bochum, Germany, 2000: 175-178
    70 M. S. Mason, C. W. Letchford, D. L. James. Pulsed wall jet simulation of a stationary thunderstorm downburst, Part A: Physical structure and flow field characterization [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2005, (93): 557-580
    71 M. T. Chay, C. W. Letchford. Pressure measurements on abuilding model in a simulated downburst flow[C]. First American Conference on Wind Engineering. Clemson, SC, 2001
    72 M. T. Chay. Physical modeling of thunderstorm downbursts for wind engineering applications [D]. ME Thesis, Texas Tech University, 2001
    73 C. W. Letchford, M. T. Chay. Pressure distributions on a cube in a simulated thunderstorm downburst, Part A: Moving downburst observations [J]. Journal of Wind Engineering and Industrial Aerodynamics. 2002, (90): 733-753
    74 C. W. Letchford, M. T. Chay. Pressure distributions on a cube in a simulated thunderstorm downburst. Part B: Moving downburst observations [J]. Journal of Wind Engineering and Industrial Aerodynamics. 2002, (90): 733-753
    75 KEA. Development of actively Controlled turbulent wind tunnel, Part 2, turbulence control by time-lag correction [A]. 14th National Symposium on Wind Engineering, Japan Association of Wind Engineering [C]. Tokyo,1996: 151-156
    76 H. Kobayashi, A. Hatanaka. Active generation of gind gust in gwo dimensional wind tunnel [J]. Journal of wind engineering and industrial aerodynamics. 1992: 959-970.
    77 A. Nishi, H. Miyagi. Computer controlled wind tunnel [J]. Journal of wind engineering and industrial aerodynamics. 1993: 837-846.
    78 A. Nishi, H. Miyagi.Computer controlled wind tunnel for wind engineering applications [J]. Journal of wind engineering and industrial aerodynamics. 1995, 54-55: 493-504.
    79 A. Nishi, H. Kikugawa, Y. Matsuda, et al.Turbulent control in multiple-fan wind tunnels [J]. Journal of wind engineering and industrial aerodynamics. 1997, 67-68: 861-872.
    80 A. Nishi, H. Kikugawa, Y. Matsuda, et al.Active control of turbulence for an atmospheric boundary layer model in a wind tunnel [J]. Journal of wind engineering and industrial aerocynamics, 1999, 83: 409-419.
    81 S. Cao, A. Nishi, H. Kikugawa, et al.Reproduction of wind velocity in a multiple fan wind tunnel[J].Journal of wind engineering and industrial aerodynamics, 2002, 90: 1719-1729.
    82 S. Cao, A. Nishi, et al.An actively controlled wind tunnel and its application to the reproduction of the Atmospheric Boundary layer [J]. Boundary-Layer Meteorol. 2001, 101(1): 61-76.
    83 S. Cao, S. Ozono, K. Hirano. Vortex shedding from a circular cylinder placed in a linear shear flow at high Reynolds number. Marseille Marseille, 2000: 133-134.
    84 S. Cao. Physical modeling of the ABL in a multiple fan wind tunnel and its application- Vortex shedding from a circular cylinder placed in strong shear flows. Doctoral dissertation. Miyazaki: Miyazaki University; 2001
    85 R. M. Oseguera, R. L. Bowles. A simple analytic 3-dimensional downburst model based on boundary layer stagnation flow [R]. 1988.
    86 D. D. Vicroy, Assessment of microburst models for downdraft estimation [J]. Journal of Aircraft. 1992: 1043-1048.
    87 J. D. Holmes, S. E. Oliver . An empirical model of a downburst [J]. Engineering Structures. 2000, 22: 1167-1172.
    88 L. Chen, C. W. Letchford. A deterministic-stochastic hybrid model of downbursts and its impact on a cantilevered structure [J]. Engineering Structures. 2004, 26: 619-629.
    89 J. Chen, Y. L. Xu. On modeling of typhoon-induced non-stationary wind speed for tall buildings [J]. The Structural Design of Tall and Special Buildings. 2004, 13: 145-163
    90 Y. L. Xu, J. Chen. Characterizing non-stationary wind speed using empiricalmode decomposition [J]. Journal of Structural Engineering, ASCE. 2004, 130(6): 912-920
    91李锦华,李春祥.土木工程随机风场数值模拟研究的进展.振动与冲击. 2008, 27(9): 116-125
    92 L. Wang, A. Kareem. Modeling of Non-stationary Winds in Gust-Fronts[C]. Albuquerque, New Mexico, 2004
    93 L. Wang, A. Kareem. Simulation of Non-stationary Random Processes: A Wavelet and Hilbert Transforms[C]. Albuquerque, New Mexico: 2004.
    94冉启文.小波变换与分数傅里叶变换理论及应用[M].哈尔滨工业大学出版社. 2001: 1-30, 58-80.
    95 K. Gurley, A. Kareem. Applications of wavelet transforms in earthquake [M]. wind and ocean engineering. 1999: 149-167.
    96 T. Kijewski, A. Kareem. Wavelet transform for system identication in civil engineering [J]. Computer. 2003, 18: 339-355.
    97 D. B. Percival, A. T. Walden.Wavelet Methods for Time Series Analysis [M]. Cambridge University Press. 2000.
    98 N. E. Huang. The empirical mode decomposition and the Hilbert spectrum for non-station time series analysis[C]. Proceedings of the Royal Society of London Series. 1998: 903-995
    99 T. Kijewski, A. Kareem.Time-frequency characterization of nonlinear dynamical systems [A]. 9th ASCE Joint Specialty Conference on Probabilistic Mechanics and Structural Reliability[C]. 2004.
    100 S. Olhede, A. T. Walden. The Hilbert spectrum via wavelet projections [A]. Proceedings of the Royal Society of London Series A[C]. 2004: 955-975
    101陈隽,徐幼麟.经验模型分解在信号趋势项提取中的应用[J].振动、测试与诊断. 2005, 25(2): 101-104.
    102 G. Deodatis, M. Shinozuka.Auto-regressive model for nonstationary stochastic processes [J]. Journal of Engineering Mechanics. 1988, 114(11): 1995-2012.
    103 Y. Li, A. Kareem . Simulation of multivariate Non-stationary random processes by FFT [J]. Journal of Engineering Mechanics. 1991, 117: 1037-1058.
    104 C. H. Yeh, Y. K. Wen.Modeling of nonstationary ground motion and analysis of inelastic structural [J]. Structral Safety. 1990, 8(1-4): 281-298.
    105 J. P. Conte. Effects of earthquake frequency nonstationarity on inelastic structural response [A]. Proc. 10th World Conf. on Earthquake Engrg[C]. A. A.Balkema, Rotterdam, The Netherlands, 1992
    106 R. J. Scherer, J. D. Riera, G. I. Schueller. Estimation of the time-dependent frequency content of earthquake accelerations [J]. Nuclear Engineering. and Design. 1982, 71(3): 301-310.
    107 P. D. Spanos, G. Failla. Evolutionary spectra estimation using wavelets. Journal of Engineering Mechanics. 2004, 130(8): 952-960
    108 J. P. Conte. Fully nonstationary analytical earthquake ground-motion model [J]. Journal of Engineering Mechanics. 1997, 123(1): 15-24.
    109 J. H. K. Iyama. Application of wavelets to analysis and simulation of earthquake motions [J]. Earthquake Engineering and Structural Dynamics. 1999, 28: 255-272.
    110 Y. K. Wen, P. Gu.Description and simulation of nonstationary processes based on Hilbert spectra [J]. Journal of Engineering Mechanics, ASCE. 2004: 130(8).
    111罗雄,李永乐.按非平稳随即过程模拟自然风速的一种数值方法[J].西南交通大学学报. 2002, 37(4): 367-370
    112 D. D. Vicroy.Assessment of microburst models for downdraft estimation [J]. Journal of Aircraft. 1992: 1043-1048
    113 E. Simiu, R. H. Scanlan. Wind effects on structures. New York, Wiley, 1978
    114 E. Simiu. Wind spectra and dynamic alongwind response [J]. ASCE. 1974,100(9): 1897-1910
    115张相庭,高层结构抗风抗震设计计算[M].同济大学出版社,1997
    116赵杨,段忠东,Yukio Tamura.多国荷载规范中阵风荷载因子的比较研究.第十二届全国结构风工程学术会议论文集.西安,2005: 198~200
    117 H. A. Panofsky, D. W. Thomson, D. A. Sullivan, et al. Two point velocity statistics over Lake Ontario. Boundary-Layer Meteorology. 1974, 7(3): 309-321
    118 A. G. Davenport. The dependence of wind load upon meteorological parameters. Proceedings of the international research seminar on wind effects on building and structures, University of TorontoPress. Toronto, 1968: 19-82
    119 H. Ishizaki, T. Hayashi, Y. Tanike. The response of the indoor pressure to the sudden change of the outdoor pressure. (in Japanese) Annuals of Disaster prevent research institute, Kyoto University. 1983, 26(B-1): 323-329
    120 D. Surry, D. Djakovich. Fluctuating pressure on models of tall buildings. Jounal of Wind Engineering and Industrial Aerodynamics. 1995, 58: 81-12
    121 Y. Tamura, H. Ueda., H. Kikuchi, K. hibi, S suganuma, B bienkiewicz. Properorghogonal decomposition studay of approach wind-building pressure correlation. Jounal of Wind Engineering and Industrial Aerodynamics. 1997, 72: 421-431
    122 J. C. R. Hunt. A theory of turbulent flows round two-dimensional bodies. Journal of Fluid Mechanics. 1973, 61(4): 625-706
    123 J. C. R. Hunt. A theory of fluctuating pressures on bluff bodies in turbulent flows. Proceedings of the IUTAM-IAHR symposium on Flow-Induced Structural Vibrations. West Germany, 1972. Springer-Verlag, 1974: 190-203
    124 J. C. R. Hunt. Turbulent Velocities near and fluctuating surface pressures on structures in turbulent winds. Proceedings of the Fourth International Conference on Wind Effects on Buildings and Structures. London, 1975. Cambridge University press. 1976: 309-320
    125 C. Letchford, M. Chay. Pressure distributions on a cube in a simulated thunderstorm downburst-part B: moving downburst observations. Journal of Wind Engineering and Industrial Aerodynamics. 2002, 90: 711-732
    126 Engineering Sciences Data Unit (ESDU) 85020. Charateristics of atmospheric turbulence near the ground, Part II: Single point data for strong winds (neutral atmosphere) [M]. ESDU, 2001: 15-18
    127张相庭.结构风压与风振计算[M].同济大学出版社.上海, 1985: 25-30
    128孙海,陈伟,陈隽.强风环境非平稳风速模型及应用[J].防灾减灾工程学报. 2006, 26(1): 53~57
    129 J. Chen, Y. L. Xu. On modeling of typhoon-induced ono-stationary wind speed for tall buildings [J]. The Structal Design o f Tall and Special Buildings. 2004, 13: 145-163
    130 Y. L. Xu, J. Chen. Characterizing non-stationary wind speed using empirical mode decomposition [J]. Journal of Structural Engineering, ASCE. 2004, 130(6): 912-920
    131 T. Kijewski-Correa, A. Kareem. Wavelet transform for system identication in civil engineering [J]. Computer. 2003, 18: 339-355
    132 T. Kijewski-Correa, A. Kareem. Time-frequency characterization of nonlinear dynamical systems [A]. 9th ASCE Joint Specialty Conference on Probabilistic Mechanics and Structural Reliability [C]. 2004
    133 S. Olhede, A. T. Walden. The Hilbert spectrum via wavelet projections [A]. Proceedings of the Royal Society of Lond [C]. 2004: 955-975
    134游泳,郭品文,廖勇,张玲. ENSO与中国东部地区夏季降水相关性年代际变化特征.气象科技. 2005, 33(2): 142-146
    135 K. Butle, A. Kareem. Characteristics of pressure and integral loads on prisms in boundary layer flows. Proceedings of the 12th International Conference on Wind Engineering, A. Cairns, Australia,2007
    136 K. Butle, A. Kareem. Characteristics of pressure and integral loads on prisms in boundary layer flows. Proceedings of the 12th International Conference on Wind Engineering, B. Cairns, Australia,2007
    137孙瑛.大跨屋盖结构风荷载特性研究.哈尔滨工业大学博士学位论文. 2007
    138 T. Ohkuma, A. Kanaya. On the correlation between the shape of rectangular cylinders and characteristics of fluctuating liftson them [C]. Proc. of 5th Symposimum on Wind Effects on Structures. Tokyo, 1978: 147-154
    139顾明,叶丰.高层建筑的横风向激励特性和计算模型的研究[J].土木工程学报. 2006, 39(2): 1-5
    140金虎,楼文娟,沈国辉.复杂体型超高层建筑风压脉动特性.哈尔滨工业大学学报. 2009, 41(8): 111-117
    141 T. Sarpkaya. Separated flow about lifting bodies and impulsive flow about cylinders. AIAA Journal. 1966, 4: 414-420
    142 M. Matsumoto, M. Shimamura, T. Meada, H. Shirato. T. Yagi. K. Hori. Y. Kawashima. M. Hashimoto. Drag forces on 2-D cylinders due to sudden increase of wind velocity. Proceedings of the 12th Internation Conference on Wind Engineering. Cairns, Australia, 2007
    143 P. J. Richards, R. P. Hoxey. Quasi-steady theory and point pressures on a cubic building. Jounal of Wind Engineering and Industrial Aerodynamics. 2004, 92: 1173-1190
    144 Q. S. Li, I. Calderone, W. H. Melbourne. Probabilistic characteristics of pressure fluctuations in separated and reattaching flows for various free stream turbulenc. Jounal of Wind Engineering and Industrial Aerodynamics. 1999, 82: 125-145
    145 J. D. Holmes, L. S. Cochran. Probability distributions of extreme pressure coefficients. Jounal of Wind Engineering and Industrial Aerodynamics. 2003, 91: 893-901
    146 B. S. Shiau, Y. B. Chen, W. N. Chun. Wind tunnel test on the surface pressure and pressure spectra of a square prismatic building in the turbulent boundarylayer. 5th International Colloquium on Bluff Body Aerodynamics and Applcatons. Ottawa, Canada, 2004: 465-468
    147 N. Zhou D. A. smith, K. C. Mehta. Stochastic models for wind, wind-induced pressure, and structural response of a purlin measured in full scale. 11th International Conference on Wind Engineering. LuBBock, Texas, 2003: 82-828
    148 N. H. Ko, K. P. You, Y. M. Kim. The effect of non-Gaussian local wind pressures on a side face of a square building. Jounal of Wind Engineering and Industrial Aerodynamics. 2005,93: 383-397
    149 K. S. Kumar, T. Stathopoulos. Synthesis of non-Gaussian wind pressure time series on low buildings roofs. Engineering Structures. 1999, 21: 1086-1100
    150 K. R. Gurley, A. Kareem, M. A. Tognarelli. Simulation of a class of non-normal random processes. International Journal of Non-linear Mechanics. 1996, 31(5): 601-617
    151 O. ditlevsen, G. Mohr, P. Hoffmeyer. Integration of non-Gaussian fields. Probabilistic Engineering Mechanics. 1996, 11: 15-23
    152 S. H. Seong, J. A. Peterka. Computer simulation of non-Gaussian multiple wind pressure time series. Jounal of Wind Engineering and Industrial Aerodynamics. 1997, 72: 95-105
    153 K. R. Gurley, A. Kareem. A Scenarioal simulation of non-normal velocity pressure fields. Jounal of Wind Engineering and Industrial Aerodynamics. 1997, 77, 78: 39-51
    154 A. Steinwolf, R. A. Ibrahim. Numerical and experimental strudies of linear systems subjected to non-Gaussian random excitations. Probabilistic Engineering Mechanics. 1999, 14: 289-299
    155 M. Gioffre, V. Gusella, M. Grigoriu. Simulation of non-Gaussian field applied to wind pressure fluctuations. Probabilistic Engineering Mechanics. 2000, 15: 339-345
    156 M. Grigoriu. Non-Gaussian models for stochastic mechanics. Probabilistic Engineering Mechanics. 2000, 15: 15-23
    157 M. Gioffre, V. Gusella, M. Grigoriu. Non-Gaussian wind pressure on prismatic buildings. II: Numerical simulation. Journal of Structural Engineering. 2001, 127(9): 990-995
    158 G. Bartoli, C. Borri, L. Facchini. Simulation of non-Gaussian wind pressures on a 3-D bluff body and estimation of design loads. Cmputers and Structures. 2002,80: 1061-1070
    159徐华舫.空气动力学基础(上册).北京航空学院出版社. 1987: 94-100
    160邱天爽,张旭秀等.统计信号处理-非高斯信号处理及其应用.电子工业出版社, 2006
    161 M. Gioffre, V. Gusella, M. Grigoriu. Non-Gaussian wind pressure on prismatic buildings. I: Stochastic field. Journal of Structural Engineering. 2001, 127(9): 981-989
    162 L. Chen, C. W. Letchford. Multi-scale correlation analysis of two lateral profiles of full-scale eownburst wind speeds [J]. Jounal of Wind Engineering and Industrial Aerodynamics. 2006, 94(9): 675-696
    163 M. T. Chay. Physical modeling of thunderstorm downbursts for wind engineering applications [D]. Lubbock: Texas Tech University, 2001
    164瞿伟廉,王锦文.下击暴流风荷载的数值模拟.武汉理工大学学报. 2008, 30(2):70-74
    165瞿伟廉,吉伯锋,王锦文.基于改进的OBV模型的下击暴流的风荷载模拟.地震工程与工程振动. 2009, 29(1): 146-152
    166王锦文.强风作用下输电线塔结构塑性疲劳破坏机理研究.武汉理工大学博士学位论文. 2008
    167林斌.悬挑屋盖的风荷载模拟与气动控制研究.哈尔滨工业大学博士学位论文. 2009
    168 J. N. Yang, A. K. Agrawal, B Samali, J C Wu. Benchmark problem for response control of excited tall buildings [J]. Journal of Engineering Mechanics: Special Issue on Benchmark Control Problems. 2004, 130(4): 437-446
    169 M. Shinozuka, C. M. Jan. Digital simulation of random processes and its applications. Journal of sound and vibration. 1972, 25(1): 111-128
    170 G. Deodatis. Simulation of ergodic multivariate stochastic processed. Journal of Engineering Mechanics. 1996,122(8): 778-787
    171 O. Nakamura, Y. Tamura, K. Miyashita, M. Itoh. A Scenario study of wind-induced vibration of a largespan open-type roof. Journal of Wind Engineering and Industrial Aerodynamics. 1994, 52: 237-248

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700