西藏谢通门县雄村铜金矿集区成矿元素地球化学特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过对西藏谢通门县雄村铜金矿集区典型矿床(雄村、洞嘎普、则莫多拉等)的地质特征、构造特征以及成矿元素地球化学分布特征的深入研究,以及通过分析矿集区不同地质单元内矿化元素的成矿元素地球化学背景、分布特征、组合特征和富集规律,从而预测下一步重点工作区域和找矿方向。
     谢通门县雄村铜金矿集区位于我国重要的斑岩型铜矿找矿远景区之一—冈底斯成矿带。整个矿集区受构造影响强烈,矿体为走向近东西或北东东的谢通门—努玛韧性—脆性断裂带控制,或被其次一级的北西向、北东向构造所控制。含矿岩性为晚侏罗世侵位的具眼球状石英斑晶的石英闪长斑岩及致密块状硅化凝灰岩,区内岩浆热液活动频繁,蚀变强烈,主要表现为硅化、绢云母化、钾化、绿帘石化、电气石化、角岩化、高岭土化等,部分矿区的蚀变分带比较明显。矿石组构主要为以充填交代作用为主,矿石矿物主要为黄铁矿、黄铜矿、孔雀石、闪锌矿、方铅矿和银金矿等,矿物的标型特征显示了低温成矿的特点。
     通过对矿集区进行的1:5万水系沉积物测量,对矿集区内部分矿化异常良好的区域已经开展了1:1万的土壤地球化学测量,并发现与之吻合良好,异常总体呈东西向离散孤岛状分布。结果显示金、铜、铅、锌等元素具有强度大,套叠好的特点。同时新发现5个铜(金)成矿远景区:吉拉铜(金)成矿远景区、巴弄拉铜成矿远景区、汤白铜成矿远景区、塘河铜金成矿远景区、烈朗铜金成矿远景区,经过以上工作,作者对其今后的工作和进一步的找矿方向提出了一些建议。
     同时,鉴于雄村大型斑岩型铜(金)矿床的发现,以及相邻的洞嘎普铜(金)矿出现的隐爆角砾岩筒型金矿,则莫多拉、吉拉等矿点均出现矽卡岩型铜矿化,所以在矿集区各矿(矿化)点找斑岩型矿床有很大的前景。
The paper bases on the Xiongcun copper-gold ore deposit clusters and carries studies on Xiongcun, Donggapu, Zemoduola ore deposit and so on. Through analyzing the geological, geochemical feature and ore-forming elementary geochemistry backgound of them, and integrate with the enrichment and distributing rules, combination characters of different geological sections in Xiongcun copper-gold ore deposit, the auther probe into the metallogenic rules and prognosis of the the Xiongcun copper-gold ore deposit clusters.
     Xiongcun copper-gold ore deposit clusters is located in Gangdese metallogenetic belt which is consider as one of the most prospective belts of porphyry copper ore deposit. The whole clusters is strongly controlled by the structures, which is the Xietongmen-Numa ductile-brittle fracture zone, or its secondary fracture zone of north-west or north-east direction. The pay rock is quartz-diorite-porphyry and compacted massive silicified tuff which invased by later Jura. There are intensive structural and magmatic hydrothermal movement with obvious zonal alterations, which are demonstrated by silicification, sericitization, potassium, epidotization, hornstone, etc. Take the Xiongcun ore district for example, the alterations zonation is silicification zone, sericitization zone, chloritation zone from the inner to the outer. The ore structure and the fabric mainly behaves in fillism and metasomatism, the main minerals of ore are pyrite, chalcopyrite, malachite, blende, salenite and electrum, which typomorphic feature shows a hypothermal pattern of metallogeny.
     The technology and method of geochemical exploration has played an important part in the exploration of the the Xiongcun copper-gold ore deposit clusters, through the 1:50000 stream sediment survey, and the1:10000 soil survey in some of them, and we find that the fact is anastomotic with the abnormality. The abnormality of the metallogenic elements such as Au, Ag, Cu, Pb, Zn appear to be the large intensity and good intussusception. There are 5 metallogenic prospectives discovered, they are Jila, Banongla, Tangbai, Tanghe, Lielang, all of them appears to be the island shape and distributes in east-west direction wholly. Through all the work, the auther probe into the metallogenic rules and prognosis of the the Xiongcun copper-gold ore deposit clusters simply.
     Secondly, because of the discovery of the large-scale porphyry copper ore deposit in Xiongcun, the neighboured Donggapu Cu-Au ore deposit has found the cryptoexplosion breccia type gold deposit, and also skamize mineralization appears almost all the clusters including Zemoduola, Jila and Tangbai ore districts, there are great prospective of finding porphyry copper ore deposits in all pat of the clusters.
引文
[1] 包相臣.矿相学教程[M] .成都:成都科技大学出版社,1993.
    [2] 曹志敏等.西藏自治区谢通门县洞嘎(铜)金矿区控矿因素与矿床评价[R] .1996.
    [3] 陈德潜,陈刚.实用稀土元素地球化学[M] .北京:冶金工业出版社,1990.
    [4] 陈好寿.铅同位素地质研究的基本问题[M] .北京:地质出版社,1979.
    [5] 陈衍景,陈华勇,刘玉琳等.碰撞造山过程内生矿床作用的研究历史和进展[J] .科学通报,1999,44(16):1681-1689.
    [6] 程力军,李志,刘鸿飞等,2001,冈底斯东段铜多金属成矿带的基本特征[J] .西藏地质,19:43-53
    [7] 丁枫,唐菊兴,辛忠雷等.多元统计方法在水系地球化学异常查证中的应用[J] .重庆大学学报,27(增刊):334~341.
    [8] 丁枫.西藏自治区谢通门县雄村铜金矿床成矿规律及成矿预测:[D] .成都:成都理工大学地球科学学院,2004
    [9] 董国臣,莫宣学等.西藏林周盆地林子宗火山岩研究近况[J] .地学前缘,2002,9(1):153~153.
    [10] 董树文.造山带构造岩浆演化与成矿作用[A] .// 陈毓川.当代矿产勘查评价的理论与方法[C] .北京:地震出版社,1999.83-89.
    [11] 杜光伟等.1999.西藏冈底斯东段地球化学特征及其找矿意义[J] .西藏地质,2001,19(1):73~79.
    [12] 顾雪祥,郑明华,姚鹏.2004.10,特提斯—喜马拉雅成矿域区域成矿特征概论[M] .矿床学理论与实践文集:45~57.
    [13] 高顺宝,郑有业.西藏驱龙超大型斑岩铜矿床成矿作用的地球化学控制[J] .地质科技情报,2006.25(2):41~46.
    [14] 高永丰,侯增谦,魏瑞华等.冈底斯晚第三纪斑岩的岩石学、地球化学及其地球动力学意义[J] .岩石学报,2003:19:418~428.
    [15] 侯增谦.2004.斑岩Cu—Mo—Au矿床:新认识与新进展[J] .地学前缘,11(1):131~144.
    [16] 侯增谦.2004.斑岩Cu—Mo—Au矿床:新认识与新进展[J] .地学前缘,11(1):131~144.
    [17] 侯增谦,曲晓明,黄卫等.2001.冈底斯斑岩铜矿成矿带为西藏第二条玉龙铜矿带[J] .中国地质,28:27~29.
    [18] 侯增谦,曲晓明等,西藏高原冈底斯斑岩铜矿带辉钥矿Re-Os年龄:成矿作用时限与动力学背景应用[J] ,中国科学,2003,vol.33,no7,pp610-618
    [19] 黄朋,顾雪祥,唐菊兴等.西藏玉龙斑岩铜(钼)矿床物质来源研究[J] .大地构造与成矿学 95(1):429-435
    [20] 李光明,冯孝良,黄志英等.西藏冈底斯构造带中段多岛弧—盆系及其演化[J] .沉积与特提斯地质,2000,20(4):38~46.
    [21] 李光明,潘桂棠,王高明等.西藏铜矿资源的分布规律与找矿前景初探[J] .矿物岩石,22(2):30~35.
    [22] 李光明,王高明,高大发等.西藏冈底斯南缘构造格架与成矿系统[J] .沉积与特提斯地质,2002,22(2):1~7.
    [23] 李光明,王高明,高大发等.西藏冈底斯铜矿资源前景与找矿方向[J] .矿床地质,2002,21(增刊):144~147.
    [24] 李光明,杨家瑞,丁俊.西藏雅鲁藏布江成矿区矿产资源评价新进展[J] .地质通报,2003,22(9):669~703.
    [25] 李汉光,葛良胜,邹依林等,2005.4 西藏冈底斯地块中新生代中酸性侵入岩特征与构造环境[J] ,矿产与地质:19:107~115
    [26] 李廷栋,2002.6,青藏高原地质科学研究的新进展[J] .地质通报,21(7):370~376
    [27] 刘英俊,曹励明,李兆麟,等.元素地球化学[M] .北京:科学出版社,1983.
    [28] 孟祥金,侯增谦,高永丰等.2003.西藏冈底斯斑岩铜钼铅锌成矿系统:来自邦浦铜多金属矿床辉钼矿Re2Os年龄证据[J] .矿床地质,22:246~252.
    [29] 芮宗瑶、黄崇轲等.1984.中国斑岩铜(钼)矿床[M] .北京:地质出版社
    [30] 芮宗瑶,李光明,张立生等.2004.3,西藏斑岩铜矿对重大地质事件的响应[J] .地学前缘,11:145-152.
    [31] 芮宗瑶、陈仁义、王龙生.中国铜矿主要类型及其地质特征[J] .矿床地质,1998,17(增刊):322~327.
    [32] 芮宗瑶、李光明、王龙生,等.西藏斑岩铜矿[J] .西藏地质,2002,21(1):3~12.
    [33] 芮宗瑶、陆彦、李光明,等.西藏斑岩铜矿的前景展望[J] .中国地质,2003,30(3):302~308.
    [34] 曲晓明,侯增谦等.西藏铜金锑多金属矿产资源远景评价研究报告[R] .中国地质科学
    [35] 孙忠军,任天祥,向运川.西藏冈底斯东段成矿系列区域地球化学预测[J] .中国地质,2003:30(1):105~112.
    [36] 石原舜三等著,芮宗瑶等译 1989.花岗质岩浆及有关成矿作用[M] 北京:地质出版社
    [37] 唐菊兴,李志军等,西藏自治区谢通门县雄村铜矿勘探地质报告[R] ,2006,成都:成都理工大学地球科学学院.2006.院矿产资源研究所.2003.
    [38] 唐菊兴,李志军,董树义等,西藏自治区谢通门县则莫多拉—洞嘎普—汤自铜矿普查报告[R] ,成都理工大学档案馆,2005
    [39] 唐菊兴,李志军,王子正等,西藏自治区谢通门县烈朗—吉拉—塘河铜多金属矿预查报告[R] ,成都理工大学档案馆,2006
    [40] 唐菊兴.西藏玉龙斑岩铜(钼)矿成矿作用与矿床定位预测研究[D] .成都:成都理工大学档案馆,2003.
    [41] 王成善,丁学林.1998,青藏高原隆升研究新进展综述[J] .地球科学进展,13(16):526~531.
    [42] 王成善,夏代详,周详等.1999,雅鲁藏布江缝合带—喜马拉雅山地质[M] .北京:地质出版社.
    [43] 王登红,陈毓川等.中国新生代成矿作用[M] .北京:地质出版社,2005.
    [44] 王子正,唐菊兴,郎兴海等.土壤地球化学测量在隐伏矿体勘探中的应用[J] .西部探矿工程,2007,19(3),92~95.
    [45] 温春齐.矿床研究方法[M] .成都:成都理工大学,2003.
    [46] 西藏地质局.西藏“一江两河”中部流域铬钼金成矿远景区划及“九五”—2010年找矿地质工作部署建议[R] .西藏拉萨:西藏地质局,1994.
    [47] 西藏自治区地质局1:20万日喀则幅、亚东幅区域地质调查报告[R] 1983
    [48] 西藏自治区地矿局,西藏自治区区域地质志[M] 北京:地质出版社,1993,528~625
    [49] 西藏自治区一江两河中部流域铬、金、铜矿成矿远景区划及九五至2010年找矿地质工作部署建议[R] .张浩勇等 1994年.
    [50] 邢俊兵,葛良胜,邹依林等,2003,西藏冈底斯谢通门县洞嘎金矿床地质地球化学特征[J] .黄金地质,2:28~32
    [51] 徐文艺,曲晓明,侯增谦等,2005.7,西藏冈底斯中段雄村铜金矿床流体包裹体研究[J] .岩石矿物学杂志,24:301~310.
    [52] 徐文艺,曲晓明,侯增谦等,2006.6,西藏冈底斯中段雄村铜金矿床成矿流体特征与成因探讨[J] .矿床地质,25:243~251.
    [53] 徐文艺,曲晓明,侯增谦等,2006.9,西藏雄村大型铜金矿床的特征、成因和动力学背景[J] .地质学报,80:1392~1407.
    [54] 杨德明,李才,王天武等.2001.11.西藏冈底斯东段南北向构造特征与成因[J] .中国区域地质 12:392~397.
    [55] 张长华,马天林等.青藏高原的构造体系特征与高原的形成演化[M] ,中华人民共和国地质矿产部地质专报五、构造地质、地质力学第8号.北京:地质出版社,1988
    [56] 张双全,莫宣学,郭铁鹰,等.西冈底斯中段中、新生代火山岩的大地构造意义[J] .地学前缘,1998,5(3):35~46.
    [57] 赵鹏大,陈永清,刘吉平等.地质异常成矿预测理论与实践[M] .北京:中国地质大学出版社,1999.
    [58] 郑有业,王保生,樊子珲等.2002.6 西藏冈底斯东段构造演化及铜金多金属成矿潜力分析[J] 地质科技情报:21(2):55~60
    [59] 周云生等.冈底斯中酸性侵入岩带[A] .//西藏岩浆活动和变质作用[M] .北京:地质出版社.
    [60] 钟大奋,丁林.1996,青藏高原隆升过程及其机制探讨[J] .中国科学[D辑] ,26:289~295
    [61] Condie K C. Mantle Plume and Their Record in Earth Historu [M] . London: Cambridge University Press, 2001.
    [62] Claton, R N. et al. Oxygen isotope exchange between quartz and water[J] . Geophys Res, 1973, 7(17)907~915
    [63] Doe B. R. and Zartman R. E. Plumbotectonics: The planerozoic. In: Geochemistry of hydrothermal ore deposits. Wiley-Interscience, New York, 1979: 22~70.
    [64] Gill J B. Orogenic andesites and piate tectonics[M] . Brin: Sprinect-verlag, 1981.
    [65] Hill R. I. , 1991, Starting plumes and continental break-up. Earth Planet. Sci. Lett. 104, 398~416.
    [66] Honegger, K. , Dietrich, V. , Frank, W. , Gansser, A. , Thoni, M. , Trommsdorff, V. , 1982, Magmatism and metamorphism in the Ladakh Himalayas (the Indus-Tsangpo suture zone). Earth Plan. Sci. Lett. , 60, 253~292.
    [67] Honegger, K. , Le Fort, R, Mascle, G. , and Zimmermann, J. -L. , 1989, The blueschists along the Indus Suture Zone in Ladakh, NW Himalaya. Journal of Metamorphic Geology, Vol. 7, p. 57~72.
    [68] Hsu K J, Pan G T and Sengor A M C, 1995, Tectonic evolution of the Tibetan Plateau: A working hypothesis based on the archipelago model of orogenesis [J] . International Geology Review, 37: 473~508.
    [69] Jadoul F. , Berra F. and Garzanti E. , 1998, The Tethys himalayan passive margin from late Triassic to early Cretaceous (South Tibet). Journal of Asian Earth Sciences, Vol. 16, No. 2-3, pp: 173~194.
    [70] Lang, J. and Rebagliati. C. M. Xietongmen Copper-Gold Porphyry Project, Tibet Autonomous Region, Peoples Republic of China[R]. Continental Minerals Corporation Internal Technical Report, 135 p, 2006.
    [71] Lang, J. R. Reconnaissance petrographic descriptions of 30 polished thin sections from the Xietongmen prospect, Tibet, China[R]. Private report to Continental Minerals Corp, 67p, 2004b.
    [72] Lang, J. R. The Xietongmen Au-Ag-Cu system, Tibet, China: A preliminary, field-based assessment of geology, controls on alteration and mineralization, and exploration potential[R]. Private report to Continental Minerals Corp, 72p, 2004a.
    [73] Liou, J., Maruyama, S. and Moonsup, Cho. Very low-grade metamorphosis of volcanic and volcaniclastic rocks - mineral assemblages and mineral facies[J], in M. Frey (ed.): Low Temperature Metamorphism. Blakie Scientific, 1987, p. 59-113.
    [74] Liu Guanghua, 1992, Permian to Eocene sediments and India passive margin evolution in the Tibetan himalayas. Tuebinger Geowissenschaft liche Arbeiten. Reihe A. Nummer 13.
    [75] Larson R.L., 1991, Geological consequences of superplumes. Geology, 19, 963-966.
    [76] MILLERC,SCHUSTER R, KLOTZLI U, et al. Post-collisional potassic and ultrapotassic magmatism in S W Tibet: Geochemical and Sr-Nd-Pb-0 is otopic con- straints for mantle source character ristics and Petrogenesis [J].Petrology, 1999,40(9): 1399-1424.
    [77] Mahoney, J.J., Macdougall, J.D., Lugmair, G.W., and Gopalan, K., 1983. Kerguelen hot spot source for Rajmahal Traps and Ninetyeast Ridge? Nature, 303: 385-389.
    [78] Nakazawa K., Kapoor H.M., 1973, Spilitic Pillow Lava in Panjal Trap of Kashmir, India. Memoirs of the Faculty of Science, Kyoto University, Series of Geology and Mineralogy, 39, 83-98.
    [79] Pogue, K.R., DiPietro, J.A., Rahim, S., Hughes, S.S., Dilles, J.A., and Lawrence, R.D., 1992, Late Paleozoic rifting in northern Pakistan. Tectonics, Vol. 11, p. 871-883.
    [80] Pease J A. Statistical analysis of major element patterns in basalts. Journal of Petrology, 1976, 17(1):5~43.
    [81] Pdersen, RB and Mmalpas, J. The origin of oceanic plagiogranites from the Karmoy Ophionlite,westem Norway.Contributions to Mineralogy and Petrology ,1984,88(1/2):36-52.
    [82] Papritz K., Rey R., 1989, Evidence for the occurrence of Perimian Panjal Trap basalts in the Lesser and Higher Himalayas of Western Syntaxis Area, NE Pakistan. Eclogae Geologicae Helvetiae, 82, 603-627.
    
    [83] Rittmann A., Vocanoes and Their activeity[M]. 1962.
    [84] Rabu D., Le Metour J., Bechennec F., Beurrier M., Villey M. And Bourdillon-Jeudy de Grissac C, 1990, Sedimentary aspects of the Eo-Alpine cycle on the northeast edge of the Arabian Platfrom (Oman Mountain). In: Robertson, A.H.F., Searle M.P. and Ries A.C. (Eds.), The Geology and Tectonic of the Oman Region. Geological Society, Londom, Special Publications, 49, 49-68.
    
    [85] Sillitoe R H. Characte ristics and contrls of the largest porphyry cop-per-gold and epithermal gold deposits in the circum-Pacific region [J] .Australian Jour. Of Earth Sciences, 1997,44:373 -388.
    [86] Sillitoe R H.Bonham H F. 1990. Sediment-hosted gold deposits-distal products of magmatic-hydrothermal systems: Geology, 18, 157~161.
    [87] Sillitoe R H. 1993. Epithermal models: genetic types, geom etrical controls and shallow features: Geological Association of Canada, Special Volume. 40, 403~417.
    [88] Sillitoe RH. 1994. Erosion and collapse of volcanoes: causes of telescoping in intrusion -centered ore deposits: Geology, 22, 945~948.
    [89] Sillitoe R H. 1 995. Exploration and discovery of base-and precious-metal deposits in the circum-Pacific region during the last 25years: Resource Geology, Special Issue, 19, 1 - 119.
    [90] Turner S. Hawkesworth C J, Liu J, Rogers N, Kelly S, VanCalsteren, P. 1993. Timing of Tibetan uplift constrained byvolcanic rocks: Nature, 364, 50~53.
    [91] Wang C, Liu Z, Wang G , Miao F , Ma Z, Yi H , Li Y , Li X , Wei M , Liu S, Huang D. 2000. Three dimension paleotopographicreconstruction in Cenozoic Tibet plateau: Journal of Chengdu University of Technology, 27, 1 ~7 (in Chinese).
    [92]Wang P, Pan Z, Weng L. 1982. Systematic in ineralogy: Geological Publishing House, Beijing, 1, 274-281 (in Chinese).
    [93] White NC. Hedenquist J W . 1995. Epithermal gold deposits: Styles, characteristics and exploration: Society of Economic Geology Newsletter 23.9-13.
    [94] White N C.1997. High sulfidation epithermal deposits: characteristicsand a model for their origin, in high temperature acid fluids and associated alteration and mineralization: Geologfcal Survey of Japan, Report, 277, 9-20.
    [95] TURNERS,ARNAUDN,LIU J, et al. Post-collision, shoshonitic volcanism on the Tibet an Plateau: I m placations for convective thinning of the lithosphere and the source of ocean island basalts[J]. Petrology,1996,37(1):45~71.
    [96] Zartman R.E. and Doe B.R. Plumbotectonics-The model. Tectonophysics, 1981, 75: 135-162.
    [97] ZHAO Z, MO X,ZHANG S, et al. Post-Collsional magmatism in Wuyu basin, central Tibet: Evidence for recycling of subducted Tethyan oceanic crust [J].Science in China (Series D),2001,44(Suppl):27-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700