风电输出功率预测方法与系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风电具有波动性和间歇性,大规模风电接入系统对电网的安全稳定运行带来了严峻挑战。风电输出功率预测是解决大规模风电接入问题的关键技术之一,可以为风、光、储、水等多种电源多点接入互补运行和接入电网的调度控制提供支持。目前,国内针对风电输出功率预测方法的研究还不够深入,预测系统的开发相对较少,缺乏成熟的实践经验。可见,对风电输出功率预测方法进行研究具有重要的理论意义和现实意义。
     本文以两个典型的风电场为对象,对风速预测方法、功率曲线建模方法和风电输出功率预测方法展开了系统的研究,以探求精度更高的风电输出功率预测方法,并为风电输出功率预测技术路线的制定和预测系统的开发提供指导。同时,根据需求分析研发了风电输出功率预测系统。主要成果如下:
     1、风速预测是风电输出功率预测的重要基础,对风速预测方法进行了研究。
     1)提出了一种以经验模式分解(Empirical Mode Decomposition,EMD)为核心的风速预测新方法,通过与常规风速预测方法对比分析,对基于EMD的风速单步和多步预测方法进行了系统研究。结果表明,由于经过EMD处理,原始风速时间序列被自适应地分解为多个相互正交的分量,从而降低了建模和预测难度,提高了风速预测精度。同时,基于EMD的风速直接多步预测模型中,对重构所得分量多步预测结果进行自适应叠加,能够削减偏差较大分量对整体预测结果的影响,进一步提高多步预测精度。
     2)提出了一种基于混沌分析和RBF的风速直接多步预测方法,通过与其它常规方法对比分析,表明由于对原始风速时间序列进行了相空间重构,能够更好地反映风速内在变化规律,并且为RBF网络结构的确定和训练样本的选择提供依据,故其直接多步预测精度较RBF更高。
     2、基于功率曲线进行风电功率预测是一种有效方法,对功率曲线建模方法进行了研究,提出了一种新方法-指数遗忘建模法,通过测试表明,以实测风速或预测风速作为输入求取功率,指数遗忘法均具有较高的精度。该方法物理意义明确,简单易行,适用于风电输出功率预测。
     3、对风电输出功率预测方法进行了系统研究,包括两种预测途径和多种预测算法。结果表明,进行风电输出功率超短期预测时,应根据不同的预测对象选择相应预测方法,而预测时采用基于EMD的算法能够普遍提高预测精度。在此基础上,提出了适合我国国情的风电输出功率预测技术路线。同时指出,当进行风电输出功率短期预测时,在数值天气预报数据积累不足和不够成熟稳定的情况下,采用功率曲线法较神经网络法具有更高的精度。
     4、开发了风电输出功率预测系统,实现了对风电输出功率的超短期和短期预测。在多个风电场和地区电网调度的实际运行结果表明,系统安全可靠、用户界面友好,可操作性强,能够高精度地实现预测功能,且不受风电机组检修、停机、风电场扩建的限制。
The intermittent and volatility of wind energy brings rigorous challenges for the safety and stability of electric power system, when large scale wind access system. An effective technique to solve this proble is to predict wind power. Also, the wind power prediction can provide supprots for the complementary opperation of wind power, photovoltaic power, storage energy, hydropower and the diapatching control of power system. The prediction approaches of wind power, however, are not be researched in depth enough in China. Moreover, the corresponding prediction system is less. So it is significant theoretically and practically to research the prediction approach of the wind power.
     To explore the prediction approach of wind power with higher accuracy, the wind speed prediction, the power curve model and the power prediction have been systematically studied in this paper based on two typical wind farms. The research achievements were expected to offer guidance for determining the prediction technique route and developing the prediction system.
     The main achievements are as follows:
     The wind speed prediction approach was deeply studied firstly, due to that it can provide support for the wind power prediction. 1) A new prediction approach for wind speed based on EMD was proposed. The wind speed prediction results were compared with those gotten through the other conventional methods. The results show that when applying the introduced approach, both the wind speed single-step prediction accuracy and the multi-step one get improved. The reason lies in that the original wind speed series are self-adaptively decomposed into some normal components after the preprocessing of EMD. As a result, the coupling and interferences among the components are weakened. So the prediction models are easier to build, furthermore, the prediction accuracy is enhanced. When the multi-step prediction for wind speed was performed based EMD, the prediction results of the reconstitution components were overlapped adaptively. In doing this, the influences of the component with the more drifts on the whole prediction effects are weakened, so the prediction precision can be further improved. 2) A novel direct multi-step prediction approach for wind speed based on chaos analysis was presented. According to the phase space reconstruction theory, the phase space of original wind speed is reconstructed, which could reflect the inner rules embedded in wind speed and is helpful for the determination of RBF network. As a result, the prediction accuracy gets increased compared to the RBF method.
     The power curve plays an important role in the power prediction. So the modeling of power curve was studied. A power curve modeling approach was introduced, which was nominated as“exponentially forgetting modeling”. The simulation results show that its precision is satisfied, no matter the input is real wind speed and predicted wind speed. Compared to RBF, the introduced model is more suitable to be applied in power prediction due to it is easy to employ and possesses explicit physical meaning.
     Based on the above investigations, the power prediction approach was systematically researched, which mainly focused on the two prediction ways and some algorithms. The application example shows when the ultra-short power is predicted, the different prediction scheme should be chose according to the predicted objects. But no matter which scheme is confirmed, the algorithm based on EMD has highest accuracy. On the basis of these, the technology options of power prediction suited for China is proposed. While the short power is predicted, the power curve approach has better effects comparing with RBF, on the premise of the NWP is not matured.
     The power prediction system was developed in this paper, which had been installed in some wind farms and the electric dispatching centers. The practices indicate that the ultra-short and short power prediction with higher accuracy can be real-timely implemented by means of the system. At the same time, the system is safe, user-friendly and easy to operate.
引文
[1]秦海岩, 2009中国风电发展[R].中国可再生能源学会风能专业委员会,2010.03.18
    [2] Garrad Hassan&Partners Ltd. Forecasting Short-Term Wind Farm Production. http://www.garradhassan.com
    [3] Peter Coppin, Jack Katzfey. The Feasibility of Wind Power Production Forecasting in the Australian Context[R]. CSITO Atmospheric Research. Report to: National Electricity Market Management Company Limited, 2003, 12
    [4]杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报, 2005, 25(11): 1-5
    [5]潘迪夫,刘辉,李燕飞.基于时间序列分析和卡尔曼滤波算法的风电场风速预测优化模型[J].电网技术, 2008, 32(7): 82-86
    [6]潘迪夫,刘辉,李燕飞.风电场风速短期多步预测改进算法[J].中国电机工程学报, 2008, 28(26): 87-91
    [7]丁明,张立军,吴义纯.基于时间序列分析的风电场风速预测模型[J].电力自动化设备, 2005, 25(8): 32-34
    [8] Durán Mario J., Cros Daniel, Riquelme, Jesus. Short-term wind power forecast based on ARX models[J]. Source: Journal of Energy Engineering, 2007, 133(3): 172-180
    [9]范高锋,王伟胜,刘纯,等.基于人工神经网络的风电功率预测[J].中国电机工程学报, 2008, 28(34): 118-123
    [10]李文良,卫志农,孙国强,等.基于改进空间相关法和径向基神经网络的风电场短期风速分时预测模型[J].电力自动化设备, 2009, 29(6): 89-92
    [11]杜颖,卢继平,李青,等.基于最小二乘支持向量机的风电场短期风速预测[J].电网技术, 2008, 32(15): 61-66
    [12]杜颖.风电场风速及发电功率的概率预测研究[D].重庆大学硕士学位论文,2008
    [13]韩爽.风电场功率短期预测方法研究[D].华北电力大学(北京)博士学位论文, 2008
    [14] Salcedo Sanz S., Ortiz-García E.G., Pérez-Bellido A.M., et al. Performance comparison of multilayer perceptions and support vector machines in a short-term wind speed prediction problem. Neural Network World, 2009, 19(1): 37-51
    [15] Copper Jack, Baciu Alin. Predicting wind farm electricity output with a neural network empirical modeling approach[C]. APPEEC 2009
    [16] Flores P., Tapia A., Tapia G. Application of a control algorithm for wind speed prediction and active power generation[J]. Renewable Energy, 2005, 30(4): 523-536
    [17] Carolin Mabel M., Fernandez E.. Analysis of wind power generation and prediction using ANN: A case study[J]. Renewable Energy, 2008, 33(5): 986-992
    [18] Barbounis T.G., Theocharis J.B.. Locally recurrent neural networks for wind speed prediction using spatial correlation[J]. Information Sciences, 2007, 177(24): 5775-5797
    [19]刘永前,韩爽,杨勇平,等.提前3小时风电机组出力组合预报研究[J].太阳能学报, 2007, 28(8): 839-843
    [20]冬雷,王丽婕,高爽,等.基于混沌时间序列的大型风电场发电功率预测建模与研究[J].电工技术学报, 2008, 23(12): 125-129
    [21]孙春顺,王耀南,李欣然.小时风速的向量自回归模型及应用[J].中国电机工程学报, 2008, 28(14): 112-117
    [22]张彦宁,康龙云,周世琼,等.小波分析应用于风力发电预测控制系统中的风速预测[J].太阳能学报, 2008, 29(5): 520-524
    [23]曹磊.考虑风电并网的超短期负荷预测[D].华北电力大学(保定)硕士学位论文, 2008
    [24] Kusiak Andrew, Zheng, Haiyang, Song Zhe. Short-term prediction of wind farm power: A data mining approach[J]. IEEE Transactions on Energy Conversion, 2009, 24(1): 125-136
    [25] Kusiak Andrew, Zheng, Haiyang, Song Zhe. Models for monitoring wind farm power[J]. Renewable Energy, 2009, 34(3): 583-590
    [26] Li Xingpei, Liu Yibing, Xin Weidong. Wind speed prediction based on genetic neural network[C]. ICIEA 2009, 2448-2451
    [27] Pourmousavi Kani S.A., Riahy G.H.. A new ANN-based methodology for very short-term wind speed prediction using Markov chain approach[C]. 2008 IEEE Electrical Power and Energy Conference - Energy Innovation
    [28] Ramírez-Rosado I.J., Fernández-Jiménez L.A.. A new electric power forecasting model for wind farms[C]. Proceedings of the IASTED International Conference on Modelling, Identification and Control, 2004, 23:398-401
    [29] G.H. Riahy, M. Abedi. Short term wind speed forecasting for wind turbine applications using linear prediction method[J]. Renewable Energy, 2008, 33(1): 35-41
    [30]孙川永.风电场风电功率短期预报技术研究[D].兰州大学博士学位论文, 2009
    [31] Bates J M, Granger C. The combination of forecast[J]. Operation Research Quarterly, 1969, 20: 451-456
    [32]范高锋,王伟胜,刘纯.基于人工神经网络的风电功率短期预测系统[J].电网技术, 2008, 32(22): 72-76
    [33] Sideratos George, Hatziargyriou Nikos D.. An advanced statistical method for wind power forecasting[J]. IEEE Transactions on Power Systems, 2007, 22(1): 258-265
    [34] Cutler Nicholas J., Outhred Hugh R., MacGill, Iain F., et al. Characterizing future large, rapid changes in aggregated wind power using numerical weather prediction spatial fields[J]. Wind Energy, 2009, 12(6): 542-555
    [35] Cutler Nicholas, Kay Merlinde, Jacka Kieran, et al. Detecting, categorizing and forecasting large ramps in wind farm power output using meteorological observations and WPPT[J]. Wind Energy, 2007, 10(5): 453-470
    [36] Lobo Miguel G., Sánchez Ismael. Aggregated wind power prediction methods based on distances between weather forecasting vectors[C]. ICCEP 2009, 242-247
    [37] Ramirez-Rosado Ignacio J. , Fernandez-Jimenez L. Alfredo, Monteiro, Cláudio, et al. Comparison of two new short-term wind-power forecasting systems[J]. Renewable Energy, 2009, 34(7): 1848-1854
    [38] Ko Kyungnam, Kang Munjong, Huh Jongchul. Year-to-year variation in wind resource and assessment of WASP prediction for wind machine power[J]. Journal of Mechanical Science and Technology, 2009, 23(3): 750-757
    [39] Larson Kristin A., Westrick Kenneth. Short-term wind forecasting using off-site observations[J]. Wind Energy, 2006, 9(1-2): 55-62
    [40] Igor Walel, Felix Dierich, Georges Kariniotakis, et al. The Anemos Wind Power Forecasting Platform Technology-Techniques and Experiences. EWEC 2006, Athens.
    [41] G.Kariniotakis, J. Halliday, R. Brownsword, et al. Next Generation Short-Term Forecasting of Wind Power-Overview of the ANEMOS Project. http://anemos.cma.fr
    [42] Ji Guo-Rui, Dong Ze, Wang Dong-Feng, et al. Wind speed conformal prediction in wind farm based on algorithmic randomness theory[C]. ICMLC 2008, 1: 131-135
    [43]中华人民共和国国家标准.风电场风能资源测量方法.中华人民共和国国家质量监督检验检疫总局发布, 2002.04.08
    [44]宫靖远,贺德馨,孙如林,等.风电场工程技术手册[M].北京:机械工业出版社, 2004
    [45]王承煦,张源.风力发电[M].北京:中国电力出版社, 2002
    [46]刘辉,田红旗,李燕飞.基于小波分析法与滚动式时间序列法的风电场风速短期预测优化算法[J].中南大学学报(自然科学版), 2010, 41(1): 370-375
    [47]杨培才,周秀骥.气候系统的非平稳行为和预测理论[J].气象学报, 2005, 5: 556-570
    [48] Huang N E, Shen Z, Long S, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London Series A, London, UK, 1998: 903-995
    [49]李天云,高磊,聂永辉,等.基于经验模式分解处理局部放电数据的自适应直接阈值算法[J].中国电机工程学报, 2006, 26(15): 29-34
    [50]郝志华,马孝江.局域波法和独立成分分析在转子系统故障诊断上的应用[J].中国电机工程学报, 2005, 25(3): 84-88
    [51]于德介,陈淼峰,程军圣,等.一种基于经验模式分解与支持向量机的转子故障诊断方法[J].中国电机工程学报, 2006, 26(16): l62-l67
    [52]牛东晓,李媛媛,乞建勋,等.基于经验模式分解与因素影响的负荷分析方法[J].中国电机工程学报, 2008, 28(16): 96-102
    [53]刘兴杰,米增强,杨奇逊.基于经验模式分解和时间序列分析的风电场风速预测[J].太阳能学报, 2010, 31(8): 1037-1041
    [54]刘兴杰,米增强,杨奇逊,等.一种基于EMD的短期风速多步预测方法[J].电工技术学报, 2010, 25(4): 91-96
    [55] P.G. Drazin. Nonlinear systems[M]. London: Cambridge University Press, 1998: 55-89
    [56]戴桂平.基于EMD的时频分析方法研究[D].燕山大学硕士学位论文, 2005
    [57] N.E.Huang. Review of Empirical Mode Decomposition analysis[J]. Proc. of SPIE, 2001, 4391: 71-79
    [58] Zhao Jinping. Improvement of Mirror Extending in Empirical Mode Decomposition Method and the Technology for Eliminating Frequency Mixing[J]. High Technology Letters, 2002, 8(3): 40~47
    [59]邓拥军,王伟,钱成春,等. EMD方法及Hilbert变换中边界问题的处理[J].科学通报, 2001, 46(3): 257-263
    [60]龚志强,邹明玮,高新全,等.基于非线性时间序列分析经验模态分解和小波分解异同性的研究[J].物理学报, 2005, 54(8): 3947-3957
    [61]刘小峰,秦树人,柏林. EMD中存在的问题及解决方法探讨[J]. 2007年第九届全国振动理论及应用学术会议论文集.杭州, 2007.10.17-19, 9: 194-200
    [62]杨叔子,吴雅,王治藩,等.时间序列分析的工程应用[M].武汉:华中科技大学出版社, 2003
    [63]杨位钦,顾岚.时间序列分析与动态数据建模[M].北京:北京工业大学出版社, 1986
    [64]钟珞,饶文碧,邹承明.人工神经网络及其融合应用技术[M].北京:科学出版社, 2007
    [65]侯媛彬,杜京义,汪梅.神经网络[M].西安:西安电子科技大学出版社, 2007
    [66]陈祥光,裴旭东.人工神经网络技术及应用[M].北京:中国电力出版社, 2003
    [67]张艳青.基于神经网络的风电场风速及输出功率预测研究[D],华北电力大学(保定)硕士学位论文, 2010
    [68] Tarek H.El-Fouly, Ehab F.El-Saadany, Magdy M.A.Salama. One day ahead prediction of wind speed and direction[J]. IEEE Transactions on Energy Conversion, 2008, 23(1): 191-201
    [69]蔡凯,谭伦农,李春林,等.时间序列与神经网络法相结合的短期风速预测[J].电网技术, 2008, 32(8): 82-85, 90
    [70] Tomonobu Senju, Atsushi Yona, Naomitsu Ura-saki. Application of Recurrent Neural Network to Long-term-ahead Generating Power Forecasting for Wind Power Generator[C]. Power Systems Conference and Exposition, 2006, 1260-1265
    [71]冬雷,高爽,廖晓钟,等.风力发电系统发电容量时间序列的混沌属性分析[J].太阳能学报, 2007, 28(11): 1290-1294
    [72]吕金虎,陆君安,陈士华.混沌时间序列分析及其应用[M].武汉:武汉大学出版社, 2002, 46-80
    [73]王振龙,顾岚.时间序列分析[M].北京:中国统计出版社, 2000.
    [74]马平,刘昌华.风力发电机组功率曲线的验证[J].可再生能源, 2008, 26(6): 82-84
    [75]吴兴华,周晖,黄梅.基于模式识别的风电场风速和发电功率预测[J].继电器, 2008, 36(1): 27-33
    [76] Rauh A, Anahua E, Barth St, et al. 2007 Wind Energy-Proc. Euromech Colloquium (Berlin: Springer): 153
    [77]张延迟,吴刚,姜霞.大型风力发电机组的功率曲线[J].新建大学学报, 2001, 18(2): 236-237
    [78]郎斌斌,穆钢,严干贵,等.联网风电机组风速-功率特性曲线的研究[J].电网技术, 2008, 32(12): 70-74
    [79]国家电网公司.风电功率预测系统功能规范.北京, 2010
    [80]麦斯阿塞克(Leszek A.Maciaszek).需求分析与系统设计(第3版)[M].北京:机械工业出版社, 2009
    [81] Karl E.Wiegers,刘伟琴,刘洪涛.软件需求(第2版)[M].北京:清华大学出版社, 2004
    [82]特罗特(Trott, J.R.),沙洛维(Shalloway, A)著.设计模式解析[M].北京:人民邮电出版社, 2006
    [83]布劳德,李仁发.软件设计:从程序设计到体系结构[M].北京:电子工业出版社,2007
    [84]梁立新.项目实践精解:ASP.NET应用开发(基于ASP.NET、C#和ADO.NET的三层架构案例分析)[M].北京:电子工业出版社, 2010
    [85]江红,余青松.基于.NET的Web数据库开发技术实践教程[M].北京:清华大学出版社, 2007.04
    [86]王寅永,李降宇,李广歌. SQL Server深入详解[M].北京:电子工业出版社, 2007
    [87]沃恩(William R.Vaughn),布莱克伯恩(Peter Blackburn)著,沈洁,杨华译.Visual Studio与SQL Server开发指南[M].北京:清华大学出版社, 2008
    [88]章立民. ASP.NET 3.5 AJAX客户端编程精选166例[M].北京:科学出版社, 2009
    [89]特罗尔森(Andrew troelsen),朱晔,肖逵,等. C#与.NET 3.5高级程序设计(第4版)[M].北京:人民邮电出版社, 2009
    [90]伊夫杰(Evjen,B.),内格尔(Nagel,C.),格林(Glynn,J.),等.C#高级编程[M].北京:清华大学出版社, 2006
    [91]李满潮. Visual C#.NET编程基础[M].北京:清华大学出版社, 2002.12
    [92]刘晓华.精通.NET核心技术-原理与构架[M].北京:电子工业出版社, 2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700