三峡库区次级河流富营养化模型统计与藻类生长的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三峡库区蓄水后,由于水文条件发生明显改变,次级河流出现大面积富营养化现象,其显著特征就是藻类疯长引起水体Chla含量增加(在严重的累积区Chla浓度高达数百毫克/立方米)而透明度、溶解氧降低。水体富营养化不仅造成水环境功能障碍,影响养殖和景观旅游,其产生的藻毒素及衍生物对人体健康和生存、繁衍存在着严重危害。此现象已经引起国家有关部门的高度重视。然而富营养化研究历史短,且其发生、发展与控制复杂,到目前,世界各国表征水体富营养化的指标体系、评价标准和评价方法等都没有统一。为了维护库区的水环境安全,本文跟踪监测10条典型次级河流水质并对其现状做出评价,建立起相应的富营养化经验模型;分析藻类生长过程的生化机制及影响因素,提出藻细胞活体分析和测定方法,并开展次级河流藻类生长的试验研究。下面简要介绍了本文研究的主要内容和取得的成果。
     ①库区10条典型次级河流富营养化现状研究结果表明:2004年至2006年,次级河流都发生了不同程度的富营养化现象,优势藻通常为硅藻、甲藻、蓝藻和绿藻,有时也可能是隐藻或其它藻。
     ②库区次级河流富营养化经验模型验证结果表明:当把Chla预测值与实测值相对误差的绝对值小于70%的模型作为合格模型进行统计时,在有显著性意义(α=0.10)的57个模型中,Chla-TP模型、Chla-CODMn模型、Chla-TN模型和Chla-SD模型的合格率分别为77%、73%、68%和65%。
     ③库区次级河流藻类生长机制分析结果表明:适宜的温度和充足的光照,充足的氮磷营养盐,缓流的流态是藻类大量生长的最必要条件。
     ④库区大宁河水样藻类生长试验结果表明:
     1) Chla藻细胞活体分析法测定值(x)在0~27 mg/m3范围内与丙酮萃取分光光度法测定值(y)成正比,其一元线性回归方程为y=4.15x+2.48(mg/m3),R2=0.9985,t检验方程高度显著(α=0.01)。
     2)当控制水样温度为20℃、光照为8000Lx、DIN和PO4-P浓度分别为85.71μmol/L、2.86μmol/L时,藻类生长最好;磷为该水域藻类生长的限制性营养元素,藻类生长氮磷元素适宜摩尔比约为30:1。在适宜生长条件下,对数期藻细胞比生长率达到1.03/d,稳定期Chla最大浓度达到110mg/m3。
     3)在温度为20℃、光照为8000Lx、氮磷摩尔比为30:1的环境条件下,藻类最大生长率μmax=1.16/d;氮磷营养盐半饱和浓度KDIN=8.65μmol/L,KPO4-P=0.29μmol/L。
Eutrophication phenomenon has appeared large-proportion in tributaries to the Three Gorges Reservoir after impoundment because its hydrodynamics condition has been changed obviously. The obvious characters are Chlorophyll-a(Chla) concentration increased (The Chla concentration even reach hundreds milligramme per stere in serious area), transparence and dissolving oxygen reduced. Not only it can lead to water function obstacle, affect breed aquatics and sightseeing, but also the algae toxin and derivative it procreant are seriously harmful to health,survival and multiplication of people. This phenomenon has aroused highly attention of the departments. But the history of eutrophication investigation is short, and its occurrence, development and control are complex. Thus, till now, there are no unified standards of index system, appraise criterion and method which evaluate the water eutrophication in the world. In order to guarantee safety of water environment in the Three Gorges Reservoir, water quality actualities of 10 typical tributaries were monitored and appraised, and the experiential eutrophication models were founded in this thesis. Algae growth mechanism and its effect factors were analyzed, active algae cell analytical method and mensuration were brought forward, and trial studies of algae growth in tributaries were carried. The contents and results were summarized as below.
     ①Eutrophication of 10 tributaries to the Three Gorges Reservoir was studied. It showed that different degrees of eutrophication were occurred in 10 tributaries from 2004 to 2006.The dominance algae were Bacillariophyta, Pyrrophyta, Cyanophyta and Chlorophyta, but sometimes were Cryptophyta and others.
     ②The experiential model of eutrophication of the tributaries to the Three Gorges Reservoir was validated. It showed that the eligibility ration of Chla-TP model, Chla-CODMn model, Chla-TN model and Chla-SD model would be 77%, 75%,68% and 67% respectively in 57 models which has remarkable meaning(α=0.10), if taking absolute value of RE% of Chla forecast value and monitoring value less than 80% as eligible date.
     ③Algae growth mechanism of the tributaries in the Three Gorges Reservoir was analyzed. It showed that the necessary conditions of eutrophication were appropriate temperature and abundance illumination, abundance nitrogen and phosphorus nutrients, slow flow velocity.
     ④Algae growth experiments of Daning River in the Three Gorges Reservoir were carried. Results showed that:
     1) In 0~27mg/m3, the concentration of Chla measured by active algae cell analytical method(x) is directly proportional to the value measured by acetone extraction spectrophotometry(y). The regression equation was y=4.15x+2.48 (mg/m3), R2=0.9985. T-test showed that the equation has remarkable meaning (α=0.01).
     2) The optimal condition for algal growth was that the water temperature and illumination were 20℃and 8000Lx, the concentrations of DIN and PO4-P were 85.71μmol/L and 2.86μmol/L respectively. Phosphorus was the limiting nutrition element for algal growth, and the optimal ratio of nitrogen to phosphorus was 30:1. Under the optimal condition, the specific growth rate was 1.03/d at the expotential phase, and the maximum Chla concentration was 110 mg/L at the stationary phase.
     3) Under the conditions of that the water temperature and illumination were 20℃and 8000Lx respectively, and the ratio of phosphorus and nitrogen concentrations was 30:1, the maximum growth rate were 1.16/ d both nitrogen and phosphorus, and the half-saturated constants of nitrogen-limit and phosphorus-limit were 8.65μmol/L and 0.29μmol/L respectively.
引文
[1]国家环保总局科技标准司.中国湖泊富营养化及其防治研究[M].北京:中国环境科学出版社, 2001, 1.
    [2]金相灿.湖泊富营养化控制及管理技术[M].北京:中国环境科学出版社, 2001, 1-6.
    [3]马经安,李红清.浅谈国内外江河湖库水体宣营养化状况[J].长江流域资源与环境, 2002, 11(6): 575-578.
    [4]刘连成.中国湖泊富营养化的现状分析[J].灾害学, 1997, 12(3): 61-65.
    [5] UNEP,苏玲译.水体富营养化[J].世界环境, 1994, 42(1): 23-26.
    [6]赵章元,吴颖颖,邦洁明.我国湖泊富营养化发展趋势探讨[J].环境科学研究, 1991, 14(3): 18-25.
    [7] M. A. Imteaz. Modeling of lake eutrophication including artificial mixing and effects of bubbling operations on algal bloom[J]. Ph. D. Thesis, Saitama University, Japan, 1997, 1-12.
    [8] OECD. Eutrophication of waters monitoring assessment and control[J]. OECD publication, 1982, 114-117.
    [9]马蕊,林英,牛翠娟.淡水水域富营养化及其治理[J].生物学通报, 2003, 38(11), 75-79.
    [10] Monzur Alam Imteaz, Takashi Asaeda, David A. Lockington, Modeling the effects of inflow parameters on lake water quality[J]. Environmental Modeling and Assessment, 2003, 8: 63-70.
    [11]王晟,徐祖信.从生态学观点看湖泊藻类控制的技术体系[J].上海环境科学, 2003, 22(5): 12-18.
    [12]钟成华.三峡库区水体富营养化研究[D].四川:四川大学, 2004, 1-4.
    [13]蒙万轮.重庆郊区水库水体富营养化试验研究[M].重庆:重庆大学,2005, 1-3.
    [14] V M Vaoncelos and E Pereira. Cyanobacteria diversity and toxicity in a wastewater treatment plant(Portugal)[J]. Wat. Res., 2001, 35: 1354-1357.
    [15] S Pflgmacher, C Wiegand, A Oberemm. Identification of an enzymatically formed glutathione conjugate of the cyanobacterial hepatotoxin microcystin-LR: the first step of the detoxication[J]. Biochimica et Biophysica Acta, 1998, 1425: 527-533.
    [16] A Boudrez, K Evens, M Beullens, E Waelkens. Identification of MYPTI and NIPPI as subunits of protein phosphatase in rat liver cytosol[J]. FEBS Letters, 1999, 455: 175-178.
    [17] V R Beasley and R R Stotts. Toxicokinetics of microcystin and dihydro-microcyctin in Swine[J]. Govt. Reports Announcements & Index, 1994, 19.
    [18] R E Guzman and P F Solter. Hepatic oxidative stress following prolonged sublethal microystin LR exposure[J]. Toxicologic Pathology, 1999, 27: 582-588.
    [19]钱芸,戴树桂,刘光良.富营养化淡水水体中微囊藻毒素的研究进展[J].环境污染治理技术与设备, 2002, 3(8): 13-17.
    [20]日本水污染研究会编,谢其明,王恕蓉译.湖泊环境调查指南[M].北京:中国环境科学出版社, 1989, 105-109.
    [21]蒋火华,吴贞丽,梁德华.世界湖泊水质研究III[J].世界环境, 2000, 4: 35-37.
    [22]金相灿,屠清英.湖泊富营养化调查规范[M].北京:中国环境科学出版社,1990, 138-286.
    [23]金相灿.中国湖泊、水库富营养化调查[M].北京:中国环境科学出版社, 1990, 3-7.
    [24]王苏民.窦鸿身.中国湖泊志[M].北京:科学出版社, 1989: 108-109.
    [25]国家环保总局科技标准司.中国湖泊富营养化及其防治研究[M].北京:中国环境科学出版社, 2001, 8-139.
    [26] Lathrop R G and Lillesand T M. The use of the matic map per data to assess water quality in Green Bay and Central Lake Michigan[J]. Photogram metric Engineering & Remote Sensing, 1986, 52(5): 50.
    [27]俞立中. GIS技术在洪湖环境演变研究中的应用[J].湖泊科学, 1993, 5(4): 350-357.
    [28]孔庆瑜.武昌东湖水体污染的航空遥感分析[J].湖北大学学报, 1990, 11: 83-88.
    [29]刘建康.东湖生态学研究[J].科学出版社,北京: 1990, 1-104.
    [30] Lickens, G E. Primary productivity of inland aquatic ecosystem in“the biosphere”[M]. Springer Verlage (New York), 1975, 185-202.
    [31] Wetzel, R. G. Limnology and ed[M]. Saunders College Publishing Company(Philadephia), 1983, 255-297.
    [32]张远,郑丙辉,富国,等.河道型水库基于敏感性分区的营养状态标准与评价方法研究[J].环境科学学报, 2006, 26(6): 1016-1018.
    [33]冯玉国.湖泊富营养化灰色评价模型及其应用[J].生态学杂志, 1996, 15(2): 68-71.
    [34]李强.灰色动态模型在湖泊TN、TP贮蓄量预测中的应用[J].水资源保护, 1998, 98(2): 23-26.
    [35]李振亮.湖泊富营养化评价的Euclid贴近度评价法[J].干旱环境监测, 1998, 10(1): 16-19.
    [36]李祚泳,洪继华.模糊度概念用于湖泊富营养化评价[J].环境科学研究, 1991, 4(2): 32-36
    [37]刘首文,冯尚友.人工神经网络在湖泊富营养化评价中的应用研究[J].上海环境科学, 1996, 15(1): 11-14.
    [38]杜宝汉,李永安.用灰色关联度模型评价湖泊富营养化[J].四川环境, 1999, 18(4): 48-51.
    [39]门宝辉,杨兴国,董笑梅.物元模型在湖泊水体富营养化评价中的应用[J].东北水利水电, 2002, 20(9): 42-44.
    [40]高建平,王珊玲.水体富营养化评价和防治的一些进展[J].农村生态环境, 1989, 89(3): 56-60.
    [41]舒金华.我国湖泊富营养化程度评价方法的探讨[J].环境污染与防治, 1990, 12(5): 2-7.
    [42]王利冰.水库富营养化发生机理与其综合防治[J].山西水利科技, 2004, 4: 35-37.
    [43]李锦秀,廖文根.富营养化综合防治调控指标探讨[J].水资源保护, 2002, 2: 4-6.
    [44]牛晓君.富营养化发生机理及水华暴发研究进展[J].四川环境, 2006, 25(3): 73-75.
    [45] Whitford LA and Schumacher GJ. Effect of current on mineral uptake and respiration by a freshwater alga[M]. Limnol. Oceanogr, 1961, 6: 423-425.
    [46]福迪(捷)(著).藻类学[M].上海科学技术出版社. 1980, 392-394.
    [47] Steinman Ad and Mcintire CD. Effects of current velocity and light energy on the structure of periphyton assemblages in laboratory streams[J]. Phycol. , 1986, 22: 352-361.
    [48]陈伟民,陈宇炜,秦伯强.模拟水动力对湖泊生物群落演替的实验.湖泊科学[J], 2000, 343-352.
    [49]况琪军,谭渝云,万登榜.汉江下游江段藻类现状调查及“水华”成因分析[J].长江流域资源与环境, 2000, 9(1): 63-70.
    [50] Boca Raton, FL. Jorgensen Application of ecology in environmental management[M]. USA: CRC Press, 1983, 45-52.
    [51]饶群,芮孝芳.富营养化机理及数学模拟研究进展[J].水文, 2001, 21(2): 15-19.
    [52]李小平.美国湖泊宫营养化的研究和治理[J].自然杂志, 2002, 24(2): 63-68.
    [53] Martin J H. Iron deficiency limits phytoplankton growth in Antarctic waters[J]. Global biagechem cycle, 1990, 6(4): 5-12.
    [54] Morton SD, Lee TH. Algae blooms: possible effects of iron[J]. Environmental Science and Technology, 1974, 8(7): 673-674.
    [55] Goldman CR. Molybdenum as a factor limiting primary productivity Castle Lake[J]. Calofornia Science, 1990, 13(2): 1016-1017.
    [56]王彩虹,牛晓君,周兴求,等.不同pH条件下沉积磷释放到水体中化学行为的模拟研究[J].四川环境, 2006, 25(1): 20-22.
    [57]李炜.环境水力学进展[M].武汉:武汉水利电力大学出版社, 1999, 42-53.
    [58] Kang R J, James R T and Lung W S. Assessing Lake KEECHOBEE Eutrophication with water quality models[J]. Journal of Water Resources Planning and Management, 1998, 124(1): 22-30.
    [59] Somlyodyl . Eutrophocation modeling, management and decision making: the Kis- Balaton case[J]. Water Science and Technology, 1998, 37(3): 165-175.
    [60]阮景荣,蔡庆华,刘建康.武汉东湖的磷-浮游植物动态模型[J].水生生物学报, 1988, 12(4): 289-307.
    [61] Vollenweider R. A. Scientific fundamentals of lake and stream eutrophication with particular reference of phosphorus and nitrogen as eutrophication factors[J]. OECD, 1968, 16-22.
    [62]金相灿,屠清瑛.湖泊富营养化调查规范(第二版)[M].北京:中国环境科学出版社, 1990, 303-316.
    [63]丁锡,舒金华.湖水总磷浓度的数学模拟[J].海洋与湖沼, 1988, 19(5): 447-453.
    [64] Steven C C. Long term phenomenological model of phosphorus and oxygen for stratified lakes[J]. Water Research, 1991, 25(6): 707-715.
    [65]李文朝,尹澄清,陈开宁,等.关于湖泊沉积物磷释放及其测定方法雏议[J].湖泊科学, 1999, 11(4): 296-302.
    [66] Malueg K W, Larsen D P, Schults D W. A six year water, phosephorus and nitrogen budget of Shagwa lakes[J]. Journal of Environmental Quality, 1975, 4(2): 236-242.
    [67] Helen B, Stephen J and John AN. Predicating epilimnile phosphorus concentration using an improved diatom-based based transfer function and its application to lake eutrophication management[J]. Environmental Science and Technology, 1996, 30(10): 1935-1942.
    [68]刘元波,陈伟民.湖泊藻类动态模拟[J].湖泊科学, 2000, 12(2): 171-176.
    [69] Monod J. Recherches Sur La Croissance Des Cultures Bacteriennes[M]. Paris: Hermann, 1942, 210.
    [70] Robert W Sterner, James P Grover. Algal Growth in Warm Temperate Reservoirs: Kinetic Examination of Nitrogen, Temperature, Light, and other Nutrients[J]. Water Research, 1998, 32: 3539-3548.
    [71]许海,杨林章,茅华,等.铜绿微囊藻、斜生栅藻生长的磷营养动力学特征[J].生态环境, 2006, 15(5): 921-924.
    [72]陈德辉,章宗涉,刘永定,等.微囊藻栅藻资源竞争的动力学过程Ⅰ-光能和磷营养的半饱和参数及其生长率动态[J].环境科学学报, 2000, 20(3): 49-354
    [73]李铁,史致丽,仇赤斌,等.中肋骨条藻和新月菱形藻对营养盐的吸收速率及环境因素影响的研究[J].海洋与环境, 1999, 30(6): 640-645.
    [74] Dgale R C. Nutrients Limitation in the Sea: Dynamics, Identification, Significance [J]. Limnological oceanographer, 1967, 12: 685-695.
    [75] Droop M R.Vitamin B12 and Marine Ecology, IV: The Kinetics of Growth, Uptake , and Inhaibition in Monochrysis Iutheri[J]. J Mar Biol Assoc UK, 1968, 48: 629-36.
    [76] Elrifi I R, Turpin D H. Steady state Luxury Consumption and the Concept of Optimum Nutrient Rations: A study with Phosphate and Nitrate Limited Selena strum Minutum (Chlorophyll-a) [J]. Phycol, 1985, 21: 592-602.
    [77]屠清瑛,顾丁锡,尹澄清,等.富营养化研究[M].北京:中国科学技术出版社, 1991, 101-125.
    [78] Chen C W and Orlob C T. Ecological simulation for aquatic environments In: pattern B C(ed. ), System Analysis and Simulation in Ecology[J]. New York: Academic press, 1975, 3.
    [79] Janse J H. Amathematical model of the phosphorus cycle in lake Loosdrecht and simulation of additional measures[J]. Hydrobiologia, 1992, 133(1): 119-136.
    [80] Nyholmn N. A simulation model for phytoplankton growth and nutrient cycling in eutrophic shallow lakes[J]. Ecological Modeling, 1988, 4(3): 279-310.
    [81] Robert P, Kees K and Lambertus L. Primary production estimation from continuous oxygen measurements in relation to external nutrient input[J]. Water Research, 1996, 30(3): 625-643.
    [82]饶群.大型水库富营养化数学模拟的研究[D].江苏:河海大学, 2001, 11.
    [83] Pilar H, Robert B A and Daniel P. Modeling eutrophication Kinetics in reservoir microcosms[J]. Water Research, 1997, 31(9): 2511-2519.
    [84] Warwick J J and Cockrum D M. Estimating no-point source loads and associated water quality impact[J]. Journal of Water Resources Planning and Management, 1997, 123(5): 302-310.
    [85] Kao J J, Lin W L and Tsai C H. Dynamic spatial modeling approach for estimation of internal phosphorus load[J]. Water Research, 1998, 32(1): 47-56.
    [86] Janse J H , Ellen V D and Tom A. A model study in the stability of the macrophyte-dominated state as affected by biological factors[J]. Water Research, 1998, 32(9): 2696-2706.
    [87]秦伯强.太湖水环境面临的主要问题、研究动态与初步进展[J].湖泊科学, 1998, 10(4): 1-7.
    [88]刘玉生,唐宗武,韩梅.等滇池富营养化生态动力学模型及其应用[J].环境科学研究, 1991, 4(6): 1-8.
    [89]宋永昌,王云,戚仁海.淀山湖富营养化及其防治研究[J].上海:华东师范大学出版社, 1991, 157-180.
    [90]胡维平,濮培民,秦伯强,太湖水动力学三维数值试验研究-(1)风生流和风涌增减水的三维数值模拟[J].湖泊科学, 1998, 10(4): 17-25.
    [91]胡维平,秦伯强,濮培民.太湖水动力学三维数值试验研究-(3)马山围垦对太湖风生流的影响[J].湖泊科学, 2000, 12(4): 335-342.
    [92] Paerl H. W. Coastal eutrophication and harmful algal blooms: importance of atmospheric deposition and groundwater as new nitrogen and other nutrient sources[J]. Limnology and Oceanography, 1997, 42: 1154-1165.
    [93] Lung W. S., Paerl H W. Modeling blue-green algal blooms in the Lower Neuse River[J]. Water Research, 1988: 22(7): 45-49.
    [94] Di Toro D. M. Optics of turbid estuarine waters: approximations and applications[J]. Water Research, 1978, 12: 1059-1068.
    [95] Laws E. A., Chalup M. S. A microalgal growth model. Limnology and Oceanography[J]. W ater Research, 1990, 35: 597-608.
    [96] K. H. reckhow. Water quality simulation modeling and uncertainty analysis for risk assessment and decision making[J]. Ecological Modeling, 1994, 72(1): 82-86.
    [97] P. e. Kloeden. Asurvey of numerical methods for stochastic differential equations[J]. Stochastic hydrology and Hydraulics, 1989, 3: 25-28.
    [98] Harmon R., Challenor P. A Markov chain Monte Carlo method for estimation and assimilation into model[J]. Ecological Modeling, 1997, 101.
    [99]杨刚.三峡库区水土流失的因素分析及其生态对策[J].渝西学院学, 2002, (3): 70-73.
    [100]孔德树,陈晓燕.建立三峡库区坡耕地管理信息系统的探讨[J].中国水土保持, 2002, 18(6), 11-12.
    [101]杨刚.三峡库区受淹土壤污染物释放量的试验研究[J].水土保持学报, 2004, 18(1): 111-114.
    [102]长江水利委员会.三峡工程综合利用与水库调度研究[M].武汉:湖北科学技术出版社, 1997, 120-128.
    [103] Baidwin DS, Whittington J and Oliver R. Temporal variability of dissolved P speciation in a eutrophic resrvior-implications for predicting algal growth[J]. Water Research, 2003, 37(19): 4595-4598.
    [104]曹明,蔡庆华,刘瑞秋.三峡水库及香溪河库湾理化特征的比较研究[J].水生生物学报, 2006, 30(1): 20-25.
    [105]陈翠玲,任秀娟.三峡水库蓄水后水质富营养化因素分析[J].河南职业技术师范报, 2003, 31(2): 6.
    [106]罗固源,刘国涛,王文标.三峡库区水环境富营养化污染及其控制对策的思考[J].重庆建筑大学学报, 1999, 21(3): 1-4.
    [107]周谐,郑坚.三峡库区重庆段水生生物图谱[M].北京:中国环境科学出版社, 2005, 1-50.
    [108]张智,宋丽娟,郭蔚华.重庆长江嘉陵江交汇段浮油藻类组成及变化[J].中国环境科学, 2005, 25(6): 695-699.
    [109]周广杰,况琪军,胡征宇.香溪河库湾浮游藻类种类演替及水华发生趋势分析[J].水生生物学报, 2006, 30(1), 42-46.
    [110]周广杰,况琪军,胡征宇.三峡库区四条支流藻类多样性评价及“水华”防治[J].中国环境科学, 2006, 26(3), 337-341.
    [111]汤宏波.三峡库区及武汉东湖甲藻水华研究[D].湖北:中国科学院水生生物研究所, 2006, 1-80.
    [112]蔡庆华,胡征宇.三峡水库富营养化问题与对策研究[J].水生生物学报, 2006, 30(1),7-11.
    [113]张晟,李崇明,郑丙辉.三峡库区次级河流营养状态及营养盐输出影响[J].环境工程与科学, 2006, 28(6): 10-14.
    [114]中国环境监测总站.长江三峡工程生态与环境监测公报[Z].北京:国家环保总局, 2006, 24.
    [115]中国科学院,世界自然基金会,长江水利委员会,等.长江保护与发展报告-2007[R].湖北:长江出版社, 2007, 1-80.
    [116]黄程,钟成华,邓春光.三峡水库蓄水初期大宁河回水区流速与藻类生长关系的初步研究[J].农业环境科学学报, 2006, 25(2): 453-457.
    [117]刘信安,湛敏,罗彦凤,等.三峡水域氮磷污染对水华暴发/消涨行为的协同影响[J].环境科学, 2006, 27(8): 1554-1559.
    [118]李锦秀,廖文根,等.三峡库区富营养化主要诱发因子分析[J].科技导报, 2003, 2: 49-50.
    [119] Reynolds C S. The ecology of freshwater Phytoplankton[M]. Cambridge: Cambridge University Press, 1984, 1.
    [120] Schindler, DW. Factors regulating phytoplankton production and standing crop in the world’s freshwaters[J]. Limnol. Oceanogr, 1978, 23: 478-486.
    [121] Golterman, H. L., and Kouwe, F. S.. Chemical budgets and nutrient pathways in the functioning of freshwater ecosystems[M]. Edited by E. D. LeCren and R. H. Lave. IBP Handb, 1980, 22: 85-140.
    [122] Peters, R. H. The role of predication in limnology[J]. Limnol. Oceanogr, 1986, 31: 1143-1159.
    [123] Jones , J. R., and Knowlton, M. F. Limnology of Missouri reservoirs: an analysis of regional patterns[J]. Llake reservoir Manage, 1993, 8: 17-30.
    [124] Erwin E. Van Nieuwenhuyse and John R. Jones. Phosphorus-chlorophyll relationship in temperate streams and its variation with stream catchment area[J]. Can. J. Fish. Aquat. Sci, 1996, 53, 40-46.
    [125]李崇明,黄真理,常剑波,等.三峡库区水体叶绿素a与总磷浓度、透明度的关系研究[J].重庆环境科学, 2004, 26(1): 15-19.
    [126] Vasantha Pattabhi, N. Gautham. Biophysics[M]. Alpha Science International Ltd. pangbourne. India, 2002, 174-198.
    [127]李先文,张苏峰,袁正仿等.细胞生物学导报[M].北京:科学出版社, 2004, 6: 641-672.
    [128]韦蔓新,赖廷和.广西北海半岛近岸水域活性磷酸盐与叶绿素a含量的关系[J].台湾海峡, 2003, 22(2): 205-209.
    [129]赵建平,冯焕银,翁燕波.活性磷酸盐用标准色列快速测定[J].中国环境监测, 2004,20(6): 28.
    [130]中国环境监测总站.长江三峡工程生态与环境监测公报[Z].北京:国家环保总局. 2006, 24.
    [131]兰锋.三峡库区富营养化趋势分析[D].重庆:西南师范大学, 2004, 19-27.
    [132]王德蕊.三峡水库135m蓄水后大宁河回水段水体富营养化研究[D].重庆:西南师范大学, 2005, 13-38.
    [133]邓春光.三峡库区富营养化研究[M].北京:中国环境科学出版社, 2007, 98-130.
    [134] Yassuo N. Ammonium uptake kinetics and interaction between nitrate and ammonium uptake in Chattonella antiqua[J]. Oceanogr Soc Japan, 1985, 41: 33-38.
    [135] Harrison P J, Parslow J S, Conway H L. Determination of nutrient uptake kinetic parameters: acomparison of methods[J]. Mar Ecol Prog Ser, 1989, 52: 302-312.
    [136]章宗涉,黄祥飞.淡水浮游生物研究方法[M].北京:科学出版社, 1991, 5-80.
    [137]王艳,唐海溶,蔣磊,等.硝酸盐对球形棕囊藻生长和硝酸还原酶活性的影响[J].植物学报, 2006, 23(2): 138-144.
    [138]乐毅全,王士芬.环境微生物学[M].北京:化学工业出版社, 2005, 94-111.
    [139] Monod J. Techniquet cluture continue: theorie et applications[J]. Ann Inst Pasteur ( Paris), 1950, 79: 390-401.
    [140] Fogg G E, Thake B. Algal cultures and phytoplankton ecology[M]. Madison: The University of Wisconsin Press, 1987, 57-80.
    [141] Holm H P, Armstrong D E. Role of nutrient limitation and competition in the population of Asteriorella formossa and Microcysis aeraginse in semicontinuous culture[J]. Limnol Oceanogr, 1981, 26: 622-534.
    [142]孙颖颖,王长海.球等鞭金藻的生长速率与培养液中营养盐的关系研究[J].海洋科学, 2006, 30(1): 78-83.
    [143] Steinberg C W, Hartmann H. Planktonic bloom-forming Cyanobacteria and the eutrophication of lakes and Rivers[J]. Freshwater Biology, 1988, 20: 279-287.
    [144] Reynolds C, Walsby S. Water-blooms[J]. Boil Rev, 1975, 50: 437-481.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700