HCN4编码的I_f在胚胎心室起搏活动中的非必要性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     自超极化激活内向电流被发现以来,其特性就被广为研究。但因其作用表现和表达分布的复杂多样性,其在心脏起搏活动中的确切作用一直存在争议。本研究拟从电生理学方面明确超极化激活内向离子通道在早期胚胎心肌细胞上所起的作用。
     方法与结果:
     1.观察If阻断剂对If,ICaL和ICaT电流的影响
     方法:采用胶原酶B消化获得单个小鼠胚胎心肌细胞并培养24-36小时。选择跳动的单个细胞,细胞为E10.5天心肌细胞,1 mMCs+离子作为阻断剂,以全细胞电压钳模式记录心肌细胞的If,IcaL和ICaT电流表达。
     结果:lmM Cs+显著抑制If(减少93.1-1.7%,n=13,p<0.05),冲洗后能完全恢复。与此同时,Cs+仅轻度升高L型钙电流(至15.5士4.12%,n--11,p<0.05)。对T型钙电流基本无影响(n=11,p>0.05)。这表明相对L型钙电流和T型钙电流而言,Cs+对If通道存在相对特异阻断性。因此我们在后续实验中采用Cs+作为If通道阻断剂来观察各项目。
     2.If在E9.5-E10.5起搏样细胞(P-Iike)起搏活动中所起的作用
     方法:采用胶原酶B消化分离以获得单个小鼠胚胎心肌细胞,培养24-36小时后,选择E9.5和E10.5起搏样细胞(P-like)进行研究,应用全细胞电流钳模式以记录E9.5和E10.5起搏样细胞的动作电位,观察比较If在E9.5-E10.5起搏样细胞(P-like)起搏活动中所起的作用。
     结果:Cs+在E9.5-E10.5起搏样细胞上引起负性调节效果。此效果在全部的E9.5(n=3)和E10.5(n=3)上均可发现。在E9.5,Cs+使得动作电位频率降低18.7土2.2%(n=3,p>0.05),4期自动除极速率降低21.34-3.1%(n=3)。在E10.5, 1mM Cs+存在和E9.5类似的作用效果,但未发现统计学意义。动作电位频率降低24.6±-2.3%,(p<0.05),4期自动除极速率降低23.9±-3.5%,p>0.05。
     3.If在E9.5-E10.5心室样细胞(V-like)起搏活动中所起的作用
     方法:采用胶原酶B消化分离以获得单个小鼠胚胎心肌细胞,培养24-36小时后,选择E9.5和E10.5心室样细胞(V-like)进行研究,应用全细胞电流钳模式以记录E9.5和E10.5心室样细胞的动作电位,观察比较If在E9.5-E10.5心室样细胞(V-like)起搏活动中所起的作用。
     结果:在81.8%(11个细胞中的9个)E9.5的V-like细胞和27.3%(22个细胞中的6个)的E10.5的V-like细胞上观察到了Cs+的影响。在E9.5的V-like细胞上,Cs+降低动作电位频率70.5±6.9%(n=9,p<0.01),同时降低4期自动除极速率75.6±4.8%(n=6,p<0.05)。在E10.5,Cs+的作用效果要弱于E9.5。Cs+降低动作电位频率65.4±7.2%(p<0.05),同时降低4期自动除极速率75.1±5.9%(p<0.05)。在E17.5也观察到Cs+存在相似的作用效果。
     4.If和动作电位的联系
     方法:采用胶原酶B消化分离以获得单个小鼠胚胎心肌细胞,培养24-36小时后,选择E8.5和E10.5的成功记录到动作电位的,心房样细胞atrial-like (A-like) cells和心室样细胞及起搏样细胞进行研究。观察这些细胞上是否存在If电流的表达。
     结果:E10.5心脏上,HCN4是mRNA水平的主要表达亚型,但Cs+对动作电位的影响仅在一部分细胞上能看到,这可能是由于If的功能表达与mRNA水平并不一致。因此我们观察了存在动作电位的细胞上If电流的表达。在E8.5,If能在91.7%的起搏样细胞,90%的心房样细胞和80%的心室样细胞上检测到。而在E10.5,If存在于70%的起搏样细胞,但只有50%的心房样细胞或心室样细胞上检测到If。以上结果表明,在E10.5的心室肌细胞上,动作电位的产生和If并无直接联系。
     结论:
     1.在胚胎发育过程中,超极化激活内向电流能稳定持续参与心脏起搏样细胞的起搏活动。
     2.在胚胎发育过程中,胚胎心室起搏活动与超极化激活内向电流之间并无必然联系。
     目的:
     为明确超极化激活内向离子通道作用表现和表达分布的复杂多样性与其亚型表达之间的关系,本研究拟从分子生物学方面明确超极化激活内向离子通道的亚型与其在早期胚胎心肌细胞上所起的作用之间的关系。
     方法与结果:
     1.HCN亚型表达的发育性变化
     方法:采用RT-PCR技术,比较在早期胚胎发育过程中,从E8.5至E10.5,小鼠胚胎心室肌组织HCN2和HCN4亚型在mRNA水平的表达。
     结果:早期胚胎发育期中,Cs+对心室细胞起搏活动影响的变化可能归根于基因表达的差异,因此我们检测了HCN2和HCN4亚型在mRNA水平的表达。在胚胎发育过程中,HCN4表达下调而HCN2表达上调。从E8.5至E10.5,HCN4均为心脏的HCN主要表达亚型。虽然HCN2和HCN4改变量并不显著(p>0.05),但己表现出逐步变化的趋势。
     2.敲除HCN4对E10.5的心室肌细胞的动作电位和4期自动除极速率的影响方法:采用小干扰核糖核酸技术(siRNA)以观察敲除HCN4基因后对E10.5心室样细胞的影响。
     结果:为了观察HCN4-型在E10.5心室肌细胞上的具体功能,我们应用小干扰核糖核酸技术(SiRNA)来敲除HCN4亚型。在敲除组,仅有20%的心室肌细胞检测到If电流,而且If的电流密度从26.0±2.7pA/pF(对照组,n=8)降低至5.6±1.8pA/pF(n=10)(p<0.01,对照组:敲除组)。然而,心室肌细胞的动作电位和4期自动除极速率均未改变(p>0.05)。以上结果表明,尽管HCN4在E10.5的心室肌细胞的mRNA水平显著表达,但HCN4所编码的I_f在胚胎心室肌细胞的起搏活动中所起作用有限。
     结论:
     1.HCN4确实是早期胚胎心脏上超极化激活阳离子通道的主要表型。
     2.超极化激活内向电流的作用除了mRNA表达水平影响以外,可能更重要受到具体亚型功能表达的影响。
     3.胚胎心室起搏活动不依赖于HCN4编码的I_f。
Objective
     For decades the If channel reveals unique features that are believed to be prerequisite for pacemaker activity. However, If is present in both automatic and nonautomatic regions of the heart, there have been considerable debate over the exact role of the current. By using the whole cell patch clamp technique, we studied the Electrophysiological significance of If for action potential (AP) generation in early developmental fetal cardiomyocytes (E9.5-E10.5).
     Methods and Results
     1. Effects of Cs+ on If, IcaL and ICaT
     Methods:The fetal murine hearts were dissociated to get single cardiomyocytes and cultured for 24-36 h. If, IcaL and IcaT currents were recorded using whole cell voltage patch clamp technique with specific inhibitors including 1 mM Cs+.
     Results:The main inward currents contributing to diastolic depolarization are If, IcaL and IcaT. To confirm the special effects of Cs+ on If, the side effects of Cs+on IcaL and IcaT were excluded. 1mM Cs+ significantly inhibited If (by 93.1±1.7%, n=13, p<0.05) whereas only slightly increased IcaL (by 15.5±4.12%, n=11, p<0.05). No change in IcaT (n=11, p>0.05) was observed. This indicates that Cs+ has specific effects on inwardly If current while not on IcaL or ICaT.Thus we applied Cs+ as the specific blocker of If in the following investigations.
     2. Contribution of If to Pacemaker Activity of Pacemaker-like (P-like) Cells from E9.5-E10.5 Hearts
     Methods:The fetal murine hearts were dissociated to get single cardiomyocytes and cultured for 24-36 h. Whole cell current clamp technique was used to investigate action potential on pacemaker-like cells at E9.5 and E10.5.
     Results:Cs+ exerted negative chronotropic effect on P-like cells from E9.5-E10.5 hearts. The effect was detected in all P-like cells at E9.5 (n=3) and E10.5 (n=3). At E9.5, Cs+ had negative effect on AP frequency (by 18.7±2.2%, n=3, p>0.05) and Vdd (by 21.3±3.1%, n=3). At E10.5, 1mM Cs+ exerted similar negative chronotropic effect on P-like APs as at E9.5. Although not statistical different, the AP frequency decreased (by 24.6±2.3%, p<0.05) parallely with the Vdd decrease (by 23.9±3.5%, p>0.05).
     3. Contributions of If to Pacemaker Activity of Ventricular-like (V-like) Cells from E9.5-E10.5 Hearts
     Methods:The fetal murine hearts were dissociated to get single cardiomyocytes and cultured for 24-36 h. Whole cell current clamp technique was used to investigate action potential on ventricular-like cells at E9.5 and E10.5.
     Results:The effect of Cs+ was detected in 81.8%(9 out of 11 cells) V-like cells at E9.5 and 27.3%(6 out of 22 cells) V-like cells at E10.5. At E9.5, Cs+ had negative effect on AP frequency in V-like cardiomyocytes (by 70.5±6.9%, n=9, p<0.01). The Vdd decreased by a similar extent (by 75.6±4.8%, n=6, p<0.05). At E10.5, Cs+ 1mM had weaker negative chronotropic effect on V-like APs than that at E9.5. Cs+ 1mM decreased the AP frequency and Vdd by 65.4±7.2%(p<0.05) and 75.1±5.9% (p<0.05), respectively. Similar effects of Cs+ were found in E17.5 ventricular cardiomyocytes (data not shown).
     4. Correlation of If to APs
     Methods:The fetal murine hearts were dissociated to get single cardiomyocytes and cultured for 24-36 h. If currents were recorded using whole cell voltage patch clamp technique at cells which exhibited spontaneous APs at E8.5 and E10.5.
     Results:The whole cell If current was recorded in cells which exhibited spontaneous APs. At E8.5, If was detectable in 91.7% of P-like cells,90% of atrial-like (A-like) cells, and 80% of V-like cells. At E10.5, If was detectable in 70% of P-like cells, while only in 50% of A-like or V-like cells. This observation revealed that there was no exact correlation of If to AP generation in E10.5 ventricular cardiomyocytes.
     Conclusion:During development, the If current had consistent contribution to pacemaker activity of P-like cardiomyocytes. But for working cardiomyocytes, If current was not necessary for the spontaneous electrical activity.
     Objective
     By using Reverse transcription polymerase chain reaction (RT-PCR) and small interference RNA (SiRNA) technique, we studied the molecularbiological characterizations of If in early developmental fetal cardiomyocytes (E9.5-E10.5).
     Methods and Results
     1. Developmental Changes in Expression of HCN Subunits
     Methods:The fetal murine hearts were dissociated to get single cardiomyocytes and cultured for 24-36 h. RT-PCR technique was used to investigate the molecular basis of the If electrophysiological properties at mRNA level.
     Results:The developmental changes in Cs+ effects on pacemaker activity of V-like cells in early developmental stage might aroused from the difference in gene expression, therefore the expression of HCN2 and HCN4 subunits at mRNA level were further investigated. During embryonic development, HCN4 transcripts were downregulated while HCN2 was upregulated. From E8.5 to E10.5, HCN4 was the predominant subunit in the hearts. Both HCN2 and HCN4 did not change significantly (p>0.05), although there was a trend that both of them stepwise changed.
     2. Knock-down of HCN4 Subunit Influencing neither Vdd nor AP Frequency in E10.5 Ventricular cardiomyocytes
     Methods:The fetal murine hearts were dissociated to get single cardiomyocytes and cultured for 24-36 h. SiRNA technique was used to investigate the effection of HCN4 Subunit in E10.5 Ventricular cardiomyocytes.
     Results:To examine the functional role of HCN4 transcripts in E10.5 ventricular cardiomyocytes, SiRNA technique was applied to knock down the HCN4 subunit. In the knock-down group, If was detected in 20% of ventricular cardiomyocytes and the If current density decreased from 26.0±2.7 pA/pF (control, n=8) to 5.6±1.8 pA/pF (n=10) (p<0.01 control vs. knock-down). Interestingly, the Vdd and AP frequency didn't change (p>0.05). This result indicated that HCN4-encoded If was not involved in the pacemaker activity of fetal ventricular cardiomyocytes despite of its marked expression.
     Conclusion:At early development stage, the HCN4 transcripts were predominantly expressed. But for working cardiomyocytes, HCN4 encoded If current was not necessary for the spontaneous electrical activity.
引文
[1]Satoh H. Sino-atrial nodal cells of mammalian hearts:ionic currents and gene expression of pacemaker ionic channels. Journal of smooth muscle research=Nihon Heikatsukin Gakkai kikanshi 2003;39:175-193.
    [2]Maltsev VA, Wobus AM, Rohwedel J, Bader M, Hescheler J. Cardiomyocytes differentiated in vitro from embryonic stem cells developmentally express cardiac-specific genes and ionic currents. Circulation research 1994;75:233-244.
    [3]Davies MP, An RH, Doevendans P, Kubalak S, Chien KR, Kass RS. Developmental changes in ionic channel activity in the embryonic murine heart. Circulation research 1996;78:15-25.
    [4]Fleischmann BK, Duan Y, Fan Y, Schoneberg T, Ehlich A, Lenka N, et al. Differential subunit composition of the G protein-activated inward-rectifier potassium channel during cardiac development. The Journal of clinical investigation 2004;114:994-1001.
    [5]Kolossov E, Lu Z, Drobinskaya I, Gassanov N, Duan Y, Sauer H, et al. Identification and characterization of embryonic stem cell-derived pacemaker and atrial cardiomyocytes. Faseb J 2005;19:577-579.
    [6]Ono K, Ito H. Role of rapidly activating delayed rectifier K+ current in sinoatrial node pacemaker activity. The American journal of physiology 1995;269:H453-462.
    [7]Bony C, Roche S, Shuichi U, Sasaki T, Crackower MA, Penninger J, et al. A specific role of phosphatidylinositol 3-kinase gamma. A regulation of autonomic Ca(2)+ oscillations in cardiac cells. The Journal of cell biology 2001;152:717-728.
    [8]DiFrancesco D. Pacemaker mechanisms in cardiac tissue. Annual review of physiology 1993;55:455-472.
    [9]Mangoni ME, Traboulsie A, Leoni AL, Couette B, Marger L, Le Quang K, et al. Bradycardia and slowing of the atrioventricular conduction in mice lacking CaV3.1/alpha1G T-type calcium channels. Circulation research 2006;98:1422-1430.
    [10]DiFrancesco D. The pacemaker current (I(f)) plays an important role in regulating SA node pacemaker activity. Cardiovascular research 1995;30:307-308.
    [11]Song GL, Tang M, Liu CJ, Luo HY, Liang HM, Hu XW, et al. Developmental changes in functional expression and beta-adrenergic regulation of I(f) in the heart of mouse embryo. Cell research 2002;12:385-394.
    [12]Yasui K, Liu W, Opthof T, Kada K, Lee JK, Kamiya K, et al. I(f) current and spontaneous activity in mouse embryonic ventricular myocytes. Circulation research 2001;88:536-542.
    [1]DiFrancesco D. Pacemaker mechanisms in cardiac tissue. Annual review of physiology 1993;55:455-472.
    [2]Silverman ME, Grove D, Upshaw CB, Jr. Why does the heart beat? The discovery of the electrical system of the heart. Circulation 2006;113:2775-2781.
    [3]Huttmann A. [Discovery of the electrical activity and conduction system of the heart]. Wiener klinische Wochenschrift 1992;104:124-129.
    [4]Boineau JP, Schuessler RB, Mooney CR, Wylds AC, Miller CB, Hudson RD, et al. Multicentric origin of the atrial depolarization wave:the pacemaker complex. Relation to dynamics of atrial conduction, P-wave changes and heart rate control. Circulation 1978;58:1036-1048.
    [5]Schuessler RB, Boineau JP, Wylds AC, Hill DA, Miller CB, Roeske WR. Effect of canine cardiac nerves on heart rate, rhythm, and pacemaker location. The American journal of physiology 1986;250:H630-644.
    [6]Noble D. The surprising heart:a review of recent progress in cardiac electrophysiology. The Journal of physiology 1984;353:1-50.
    [7]Irisawa H, Brown HF, Giles W. Cardiac pacemaking in the sinoatrial node. Physiological reviews 1993;73:197-227.
    [8]Satoh H, Tsuchida K. Comparison of a calcium antagonist, CD-349, with nifedipine, diltiazem, and verapamil in rabbit spontaneously beating sinoatrial node cells. Journal of cardiovascular pharmacology 1993;21:685-692.
    [9]Guo J, Ono K, Noma A. A sustained inward current activated at the diastolic potential range in rabbit sino-atrial node cells. The Journal of physiology 1995;483(Pt 1):1-13.
    [10]Boyett MR, Honjo H, Kodama I. The sinoatrial node, a heterogeneous pacemaker structure. Cardiovascular research 2000;47:658-687.
    [11]Baruscotti M, Bucchi A, Difrancesco D. Physiology and pharmacology of the cardiac pacemaker ("funny") current. Pharmacology & therapeutics 2005;107:59-79.
    [12]Satoh H. Role of T-type Ca2+ channel inhibitors in the pacemaker depolarization in rabbit sino-atrial nodal cells. General pharmacology 1995;26:581-587.
    [13]Mitsuiye T, Shinagawa Y, Noma A. Sustained inward current during pacemaker depolarization in mammalian sinoatrial node cells. Circulation research 2000;87:88-91.
    [14]Shinagawa Y, Satoh H, Noma A. The sustained inward current and inward rectifier K+ current in pacemaker cells dissociated from rat sinoatrial node. The Journal of physiology 2000;523 Pt 3:593-605.
    [15]Guo J, Mitsuiye T, Noma A. The sustained inward current in sino-atrial node cells of guinea-pig heart. Pflugers Arch 1997;433:390-396.
    [16]Satoh H. Sino-atrial nodal cells of mammalian hearts:ionic currents and gene expression of pacemaker ionic channels. Journal of smooth muscle research=Nihon Heikatsukin Gakkai kikanshi 2003;39:175-193.
    [17]Robinson RB, Siegelbaum SA. Hyperpolarization-activated cation currents: from molecules to physiological function. Annual review of physiology 2003;65:453-480.
    [18]Accili EA, Proenza C, Baruscotti M, DiFrancesco D. From funny current to HCN channels:20 years of excitation. News Physiol Sci 2002;17:32-37.
    [19]DiFrancesco D. The contribution of the 'pacemaker' current (if) to generation of spontaneous activity in rabbit sino-atrial node myocytes. The Journal of physiology 1991;434:23-40.
    [20]Satoh H, Sperelakis N. Identification of the hyperpolarization-activated inward current in young embryonic chick heart myocytes. Journal of developmental physiology 1991;15:247-252.
    [21]Cerbai E, Barbieri M, Mugelli A. Occurrence and properties of the hyperpolarization-activated current If in ventricular myocytes from normotensive and hypertensive rats during aging. Circulation 1996;94:1674-1681.
    [22]DiFrancesco D. The cardiac hyperpolarizing-activated current, if. Origins and developments. Progress in biophysics and molecular biology 1985;46:163-183.
    [23]Thuringer D, Lauribe P, Escande D. A hyperpolarization-activated inward current in human myocardial cells. Journal of molecular and cellular cardiology 1992;24:451-455.
    [24]Zhou Z, Lipsius SL. Effect of isoprenaline on I(f) current in latent pacemaker cells isolated from cat right atrium:ruptured vs. perforated patch whole-cell recording methods. Pflugers Arch 1993;423:442-447.
    [25]DiFrancesco D, Ferroni A, Mazzanti M, Tromba C. Properties of the hyperpolarizing-activated current (if) in cells isolated from the rabbit sino-atrial node. The Journal of physiology 1986;377:61-88.
    [26]DiFrancesco D. A study of the ionic nature of the pace-maker current in calf Purkinje fibres. The Journal of physiology 1981;314:377-393.
    [27]Accili EA, Robinson RB, DiFrancesco D. Properties and modulation of If in newborn versus adult cardiac SA node. The American journal of physiology 1997;272:H1549-1552.
    [28]Barbuti A, Baruscotti M, Altomare C, Moroni A, DiFrancesco D. Action of internal pronase on the f-channel kinetics in the rabbit SA node. The Journal of physiology 1999;520 Pt 3:737-744.
    [29]Isenberg G. Cardiac Purkinje fibers:cesium as a tool to block inward rectifying potassium currents. Pflugers Arch 1976;365:99-106.
    [30]Mitra RL, Morad M. Permeance of Cs+ and Rb+ through the inwardly rectifying K+ channel in guinea pig ventricular myocytes. The Journal of membrane biology 1991;122:33-42.
    [31]Sartiani L, Bochet P, Cerbai E, Mugelli A, Fischmeister R. Functional expression of the hyperpolarization-activated, non-selective cation current I(f) in immortalized HL-1 cardiomyocytes. The Journal of physiology 2002;545:81-92.
    [1]Gauss R, Seifert R, Kaupp UB. Molecular identification of a hyperpolarization-activated channel in sea urchin sperm. Nature 1998;393:583-587.
    [2]Ludwig A, Zong X, Jeglitsch M, Hofinann F, Biel M. A family of hyperpolarization-activated mammalian cation channels. Nature 1998;393:587-591.
    [3]Moosmang S, Stieber J, Zong X, Biel M, Hofinann F, Ludwig A. Cellular expression and functional characterization of four hyperpolarization-activated pacemaker channels in cardiac and neuronal tissues. European journal of biochemistry/FEBS 2001;268:1646-1652.
    [4]Shi W, Wymore R, Yu H, Wu J, Wymore RT, Pan Z, et al. Distribution and prevalence of hyperpolarization-activated cation channel (HCN) mRNA expression in cardiac tissues. Circulation research 1999;85:e1-6.
    [5]Ishii TM, Takano M, Xie LH, Noma A, Ohmori H. Molecular characterization of the hyperpolarization-activated cation channel in rabbit heart sinoatrial node. The Journal of biological chemistry 1999;274:12835-12839.
    [6]Vaccari T, Moroni A, Rocchi M, Gorza L, Bianchi ME, Beltrame M, et al. The human gene coding for HCN2, a pacemaker channel of the heart. Biochimica et biophysica acta 1999;1446:419-425.
    [7]Robinson RB, Siegelbaum SA. Hyperpolarization-activated cation currents: from molecules to physiological function. Annual review of physiology 2003;65:453-480.
    [8]Santoro B, Liu DT, Yao H, Bartsch D, Kandel ER, Siegelbaum SA, et al. Identification of a gene encoding a hyperpolarization-activated pacemaker channel of brain. Cell 1998;93:717-729.
    [9]Schram G, Pourrier M, Melnyk P, Nattel S. Differential distribution of cardiac ion channel expression as a basis for regional specialization in electrical function. Circulation research 2002;90:939-950.
    [10]Santoro B, Grant SG, Bartsch D, Kandel ER. Interactive cloning with the SH3 domain of N-src identifies a new brain specific ion channel protein, with homology to eag and cyclic nucleotide-gated channels. Proceedings of the National Academy of Sciences of the United States of America 1997;94:14815-14820.
    [11]Ulens C, Tytgat J. Functional heteromerization of HCN1 and HCN2 pacemaker channels. The Journal of biological chemistry 2001;276:6069-6072.
    [12]Moroni A, Barbuti A, Altomare C, Viscomi C, Morgan J, Baruscotti M, et al. Kinetic and ionic properties of the human HCN2 pacemaker channel. Pflugers Arch 2000;439:618-626.
    [13]Greenwood IA, Prestwich SA. Characteristics of hyperpolarization-activated cation currents in portal vein smooth muscle cells. American journal of physiology 2002;282:C744-753.
    [14]Altomare C, Terragni B, Brioschi C, Milanesi R, Pagliuca C, Viscomi C, et al. Heteromeric HCN1-HCN4 channels:a comparison with native pacemaker channels from the rabbit sinoatrial node. The Journal of physiology 2003;549:347-359.
    [15]Chen J, Mitcheson JS, Tristani-Firouzi M, Lin M, Sanguinetti MC. The S4-S5 linker couples voltage sensing and activation of pacemaker channels. Proceedings of the National Academy of Sciences of the United States of America 2001;98:11277-11282.
    [16]Ishii TM, Takano M, Ohmori H. Determinants of activation kinetics in mammalian hyperpolarization-activated cation channels. The Journal of physiology 2001;537:93-100.
    [17]Schulze-Bahr E, Neu A, Friederich P, Kaupp UB, Breithardt G, Pongs O, et al. Pacemaker channel dysfunction in a patient with sinus node disease. The Journal of clinical investigation 2003;111:1537-1545.
    [18]Cerbai E, Pino R, Porciatti F, Sani G, Toscano M, Maccherini M, et al. Characterization of the hyperpolarization-activated current, I(f), in ventricular myocytes from human failing heart. Circulation 1997;95:568-571.
    [19]Hoppe UC, Jansen E, Sudkamp M, Beuckelmann DJ. Hyperpolarization-activated inward current in ventricular myocytes from normal and failing human hearts. Circulation 1998;97:55-65.
    [20]Koumi S, Backer CL, Arentzen CE. Characterization of inwardly rectifying K+ channel in human cardiac myocytes. Alterations in channel behavior in myocytes isolated from patients with idiopathic dilated cardiomyopathy. Circulation 1995;92:164-174.
    [21]Verkerk AO, Wilders R, Coronel R, Ravesloot JH, Verheijck EE. Ionic remodeling of sinoatrial node cells by heart failure. Circulation 2003;108:760-766.
    [22]Koumi S, Arentzen CE, Backer CL, Wasserstrom JA. Alterations in muscarinic K+ channel response to acetylcholine and to G protein-mediated activation in atrial myocytes isolated from failing human hearts. Circulation 1994;90:2213-2224.
    [23]Stieber J, Wieland K, Stockl G, Ludwig A, Hofmann F. Bradycardic and proarrhythmic properties of sinus node inhibitors. Molecular pharmacology 2006;69:1328-1337.
    [24]Er F, Larbig R, Ludwig A, Biel M, Hofmann F, Beuckelmann DJ, et al. Dominant-negative suppression of HCN channels markedly reduces the native pacemaker current I(f) and undermines spontaneous beating of neonatal cardiomyocytes. Circulation 2003;107:485-489.
    [25]Altomare C, Bucchi A, Camatini E, Baruscotti M, Viscomi C, Moroni A, et al. Integrated allosteric model of voltage gating of HCN channels. The Journal of general physiology 2001;117:519-532.
    [26]Ludwig A, Zong X, Stieber J, Hullin R, Hofmann F, Biel M. Two pacemaker channels from human heart with profoundly different activation kinetics. The EMBO journal 1999;18:2323-2329.
    [27]Seifert R, Scholten A, Gauss R, Mincheva A, Lichter P, Kaupp UB. Molecular characterization of a slowly gating human hyperpolarization-activated channel predominantly expressed in thalamus, heart, and testis. Proceedings of the National Academy of Sciences of the United States of America 1999;96:9391-9396.
    [28]Barbuti A, Baruscotti M, Altomare C, Moroni A, DiFrancesco D. Action of internal pronase on the f-channel kinetics in the rabbit SA node. The Journal of physiology 1999;520 Pt 3:737-744.
    [29]Viscomi C, Altomare C, Bucchi A, Camatini E, Baruscotti M, Moroni A, et al. C terminus-mediated control of voltage and cAMP gating of hyperpolarization-activated cyclic nucleotide-gated channels. The Journal of biological chemistry 2001;276:29930-29934.
    [30]Gravante B, Barbuti A, Milanesi R, Zappi I, Viscomi C, DiFrancesco D. Interaction of the pacemaker channel HCN1 with filamin A. The Journal of biological chemistry 2004;279:43847-43853.
    [31]Barbuti A, Gravante B, Riolfo M, Milanesi R, Terragni B, DiFrancesco D. Localization of pacemaker channels in lipid rafts regulates channel kinetics. Circulation research 2004;94:1325-1331.
    [32]Qu J, Kryukova Y, Potapova IA, Doronin SV, Larsen M, Krishnamurthy G, et al. MiRP1 modulates HCN2 channel expression and gating in cardiac myocytes. The Journal of biological chemistry 2004;279:43497-43502.
    [33]Stieber J, Herrmann S, Feil S, Loster J, Feil R, Biel M, et al. The hyperpolarization-activated channel HCN4 is required for the generation of pacemaker action potentials in the embryonic heart. Proceedings of the National Academy of Sciences of the United States of America 2003;100:15235-15240.
    [1]DiFrancesco D. Pacemaker mechanism in cardiac tissue. Annual review of physiology 1994;55:455-472.
    [2]Silverman ME, Grove D, Upshaw CB, Jr. Why does the heart beat? The discovery of the electrical system of the heart. Circulation 2006;113:2775-2781.
    [3]Huttmann A. [Discovery of the electrical activity and conduction system of the heart]. Wiener klinische Wochenschrift 1992;104:124-129.
    [4]Boineau JP, Schuessler RB, Mooney CR, Wylds AC, Miller CB, Hudson RD, et al. Multicentric origin of the atrial depolarization wave:the pacemaker complex. Relation to dynamics of atrial conduction, P-wave changes and heart rate control. Circulation 1978;58:1036-1048.
    [5]Schuessler RB, Boineau JP, Wylds AC, Hill DA, Miller CB, Roeske WR. Effect of canine cardiac nerves on heart rate, rhythm, and pacemaker location. The American journal of physiology 1986;250:H630-644.
    [6]Noble D. The surprising heart:a review of recent progress in cardiac electrophysiology. The Journal of physiology 1984;353:1-50.
    [7]Irisawa H, Brown HF, Giles W. Cardiac pacemaking in the sinoatrial node. Physiological reviews 1993;73:197-227.
    [8]Satoh H, Tsuchida K. Comparison of a calcium antagonist, CD-349, with nifedipine, diltiazem, and verapamil in rabbit spontaneously beating sinoatrial node cells. Journal of cardiovascular pharmacology 1993;21:685-692.
    [9]Guo J, Ono K, Noma A. A sustained inward current activated at the diastolic potential range in rabbit sino-atrial node cells. The Journal of physiology 1995;483(Pt 1):1-13.
    [10]Satoh H. Role of T-type Ca2+ channel inhibitors in the pacemaker depolarization in rabbit sino-atrial nodal cells. General pharmacology 1995;26:581-587.
    [11]Mitsuiye T, Shinagawa Y, Noma A. Sustained inward current during pacemaker depolarization in mammalian sinoatrial node cells. Circulation research 2000;87:88-91.
    [12]Shinagawa Y, Satoh H, Noma A. The sustained inward current and inward rectifier K+ current in pacemaker cells dissociated from rat sinoatrial node. The Journal of physiology 2000;523 Pt 3:593-605.
    [13]Guo J, Mitsuiye T, Noma A. The sustained inward current in sino-atrial node cells of guinea-pig heart. Pflugers Arch 1997;433:390-396.
    [14]Satoh H. Sino-atrial nodal cells of mammalian hearts:ionic currents and gene expression of pacemaker ionic channels. Journal of smooth muscle research=Nihon Heikatsukin Gakkai kikanshi 2003;39:175-193.
    [15]Robinson RB. Hyperpolarization-activated cation currents:from molecules to function. Annual review of physiology 2003;65:463-480.
    [16]Accili EA, Proenza C, Baruscotti M. From funny current to HCN:20 years of excitation. News Physiol Sci 2002;18:32-37.
    [17]Noble D, Tsien RW. The kinetics and rectifier properties of the slow potassium current in cardiac Purkinje fibres. The Journal of physiology 1968;195:185-214.
    [18]Peper K, Trautwein W. A note on the pacemaker current in Purkinje fibers. Pflugers Arch 1969;309:356-361.
    [19]DiFrancesco D. A new interpretation of the pacemaker current on calf Purkinje fibres. The Journal of physiology 1982;314:359-376.
    [20]DiFrancesco D. A study of the pacemaker current on calf Purkinje fibres. The Journal of physiology 1982;314:377-393.
    [21]DiFrancesco D. The contribution of the 'pacemaker' current (if) to generation of spontaneous activity in rabbit sino-atrial node myocytes. The Journal of physiology 1991;434:23-40.
    [22]Boyett MR, Honjo H, Kodama I. The sinoatrial node, a heterogeneous pacemaker structure. Cardiovascular research 2000;47:658-687.
    [23]Baruscotti M, Bucchi A, Difrancesco D. Physiology and pharmacology of cardiac pacemaker current. Pharmacology & therapeutics 2005;107:59-69.
    [24]DiFrancesco D, Ferroni A, Mazzanti M. Properties of the hyperpolarizing-activated current in cells isolated from rabbit sino-atrial node. The Journal of physiology 1986;377:61-88.
    [25]Accili EA, Robinson RB, DiFrancesco D. Properties and modulation of If in newborn versus adult cardiac SA node. The American journal of physiology 1997;272:H1549-1552.
    [26]Barbuti A, Baruscotti M, Altomare C, Moroni A, DiFrancesco D. Action of internal pronase on the f-channel kinetics in the rabbit SA node. The Journal of physiology 1999;520 Pt 3:737-744.
    [27]Zhou Z, Lipsius SL. Effect of isoprenaline on I(f) current in latent pacemaker cells isolated from cat right atrium:ruptured vs. perforated patch whole-cell recording methods. Pflugers Arch 1993;423:442-447.
    [28]Yu H, Chang F, Cohen IS. Pacemaker current exists in ventricular myocytes. Circulation research 1993;72:232-236.
    [29]Thuringer D, Lauribe P, Escande D. A hyperpolarization-activated inward current in human myocardial cells. Journal of molecular and cellular cardiology 1992;24:451-455.
    [30]Santoro B, Liu DT, Yao H, Bartsch D, Kandel ER, Siegelbaum SA, et al. Identification of a gene encoding a hyperpolarization-activated pacemaker channel of brain. Cell 1998;93:717-729.
    [31]Porciatti F, Pelzmann B, Cerbai E, Schaffer P, Pino R, Bernhart E, et al. The pacemaker current Ⅰ(f) in single human atrial myocytes and the effect of beta-adrenoceptor and Al-adenosine receptor stimulation. British journal of pharmacology 1997;122:963-969.
    [32]DiFrancesco D. The cardiac hyperpolarizing-activated current, if. Origins and developments. Progress in biophysics and molecular biology 1985;46:163-183.
    [33]van Ginneken AC, Giles W. Voltage clamp measurements of the hyperpolarization-activated inward current Ⅰ(f) in single cells from rabbit sino-atrial node. The Journal of physiology 1991;434:57-83.
    [34]Denyer JC, Brown HF. Rabbit sino-atrial node cells:isolation and electrophysiological properties. The Journal of physiology 1990;428:405-424.
    [35]Ishii TM, Takano M, Xie LH. Molecular characterization of hyperpolarization-activated cation channel in the rabbit heart sinoatrial node. The Journal of biological chemistry 1999;274:12835-12839.
    [36]Vaccari T, Moroni A, Rocchi M, Gorza L, Bianchi ME, Beltrame M, et al. The human gene coding for HCN2, a pacemaker channel of the heart. Biochimica et biophysica acta 1999;1446:419-425.
    [37]Ulens C, Tytgat J. Functional heteromerizations of HCN1 and HCN2 pacemaker channels. The Journal of biological chemistry 2001;276:6069-6072.
    [38]Schram G, Melnyk P, Nattel S. Differential distributions of cardiac ion channel expression as basis for regional specialization in electrical function. Circulation research 2002;90:939-950.
    [39]Moroni A, Barbuti A, Altomare C, Viscomi C, Morgan J, Baruscotti M, et al. Kinetic and ionic properties of the human HCN2 pacemaker channel. Pflugers Arch 2000;439:618-626.
    [40]Er F, Ludwig A. Dominant suppression of HCN channels reduces the native pacemaker current and undermines spontaneous beating of neonatal cardiomyocytes. Circulation 2003; 107:485-489..
    [41]Ludwig A, Jeglitsch M. The family of the hyperpolarization-activated mammalian cations channels. Nature 1998;393:587-591
    [42]Altomare C, Bucchi A, Camatini E. Integrated allosteric model of voltage gating HCN channels. The Journal of general physiology 2001;117:519-532.
    [43]Ludwig A, Stieber J, Biel M. The two pacemaker channels from the human heart with different activation kinetics. The EMBO journal 1999;18:2323-2329.
    [44]Seifert R, Scholten A, Gauss R, Mincheva A, Lichter P, Kaupp UB. Molecular characterization of a slowly gating human hyperpolarization-activated channel predominantly expressed in thalamus, heart, and testis. Proceedings of the National Academy of Sciences of the United States of America 1999;96:9391-9396.
    [45]Viscomi C, Altomare C, Bucchi A. C terminus-mediated control of voltage and cAMP gating hyperpolarization-activated cyclic nucleotide-gated channels. The Journal of biological chemistry 2001;276:29930-29934.
    [46]Altomare C, Brioschi C. Heteromeric HCN1-HCN4 channels:comparison with native pacemaker channels from rabbit sinoatrial node. The Journal of physiology 2003;549:347-359.
    [47]Ishii TM, Takano M, Ohmori H. Determinants in mammalian hyperpolarization-activated cation channels. The Journal of physiology 2001;537:93-100.
    [48]Chen J, Mitcheson JS, Tristani-Firouzi M. The S4-S5 linker couples voltage sensing of pacemaker channels. Proceedings of the National Academy of Sciences of the United States of America 2001;98:11277-11282.
    [49]Gravante B, Barbuti A, Milanesi R, Zappi I, Viscomi C, DiFrancesco D. Interaction of the pacemaker channel HCN1 with filamin A. The Journal of biological chemistry 2004;279:43847-43853.
    [50]Barbuti A, Gravante B, Riolfo M, Milanesi R, Terragni B, DiFrancesco D. Localization of pacemaker channels in lipid rafts regulates channel kinetics. Circulation research 2004;94:1325-1331.
    [51]Shi W, Wymore R, Yu H. Distribution of hyperpolarization-activated cation channel mRNA expression in cardiac tissues. Circulation research 1999;85: 1-6.
    [52]Qu J, Kryukova Y, Potapova IA, Doronin SV, Larsen M, Krishnamurthy G, et al. MiRP1 modulates HCN2 channel expression and gating in cardiac myocytes. The Journal of biological chemistry 2004;279:43497-43502.
    [53]Stieber J, Feil S. HCN4 is required for generation of the pacemaker action potential in embryonic heart. Proceedings of the National Academy of Sciences of the United States of America 2003;100:15235-15240.
    [54]Schulze-Bahr E, Neu A, Friederich P, Kaupp UB, Breithardt G, Pongs O, et al. Pacemaker channel dysfunction in a patient with sinus node disease. The Journal of clinical investigation 2003;111:1537-1545.
    [55]Yusuf S, Camm AJ. Sinus tachyarrhythmias and the specific bradycardic agents:a marriage made in heaven? Journal of cardiovascular pharmacology and therapeutics 2003;8:89-105.
    [56]Santoro B, Bartsch D, Kandel ER. Interactive cloning with the SH3 domain of a new brain specific ion channel protein, with homology to eag and cyclic nucleotide-gated channels. Proceedings of the National Academy of Sciences of the United States of America 1997;94:14815-14820.
    [57]Bucchi A, Baruscotti M, DiFrancesco D. Current-dependent block of rabbit sino-atrial node I(f) channels by ivabradine. The Journal of general physiology 2002;120:1-13.
    [58]Van Bogaert PP, Pittoors F. Use-dependent blockade of cardiac pacemaker current (If) by cilobradine and zatebradine. European journal of pharmacology 2003;478:161-171.
    [59]Marshall PW, Rouse W, Briggs I, Hargreaves RB, Mills SD, McLoughlin BJ. ICI D7288, a novel sinoatrial node modulator. Journal of cardiovascular pharmacology 1993;21:902-906.
    [60]Bois P, Bescond J, Renaudon B, Lenfant J. Mode of action of bradycardic agent, S 16257, on ionic currents of rabbit sinoatrial node cells. British journal of pharmacology 1996;118:1051-1057.
    [1]Akaike N, Shirasaki T. [Patch-clamp technique]. Yakubutsu, seishin, kodo= Japanese journal ofpsychopharmacology 1992;12:67-73.
    [2]Almers W, Roberts WM, Ruff RL. Voltage clamp of rat and human skeletal muscle:measurements with an improved loose-patch technique. The Journal of physiology 1984;347:751-768.
    [3]Almers W, Stanfield PR, Stuhmer W. Lateral distribution of sodium and potassium channels in frog skeletal muscle:measurements with a patch-clamp technique. The Journal of physiology 1983;336:261-284.
    [4]Fischmeister R, Ayer RK, Jr., DeHaan RL. Some limitations of the cell-attached patch clamp technique:a two-electrode analysis. Pflugers Arch 1986;406:73-82.
    [5]Franciolini F. Patch clamp technique and biophysical study of membrane channels. Experientia 1986;42:589-594.
    [6]Grygorczyk R, Schwarz W. Properties of the CA2+-activated K+ conductance of human red cells as revealed by the patch-clamp technique. Cell calcium 1983;4:499-510.
    [7]Hume JR, Leblanc RN. A whole-cell patch clamp technique which minimizes cell dialysis. Molecular and cellular biochemistry 1988;80:49-57.
    [8]Ince C, van Bavel E, van Duijn B, Donkersloot K, Coremans A, Ypey DL, et al. Intracellular microelectrode measurements in small cells evaluated with the patch clamp technique. Biophysical journal 1986;50:1203-1209.
    [9]Lippiat JD. Whole-cell recording using the perforated patch clamp technique. Methods in molecular biology (Clifton, NJ 2008;491:141-149.
    [10]Mathias RT, Cohen IS, Oliva C. Limitations of the whole cell patch clamp technique in the control of intracellular concentrations. Biophysical journal 1990;58:759-770.
    [11]Neher E. The use of the patch clamp technique to study second messenger-mediated cellular events. Neuroscience 1988;26:727-734.
    [12]Palmer LG Patch-clamp technique in renal physiology. The American journal of physiology 1986;250:F379-385.
    [13]Penner R, Neher E. The patch-clamp technique in the study of secretion. Trends in neurosciences 1989;12:159-163.
    [14]Schroder RL, Friis S, Sunesen M, Mathes C, Willumsen NJ. Automated patch-clamp technique:increased throughput in functional characterization and in pharmacological screening of small-conductance Ca2+ release-activated Ca2+ channels. J Biomol Screen 2008;13:638-647.
    [15]Wahler GM, Sperelakis N. Use of the cell-attached patch clamp technique to examine regulation of single cardiac K channels by cyclic GMP. Molecular and cellular biochemistry 1988;80:27-35.
    [16]Yang X, Liu X, Zhang XF, Lu HJ, Zhang YJ. [High-resolution patch-clamp technique based on feedback control of scanning ion conductance microscopy]. Sheng Li Xue Bao;62:275-283.
    [17]Kinosita K, Jr., Ashikawa I, Saita N, Yoshimura H, Itoh H, Nagayama K, et al. Electroporation of cell membrane visualized under a pulsed-laser fluorescence microscope. Biophysical journal 1988;53:1015-1019.
    [18]Sugar IP, Forster W, Neumann E. Model of cell electrofusion. Membrane electroporation, pore coalescence and percolation. Biophysical chemistry 1987;26:321-335.
    [19]Hamill OP, Martinac B. Molecular basis of mechanotransduction in living cells. Physiological reviews 2001;81:685-740.
    [20]Hamada K, Matsuura H, Sanada M, Toyoda F, Omatsu-Kanbe M, Kashiwagi A, et al. Properties of the Na+/K+ pump current in small neurons from adult rat dorsal root ganglia. British journal of pharmacology 2003;138:1517-1527.
    [21]Barry PH, Lynch JW. Liquid junction potentials and small cell effects in patch-clamp analysis. The Journal of membrane biology 1991;121:101-117.
    [22]Barry PH. JPCalc, a software package for calculating liquid junction potential corrections in patch-clamp, intracellular, epithelial and bilayer measurements and for correcting junction potential measurements. Journal of neuroscience methods 1994;51:107-116.
    [23]Fernandez JM, Bezanilla F, Taylor RE. Distribution and kinetics of membrane dielectric polarization. Ⅱ. Frequency domain studies of gating currents. The Journal of general physiology 1982;79:41-67.
    [24]Fernandez JM, Neher E, Gomperts BD. Capacitance measurements reveal stepwise fusion events in degranulating mast cells. Nature 1984;312:453-455.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700