4WID/4WIS电动车辆防滑与横摆稳定性控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全轮独立驱动独立转向(AWID/AWIS, All-wheels-independent-drive & steering vehicle)车辆是一种所有车轮均可独立驱动、独立转向的先进车辆。与传统车辆相比较,它具备更多、更灵活的转向驱动模式;每个车轮均可工作在最佳滑移率区间,能向车辆提供最优驱动力;通过车轮转向-驱动协调控制,可显著改善车辆的动力性、操纵性和安全性;AWID/AWIS车辆代表了未来高级车辆、军用车辆、无人驾驶车辆和大型高速高机动轮式移动机器人的发展方向。
     本论文结合在研的863项目,对AWID/AWIS车辆中最具有代表性的四轮独立驱动-独立转向(4WID/4WIS)电动车辆的防滑控制系统、动力学横摆稳定性控制以及与此密切相关的路面利用附着系数估计和路面识别问题进行了研究。论文的主要工作如下:
     1.论文首先建立了三个不同模型:四分之一车辆动力学模型、线性2自由度转向模型以及非线性的九自由度整车动力学模型,分别用于防滑系统设计、横摆稳定性控制系统的参考模型设计以及控制算法验证。
     2.把轮胎与地面之间的作用力作为系统的扩张状态,设计了二阶非线性扩张状态观测器。利用扩张状态观测器对轮胎与地面间的纵向力和轮速进行观测。在此基础上,计算出路面的当前利用附着系数,并根据已知的轮胎μ-s曲线信息,实时的对路面进行识别。避免了直接通过动力学方程计算而引入噪声和使用传感器测量路面特征带来的成本提高。驱动过程以及制动过程的仿真结果表明,本论文的方法在各种典型的路况以及突变的路况下均具有很强的鲁棒性和准确性。
     3.针对车辆防滑系统(包含驱动防滑系统和制动防抱死系统)的不确定性以及非线性特点,将自抗扰控制技术引入到车辆的防滑控制中。设计了跟踪目标滑移率的防滑控制系统,达到了制动防抱死和驱动防滑的目的。采用了遗传算法对控制器参数进行整定。各种工况下仿真结果表明:基于自抗扰技术的防滑系统对于外部扰动以及内部参数摄动均具有很强的鲁棒性。
     在路面识别的基础上,进一步的设计了对路面具有自适应功能的制动防抱死系统。该系统根据路面识别的结果实时的自动调整目标滑移率,达到了制动过程中充分利用地面附着力的目的。
     4.在高速转向的过程中,轮胎的侧偏角较大而进入侧偏特性的非线性区。利用线性2自由度模型设计的车辆横摆稳定性控制系统在轮胎的非线性区工作时将具有一定局限性。针对这一问题,基于4WID/4WIS动力学参数建立轮胎侧偏力与侧偏角之间非线性关系模型和4WID/4WIS车辆非线性2自由度模糊T-S模型,并进行了模型验证;采用模糊线性二次型最优控制设计了集成主动前轮转向、主动后轮转向、直接横摆力矩控制的车辆动力学横摆稳定性控制系统。仿真结果表明所建非线性模型的正确性和控制方法的鲁棒性。
     5.在无法获得4WID/4WIS车辆动力学参数的情况下,对侧偏角与横摆角速度之间的耦合性进行了分析,提出“当|β|比较小时以理想横摆角速度跟踪控制为主,当|β|比较大时以抑制质心侧偏角过大为主”的控制策略,利用模糊控制技术设计集成主动前轮转向、主动后轮转向和直接横摆力矩的横摆稳定性控制器,并利用九自由度车辆模型对上述控制方法有效性进行了仿真验证。
     6.简要介绍了样机的控制系统,通过实验验证了本文制动防滑控制方法以及集成的横摆稳定性模糊控制方法的有效性。
     本文成果也可以推广用于其它不同轮数的AWID/AWIS车辆动力学的控制,具有较好的普适性。
AWID/AWIS is a kind of advanced vehicle of which all-wheels can be driven and steered independently. Compared with traditional vehicle, AWID/AWIS vehicle has more and flexible steering and driven style. For example, each wheel can be driven with optimization slip rate and provide optimization force, which can improve the maneuverability, dynamic performance and safety of vehicle by controlling the steering and driving coordinated. It is the development tendency of advanced vehicle, military vehicle, unmanned vehicle and wheel mobile robots with high speed in the future.
     Supported by the 863 projects, the 4WID/4WIS vehicle, which is the most typical vehicle of AWID/AWID, is studied in this paper. The research contents of this paper include:Anti-skid system, vehicle dynamic stability control system of 4WID/4WIS, and the method for estimation of utilization adhesion coefficient and road identification, which is strongly associated with Anti-skid and VDC.
     The main work of this paper is as follows:
     1. Firstly, three models were built, which were a quarter dynamic model of vehicle, linear dynamic model with two freedoms for steering, and nonlinear dynamic model with nine freedoms for the whole vehicle. They were used for Anti-skid system design, the reference model of yaw stability controller and control algorithm verification.
     2. By considering the force between the tire and road as an extended state of the system, a nonlinear second-order Extend State Observer was proposed. The longitudinal force was observed by ESO, so the utilization adhesion coefficient was estimated and the road was identified by curve of tire real time. This method avoided the noise caused by direct calculation, and cut back the cost of the sensor for measuring the road. Simulation of driving and braking indicated that this method is robust and accurate under typical road conditions and abrupt road changes.
     3. According to the uncertainty and nonlinearity of Anti-skid system (include Anti-lock Braking and Anti-Slip Reguration), Active Disturbance Rejection Control was introduced to design ABS and ASR system, whose target were to trace the anticipant slip ratio. Genetic algorithm was adapted for adjusting the parameters of ADRC controller. Simulation of some conditions indicated that ABS and ASR based on ADRC are robust to parameters perturbation and external disturbances.
     The ABS system which can be adaptive to road was designed based on foregoing works. It regulates anticipant slip rate during the braking process according to the result of road identification. And it takes full advantage of the forces between road and tire during braking process.
     4. During the process of steering with high speed, the side slip angle of tire is larger and in nonlinear cornering properties regional, the controller designed on linear model with two freedoms would has some limitation. To solve this problem, nonlinear cornering properties of tire model and nonlinear 4WID/4WIS vehicle model with two freedoms of vehicle were built based on parameters of 4WID/4WIS, the validation of these models were testified in succession. An Integrated yaw stability controller composed of Active Front Wheel Steering, Active Rear Wheel Steering and Direct Yaw moment Control were designed, Fuzzy Linear quadratic regulator was adopted in this controller. Simulation results indicated the validity of the nonlinear model and the robustness of control method.
     5. Sometimes parameters of 4WID/4WIS can not obtained. After analyzing the coupling relationship between vehicle side slip angle and yaw rate, a fuzzy yaw stability controller composed of AFS, ARS and DYC was designed based on the strategy 'when|β| is small, the main aim is to follow the anticipant yaw rate, and when|β| is big, the main aim is to reduce vehicle side slip angle'. Contrasting simulation results based on nine freedoms model indicated the validity and feasibility of this method.
     6. The configuration of the control system was introduced briefly. The validity of yaw stability control system and ABS control method proposed in this paper were proved by experiment.
     Achievements of this paper possess preferable applicability, and they can be popularized and applied on other AWID/AWIS vehicle with different number of wheels.
引文
[1]http://www.daimlerchrysler.com/dccom/0-5-7154-1-450342-1-0-0-447342-0-0-135-7145-0-0-0-0-0-0-1.html,2007年3月16日.
    [2]http://china5.nikkeibp.co.jp/china/news/news/200510/auto200510130119.html,2007年3月12日.
    [3]Huihuan QIAN, Tin Lun LAM, Weimin LI, Chenggang XIA, Yangsheng XU. System and Design of an Omni-directional Vehicle,Proceedings of the 2008 IEEE International Conference on Robotics and Biomimetics, Bangkok, Thailand, February 21-26,2009:389-394.
    [4]http://arl.acae.cuhk.edu.hk/node/5752007年11月6日.
    [5]Alejandro D, Dominguez-Garcia, John G, Kassakian, Schindall. A automotive steer-by-wire actuated by selective braking [C].2004 35th annual electronics specialists conference, Aachen, Germany, IEEE 2004:383-388.
    [6]Mokhiamar, OAbe.M. Active Wheel Steering and Yaw Moment Control Combination to Maximize Stability as Well as Vehicle Responsiveness During Lane Change for Active Vehicle Handling Safety [J]. Proceeding of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering,2002,216(2):115-124.
    [7]LvHM, ChenN. Multi-Objective Hinf Optimal Control for Four-Wheel Steering Vehicle Based on Yaw Rate Tracking[C], Proceeding of the Institution of Mechanical Engineers, Part D. Journal of Automobile Engineering,2004,218(10):1117-1123.
    [8]Morteza MG, Poursamad A, Ghalic B. Application of generic algorithm for optimization ofcontrol strategies in parallel hybrid electric vehicles [J]. Journal of the FranklinInstitute, 2006(343):420-435.
    [9]Kai Zheng, Tielong Shen, Yu Yao. A Robust Nonlinear Control Approach for the Traction Problem in Electrical Vehicles[C], Vehicle Power and Propulsion Conference,2006,VPPC'06. IEEE,1-5.
    [10]朱忠伦.典型车辆动力学稳定性控制系统及关键技术[J].轻型汽车技术,2006(11):4-7.
    [11]余卓平,左建令,张立军.路面附着系数估算技术发展现状综述[J].汽车工程,2006,28(6):546-549.
    [12]边明远.汽车主动安全性控制系统路况识别技术纵览[J].汽车研究与开发,2002(1),31-33.
    [13]Lin.PP, Maosheng Ye, Kuo-Ming Lee. Intelligent observer-based road surface condition detection and identification. Systems, Man and Cybernetics,2008 SMC 2008. IEEE International Conference on,2008:2465-2470.
    [14]Yukihisa Sasada, Yasuhiro Miyata, Koichi Sugiyama. Development of the Road Surface Condition Sensing System. Intelligent Transportation Systems.1999 Proceedings,1999
    IEEE/IEEJ/JSAI International Conference on,1999:14-19.
    [15]边明远.汽车防滑控制系统(ABS/ASR)道路识别技术及车身速度算法研究[D].北京:北京理工大学,2003.
    [16]Carlos Canduade-wit, Roberto Horowitz. Observers for Tire/road Contact Friction using only wheel angular velocity information, Proceedings of the 38 Conference on Decision & Control, 3932-3937.
    [17]ARabhi NKM, Sirdi, AElhajjaji. Estimation of Contact Forces and Tire Road Friction[C]. Mediterranean conference On control and Automation. Athens Greece, Mediterranean Conference and Automation,2007:1-6.
    [18]C.Canudas de Wit, P.Tsiotras, E.Velenis. Dynamic Friction Models for Road/Tire Longitudinal Interaction[J]. Vehicle System Dynamics,2003,39(3):189-226.
    [19]J. Davila, L.Fridman. Observation and Identification of Mechanical Systems via Second Order Sliding Mode.8th International Workshop on Variable Structure Systems, September 2006,232-237.
    [20]Jianmin-tao, Baohua-wang. Study of the dynamic threshold and control logic on anti-lock brakesystem[C], IEEE 1999:82-86.
    [21]Chankyu Lee, Karl Hedrick, Kyongsu Yi. Real-time slip-based estimation of maximum tire-roadfriction coefficient[J].Proc.IEEE/ASME Transactions On Mechatronics, 2004,9(2):454-458.
    [22]Kakeyama.I, Katayama T.A. Study of Anti-Lock Braking Systems with μ Estimation[C]. Proceedings of AVEC'96, International Symposium on Advanced VehicleControl, 1996:695-704.
    [23]Laura Ray. Nonlinear state and tire force estimation for advanced vehicle control[J]. Automatica ,1997,33(10):1819-1833.
    [24]Sun Zhen-jun, Zhu Tian-jun, Zheng Hong-yan. Research on Road Friction Coefficient Estimation Algorithm Based on Extended Kalman Filter[C]. International Conference on Intelligent Computation Technology and Automation (ICICTA),2008:418-422.
    [25]Jianmin Tao, Baohua Wang. Study of the dynamic threshold and control logic on anti-lock break system(ABS)[C]. IVEC'99,1999:82-85.
    [26]葛英辉,倪光止.采用滑模变结构的电动车最佳滑移率控制的研究[J].江南大学学报(自然科学版),2004,3(5):454-459.
    [27]赵林辉,刘志远,陈虹.车速和路面附着系数的滚动时域估计[J].汽车工程,2009,3 1(6):520-525.
    [28]李君,喻凡,张建武.基于道路自动识别ABS模糊控制系统的研究[J].农业机械学报, 2001,32(5):26~29.
    [29]刘国福,王跃科,郑伟峰.防抱制动系统基于模型的最佳滑移率计算方法[J].汽车工程,2004,26(3):303-305.
    [30]王波,孙仁云,陈飞.汽车ABS最佳滑移率的在线识别[J].汽车技术,2006,(5):9-12.
    [31]罗玉涛,黄向东,符兴锋.4WD电动车的滑转率识别及防滑控制[J].华南理工大学学报(自然科学版),2008,36(.6):95-100.
    [32]吴利军,王跃建,李克强.面向汽车纵向安全辅助系统的路面附着系数估计方法[J].汽车工程,2009,31(3):239-243.
    [33]余卓平,左建令,陈慧.基于四轮轮边驱动电动车的路面附着系数估算方法[J].汽车工程,2007,29(2):141-145.
    [34]杨财,李亮,宋健,李红志.基于轮胎力观测器的路面附着系数识别算法[J].中国机械工程,2009,20(7):873-876.
    [35]马岳峰.汽车ABS/ASR/ACC集成系统中ASR控制技术的研究[D],北京理工大学,2004,6.
    [36]齐志权.汽车ABS/ASR/ACC集成系统中ABS控制技术的研究[D],北京理工大学,2004,6.
    [37]边明远.汽车ASR技术研究的进展[J].北京汽车,2002,(4):9-14.
    [38]Amodeo, M.Ferrara, A.Terzaghi, R.Vecchio. Wheel slip control via second order sliding modes generation Decision and Control,2007 46th IEEE Conference on,3889-3894.
    [39]Jalili-Kharaajoo.M, Besharati.F. Sliding mode traction control of an electric vehicle with four separate wheel drives[C]. Emerging Technologies and Factory Automation,2003, Proceedings ETFA'03. IEEE Conference (2):291-296.
    [40]Jalili-Kharaajoo, M.Rouhani.H. Robust nonlinear control applied to traction control of electric vehicles[C], Proceedings of the 10th IEEE International Conference on Electronics, Circuits and Systems, ICECS 2003:392-395.
    [41]Anwar.S. An anti-lock braking control system for a hybrid electro magnetic electro hydraulic brake-by-wire system[C], American Control Conference,2004. Proceedings of the 2004, vol3:2699-2704.
    [42]Pedro.J, Oyandoro, John.S. Neural network based feedback linearisation slip control of an anti-lock braking system[C]. Asian Control Conference,2009. ASCC 2009:1251-1257.
    [43]Mirzaei, A. Moallem, M.Mirzaeian, B.Fahimi.B. Design of an optimal fuzzy controller for antilock braking systems, Vehicle Power and Propulsion,2005 IEEE Conference,823-828.
    [44]Seunghwan Baek, Jeonghoon Song, Duksun Yun, Heungseob Kim, Kwangsuck Boo. Application of a sliding mode control to anti-lock brake system[C]. Control, Automation and Systems,2008. ICCAS 2008. International Conference on,307-311.
    [45]Ebrahimirad, H.Yazdanpanah, M.J.Kazemi. Sliding mode four wheel slip-ratio control of anti-lock braking systems[C]. Industrial Technology,2004. IEEE ICIT '04.2004 IEEE International Conference on,1602-1606.
    [46]Stefan Tomas Forsberg. Sliding Model control as design method for automotive Traction Control[D]. Mscthesis, GothenBurg. Department of macthine and Vehicle systems, Chalmers University of Technology, dSPACE,2004.
    [47]William K.Lennon, Kevin M.Passino. Intelligent Control for Brake Systems[J]. Control Systems Technology, IEEE Transactions on,1999,7(2):188-202.
    [48]Precup.RE, Preitl, S.Balas, M.Balas. Fuzzy controllers for tire slip control in anti-lock braking systems[C]. IEEE International Conference on Fuzzy Systems,2004 Proceedings,1317-1322.
    [49]Mirzaei.A, Moallem.M, Mirzaeian.B. Designing a Genetic-Fuzzy Anti-Lock Brake System Controller[C]. Intelligent Control, Proceedings of the 2005 IEEE International Symposium on, Mediterrean Conference on Control and Automation,2005:1246-1250.
    [50]李静,张家财,李幼德,冯建忠.汽车驱动防滑遗传PI控制半实物仿真[J].系统仿真学报,2006,118(7):1972-1975.
    [51]李静,李幼德,赵健,宋大凤.车辆牵引力控制系统控制算法仿真研究[J].农业机械学报,2003,34(6):30-33.
    [52]毛艳娥,井元伟,张嗣瀛.汽车ABS滑模变结构控制方法的研究[J].系统仿真学报,2008,2(5):1243-1245.
    [53]唐国元,宾鸿赞.ABS的模糊滑模变结构控制方法及仿真研究[J].中国机械工程,2007,18(13):1629-1632.
    [54]毛艳娥,井元伟,曹一鹏,张嗣瀛.基于RBF神经网络的汽车ABS滑模控制器的设计[J].东北大学学报,2009,30(3):309-312.
    [55]Park.MK, Suh.I.H, Byoun.S, J.Oh.S.R. An intelligent coordinated control system for steering and traction of electric vehicles[C]. Proceedings of IEEE IECON 22nd International Conference on Industrial Electronics, Control, and Instrumentation,1996:1972-1977.
    [56]喻凡,李道飞.车辆动力学集成控制综述[J].农业机械学报,2008,39(6):1-7.
    [57]武建勇.提高车辆操纵稳定性的底盘集成控制系统设计与方法研究[D].上海交通大学,2008,1.
    [58]刘奋.四轮转向汽车侧向动力学特性及其控制研究[D].上海交通大学,2004.
    [59]Yuhara N, Horiuchi S, Arato Y. A robust adaptive rear wheel steering control system for handling improvement of four-wheel steering vehicles[J]. Vehicle System Dynamics,1991, (20):666-680.
    [60]Horiuchi S, Yuhara N, Takei A. Two degree of freedom H∞ controller synthesis for active four wheelsteering vehicles [J]. Vehicle System Dynamics,1996,(25):275-292.
    [61]Song JG, Yoon YS. Feedback control of four-wheel steering using time delay control[J]. International Journal of Vehicle Design,1998,19(3):282-298.
    [62]Thomas Michael Hessburg. Fuzzy logic control with Adaptive Methods for Vehicle Lateral Guidance[D]. University of California,1994.
    [63]Masugi KAMINAGA, J.Karl HEDRICK. Adaptive sliding mode control in the presence of saturating tire forces [J]. JSME International Journal Series C,1999,42(2):281-286.
    [64]管西强,屈求真,张建武.四轮转向汽车的滑模变结构控制[J].机械工程学报,2002,38(3):54-58.
    [65]屈求真,刘延柱,张建武.四轮转向汽车自适应模型跟踪控制研究[J].汽车工程,2000,22(2):73-76.
    [66]陈南.基于μ综合鲁棒控制的四轮转向车辆操纵稳定性研究[J].中国工程科学,2005,7(4):54-58.
    [67]殷国栋,陈南,李普.基于降阶观测器的四轮转向车辆扰动操纵稳定性控制[J].机械工程学报,2004,40(10):68-72.
    [68]王宏礼.汽车四轮转向系统的H2/H∞混合控制[J].汽车工程,2003,25(6);578-580.
    [69]李铂.四轮主动转向的两自由度鲁棒控制[J].中国机械工程,2004,9,15(17):1580-1583.
    [70]王洪礼,张锋,乔宁.汽车四轮转向系统的非线性控制[J].机械强度,2003,25(2):130-133.
    [71]王洪礼,胡斌,乔宁.汽车四轮转向非线性模型的神经网络控制[J].机械强度,2003,25(1):25-28.
    [72]宋正华,陈南.4WS汽车虚拟模型的闭环控制动力学仿真[J].电气技术与自动化,2005,34(1):93~96.
    [73]Anton Van Zanten. Improvement of Road vehicle handling by Mechatronic System[C].1st IFAC-Conf.on Mechatronic System.Darmstadt, Germany,2000,9.
    [74]Esmailzadeh E, Goodarzi A, Vossoughi G R. Optimal yaw moment control law for improving vehicle handling[J]. Mechatronics,2003,13 (7):659-675.
    [75]Buckholtz KR. Use of Fuzzy Logic in Wheel Slip Assignment-Part Ⅱ:Yaw Rate control with Sideslip Angle Limitation[J]. Society of Automotive Engineers,2002-01-1220.
    [76]Zhou Q, Wang F. Driver assisted fuzzy control of yaw dynamics for 4WD vehicles[C]. IEEE Intelligent Vehicles Symposium, Parma, Italy, IEEE,2004:425-430.
    [77]Cong Geng, Mostefai.L, Denai.M, Hori.Y. Ossama Mokhiamar, Massato Abe. Direct Yaw-Moment Control of an In-Wheel-Motored Electric Vehicle Based on Body Slip Angle Fuzzy Observer Industrial Electronics, IEEE Transactions on 2009,1411-1419.
    [78]Masato Abe. Side-slip Control to Stabilize Vehicle Lateral Motion by Direct Yaw Moment. JSAE Review 22(2001),2001.
    [79]Ossama Mokhiamar, Masato Abe. Effect of Model Response on Model Following Type of Combined Lateral Force and Yaw Moment Control Performance for Active Vehicle Handling Stability. JSAE'20024669.
    [80]Niasar A H, Moghbeli H, Kazemi R. Yaw moment control via emotional adaptive neuro fuzzy controller for independent rear wheel drives of an electric vehicle[C]. IEEE Conference on Control Applications CCA 2004.Istanbul, Turkey IEEE,2003:380-385.
    [81]郭孔辉,丁海涛.轮胎附着极限下差动制动对汽车横摆力矩的影响[J].汽车工程,2002,24(2),101-104.
    [82]赵治国,方宗德,黄英亮.车辆动力学稳定性系统变结构滑模控制研究[J].中国机械工程,2003,14(2):152-156.
    [83]黄智,钟志华.独立轮电驱动车辆主动操纵稳定控制研究[J].汽 车 工程,2005,27(5):565-569.
    [84]朱德军,陈南,任祖平.基于H∞理论的车辆稳定性控制[J].精密制造与自动化,2005,(1):49-52.
    [85]李彬,喻凡.车辆横摆稳定性的模糊控制[J].上海交通大学学报,2008,42(6):900-904.
    [86]余卓平,高晓杰,张立军.用于车辆稳定性控制的直接横摆力矩及车轮变滑移率联合控制研究[J].汽车工程.2006,28(9):844-848.
    [87]余卓平,姜炜,张立军.四轮轮毂电机驱动电动汽车扭矩分配控制[J].同济大学学报(自然科学版),2008,36(8):1 1 15-11 19.
    [88]皮大伟,陈南,王金湘.模糊逻辑在车辆稳定性控制系统中的应用[J].东南大学学报(自然科学版),2008,38(1):4348.
    [89]Li Jianfeng, Gao Li. Neural Network Control Approach of Vehicle Active Yaw Moment[C]. Proceedings of the 25th Chinese Control Conference 7-11 August,2006:1714-1717.
    [90]李静,徐斌,张英锋.车辆电子稳定性程序神经网络PID控制算法[J].吉林工业大学学报,2007,35(4):741-744.
    [91]周红妮.车辆稳定性控制方法与策略的比较研究[D].武汉科技大学,2006.
    [92]王庆年,张缓缓,靳立强.四轮独立驱动电动车转向驱动的转矩协调控制[J].吉林工业大学学报,2007,37(5):985-989.
    [93]余卓平,赵治国,陈慧.主动前轮转向对车辆操纵稳定性能的影响[J].中国机械工程,2004,16(07):652-657.
    [94]李亮,宋健,祁雪乐.汽车动力学稳定性控制系统研究现状及发展趋势[J].农业机械学报,2006,37(2):141—144.
    [95]Nagai M, Shino M, Gao F. Study on integrated control of active front steer angle and direct yaw moment. JSAE Review,2002,23:309-315.
    [96]Nohtomi S, Okada K, Horiuchi S. Application of analytic hierarchy process to stochastic robustness synthesis of integrated vehicle controllers. Vehicle System Dynamics,2005,42(12): 3-21.
    [97]Nagai M, Yamanaka S. Integrated Control Law of Active Rear Wheel Steering and Direct Yaw Moment Control. Proceeding of AVEC'96,1996,465-469.
    [98]R.Karbalaei, A Ghaffari, R.Kazemi. Design of an integrated AFS DYC based on fuzzy logic control [C]. IEEE International Conference on Vehicular Electronics and Safet, Dec,2007: 1-6.
    [99]Boada M J L, Boada B L, Mu.nozA, et al. Integrated control of front wheel steering and front braking forces on the basis of fuzzy logic[J]. IMechE Part D, Journal of Automobile Engineering,2006,220:253-267.
    [100]He J J, Crolla D A, Levesley M C, Manning W J. Integrated Active Steering and Variable Torque Distribution Control for Improving Vehicle Handling and Stability. SAE paper 2004,01,1071.
    [101]BrennanS, Alleyne A. Integrated Vehicle Control via Coordinated Steering and Wheel Torque Inputs[C]. Proceedings of the American Control Conference, Arlington, VA June,2001:25-27.
    [102]R.Kazemi, M.Keshavarz, Bahaghighat, K.Panahi. Yaw moment control of four wheel steering vehicle by fuzzy approach[C]. IEEE International Conference on Industrial Technology, April,2008,1-7.
    [103]Horiuchi S, Okada.K. Effects of Integrated Control Active Wheel Steering and Individual Wheel Torque on Vehicle Handling and Stability—A Comparison of Alternative Control Strategies, Vehicle System Dynamics,1999,(33):680-691.
    [104]Mammar.S. Combining active steering and independent wheels braking for CIVIC lateral assistance.American Control Conference,2004. Proceedings of the 2004:1469-1474.
    [105]Wu Jianyong, Tang Honjun, Li Shaoun, Fang Wan. Improvement Of Vehicle handling and Stability By integrated control of four wheel steering and direct yaw moment[C]. proceedings of 26th Chinese control conference, July 26-31,2007:730-734.
    [106]祁永宁,陈南,李普.四轮转向车辆的直接横摆力矩控制[J].东南大学学报,2004,34(2):451-454.4.
    [107]杜锋.基于线控技术的四轮主动转向汽车控制策略仿真研究[D].长安大学,2009.
    [108]WU Yihu, SONG Dandan, HOU Zhixiang, YUAN Xiang. A Fuzzy Control Method to Improve Vehicle Yaw Stability Based on Integrated Yaw Moment Control and Active Front Steering[C]. Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation August 5-8,2007, Harbin, China,1508-1512.
    [109]Jiang Wei, Yu Zhuoping, Zhang Lijun. Integrated Chassis Control System for ImprovingVehicle Stability[C],2006 IEEE International Conference on Vehicular Electronics and Safety, ICVES,2006,295-298.
    [110]Zhu tianjun, Zong changfu. Research on Control Algorithm for DYC and Integrated Control with 4WS,2009 International Conference on Computational Intelligence and Natural Computing,2009,166-169.
    [111]Li Zhou. Linli Ou, Cui Wang. A Simulation of the Four-Wheel Steering Vehicle Stability Based On DYC Control.2009 International Conference on Measuring Technology and Mechatronics Automation,2009:189-193.
    [112]Lixia Zhang, Fuquan Pan, Fengyuan Wang. Simulation on Automobile Handling and Stability Based on Combination Control,2009 International Conference on Measuring Technology and Mechatronics Automation,2009:347-350.
    [113]余志生.汽车理论[M].北京:机械工业出版社,2006.
    [114]韩京清.自抗扰控制技术-估计补偿不确定因素的控制技术[M].北京:国防工业出版社,2008.
    [115]韩京清.从PID技术到“自抗扰控制”技术[J].控制工程,2002,3(4):13-18.
    [116]冯光,黄立培,朱东起.采用自抗扰控制器的高性能异步电机调速系统[J].中国电机工程学报,2001,21(10):55—58.
    [117]朱西成.汽车防抱死制动系统的设计[D].西北工业大学,2005,3.
    [118]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,2005.
    [119]张付祥,付宜利,王树国.基于遗传算法的多PID控制器参数整定[J].制造业自动化,2005,27(5):1-2.
    [120]刘金琨.先进PID控制MATLAB仿真(第2版)[M].北京:电子工业出版社,2006.
    [121]Okan TUR, Ozgur USTUN. An Introduction to Regenerative Braking of Electric Vehicles as Anti-Lock Braking System[C]. Proceedings of the 2007 IEEE Intelligent Vehicles Symposium, 2007:944-948.
    [122]Jianbo Cao, Binggang Cao, Wenzhi Chen, Peng Xu. Neural Network Self-adaptive PID Control for Driving and Regenerative Braking of Electric Vehicle[C]. Proceedings of the IEEE International Conference on Automation and Logistics,2007:2029-2034.
    [123]S. R. Cikanek, K. E. Bailey. Regenerative Braking System For A Hybrid Electric Vehicle[C], Proceedings of the American Control Conference,2002:3129-3134.
    [124]Ye Min, Bai Zhifeng, Cao Binggang. Robust H2/H ∞ infinity Control for Regenerative Braking of Electric Vehicles[C]. IEEE International Conference on Control and Automation,, 2007:1366-1370.
    [125]陈庆樟,何仁,商高高.基于ABS的汽车能量再生制动集成控制研究[J].汽车工程,2008,30(4):301-304.
    [126]王生德,带再生制动的电动车辆斩波器的研究[J].郑州大学学报(自然科学版),1 997,2(2):69-72.
    [127]李华德.电力拖动控制系统[M].北京:电子工业出版社,2006.
    [128]周红妮.车辆稳定性控制方法与策略的比较研究[D].武汉科技大学,2006.
    [129]杜锋.基于线控技术的四轮主动转向汽车控制策略仿真研究[D],长安大学,2009.
    [130]姚国成.汽车稳定性控制策略的仿真研究[D].吉林大学,2007.
    [131]张化光.智能控制基础理论与应用[M].北京:机械工业出版社,2005.
    [132]孙增圻.智能控制理论与应用[M].北京:清华大学出版社,1996.
    [133]王琨.全轮独立驱动车辆动力学协调控制方法研究[D],山东大学,2009.
    [134]张媛媛.采用电动轮驱动的电动汽车转矩协调控制研究[D],吉林大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700