高功率半导体激光器结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经历了数十年的发展,高功率半导体激光器性能日益成熟化和多样化,人们对高功率半导体激光器的需求也在不断增加。随着国内芯片外延水平的提高,国内高功率半导体激光器研究在最近十年取得了长足的进步,但仍然明显落后于国外,对于半导体激光器结构和工艺的优化也提出了更高的要求,本文主要针对高功率半导体激光器新结构的优化制备工艺进行深入的研究。主要研究内容和成果如下:
     对激光器的灾变性光学镜面损伤产生的原因进行了探讨。针对腔面薄膜的损伤原理,将高反膜中场强最大处移出界面,采用光学传输矩阵,对厚度连续变化的界面场强和反射率进行了计算,得到优化高反膜系。采用改进后束流密度更大的LaB6作为阴极原位等离子源,对离子源清洗的参数进行了优化。薄膜制备前期使用离子清洗的方法在真空环境下对腔面进行去氧化,在制备过程中使用电子束蒸发离子源辅助沉积,并测试了薄膜在高温高湿环境下的稳定性。优化的膜系和清洗方法下制备的半导体激光器,在准连续输出情况下,功率由4.6W提升到了7W,工作电流由5A提升到了8A。
     通过非闭合环结构制备了808nm2×2VCSEL列阵。采用波形分析法对VCSEL列阵的功率进行了测量,在脉冲宽度为20ns,,重复频率为100Hz注入电流为110A的最大峰值功率为30W,斜率效率为0.27W/A,在脉冲宽度为60ns,重复频率为100Hz,注入电流为30A的最大功率为9W,斜率效率为0.3W/A。对列阵的近场和远场进行了测量,近场为4个环形分布的单管,远场为近高斯分布。激光器垂直发散角和水平发散角半高全宽分别为16.9°和17.6°。实现了808nm VCSEL列阵高峰值功率,为激光测距,激光引信等提供了器件基础。
     通过变温塞耳迈耶尔方程计算了InGaAlAs量子阱VCSEL的温度漂移系数。出光单元为60μm的VCSEL列阵通过热沉温度调节,对不同温度下的激射波长、光功率以及阈值电流进行了测量。在20℃,脉宽为50μs、重复频率100Hz的脉冲条件下,最大输出功率达到56mW,中心光谱值为808.38nm,光谱半宽为2.5nm,连续输出功率为达到22mW。通过变温测试,得到输出功率在50℃以上衰减剧烈,列阵的温漂系数为0.055nm/K,实验测得温漂系数与理论值保持一致。
     为了进一步增大注入电流,提高激光器的输出功率,防止漏电流的发生,对SiO2介质薄膜的制备工艺进行优化。优化了离子辅助沉积工艺条件,使用台阶仪测量了SiO2薄膜的曲率变化,通过Stoney理论计算了其应力大小,选取镀膜条件为Ar+离子辅助沉积,薄膜厚度为250nm,生长速率为0.8nm/s制备的SiO2薄膜的应力远小于常规工艺条件下沉积薄膜的应力,且退火前后应力变化小,得出了制备高质量、低应力和退火前后性质稳定的介质薄膜工艺条件。在此条件下制备的钝化层用于激光器,其输出功率达到92W。
Experienced several decades of development, the performance of high powersemiconductor laser has become more sophisticated and exuberant. The demand forhigh power semiconductor lasers is also increasing.Great development has takenplace in high power semiconductor lasers in recent ten years with the improvementof domestic epitaxy chip level, but still far behind the foreign countries. The requstof optimization in semiconductor laser technology and semiconductor laser structureis in demand. In this paper, optimization of new structure high power semiconductorlaser and process has bee deeply researched. The major contents and achievementsof the study are as follows:
     The causes of the catastrophic optical mirror damage in the laser are discussed.The highest field intensity move out of the interface in the HR film against thedamage principle. The reflectance and electric field distribution is simulated withfilm thickness continuous changing using optical transmission matrix, the filmdamage is reduced at the interface by the optimization film. Higher Plasma densityLaB6is adopted as in situ plasma source, also the cleaning parameter of ion source isoptimized. Facet de-oxidation is made with ion pre-cleaning in a high vacuumenvironment, and the film is fabricated with ion-assisted electron beam evaporation.The stability of film is tested under high temperature and high humidity environment.The laser output power is raised from4.5W to7W, operating current is raised from 5A to8A in the case of the quasi-continuous operation with the optimized film andcleaning method.
     2×2VCSEL array is fabricated with non-closed ring structure. The peak powerof the VCSEL array is tested under waveform analysis method. the peak power is30W in60ns pulse width and100Hz repetition rate, and the slope efficiency is0.27W/A; the peak power is9W in20ns pulse width and100Hz repetition rate, andthe slope efficiency is0.3W/A. Also, the near-field and far-field of VCSEL array aremeasured, near-field is of4annular distribution singl emitter, the far field is nearlyGaussian distribution. The beam divergence with full-width at half maximum was16.9°and17.6°respectively in the vertical and lateral directions. High outputpower of808nm VCSEL array is obtained,which provide a device basis for laserdistance measuring and laserfuze.
     The InGaAlAs VCSEL temperature shift is calculated under thetemperature-dependent Sellmeier equation. Each emitter diameter is60μm. Lasingwavelength, optical power and the threshold current are measured by changing thetemperature of heat sink. The maximum output power reaches56mW in the pulsewidth of50μs, and the repetition frequency of100Hz in20℃. The centralwavelength is808.38nm, and the full width at half maximum is2.5nm, continuousoutput power reaches22mW, the output power decreases rapidly above50℃,thetemperature shift is0.055nm/K. Experimentally temperature shift is consistent withthe theoretical value.
     Inorder to increase the inject current for increasing the output power of laser,and prevent the occurrence of leakage current, the process of SiO2dielectric film isoptimized. Ion assisted deposition conditions is Optimized, The curvature change ofSiO2thin films is measured by step profiler, also the stress is calculated by Stoneytheory. Finally, the deposition conditions is selected by Ar+ion assisted, thicknessof250nm, growth rate of0.8nm/s.In which condition, the film stress is muchsmaller than the traditional method, and the changes of stress is small before andafter annealing. The deposition conditions is obtained in preparing high quality, low stress dielectric film before and after annealing. The output power of VCSEL is92wwith the optimized SiO2dielectric film.
引文
[1]黄德修,刘雪峰,半导体激光器及其应用[M].国防工业出版社,1999
    [2] P. Aigrain, as reported in Proc[C],Conf. Quanttum Electron., Paris,1963
    [3] N. Basov, B. Vul, Y. M. Popov. Quantum-mechanical semiconductor generatorsand amplifiers of electromagnetic oscillations[J]. Sov. Phys. JETP,1959,10416
    [4] N. Basov, O. Krokhin, Y. M. Popov. Production of negative temperature states inpn junctions of degenerate semiconductors[J]. JETP,1961,401320
    [5] M. G. Bernard,G. Duraffourg. Laser conditions in semiconductors[J]. physicastatus solidi (b),1961,1(7):699-703
    [6] W. Dumke. Interband transitions and maser action[J]. Physical Review,1962,127(5):1559
    [7] T. Quist, R. Rediker, R. Keyes et al.. Semiconductor maser of GaAs[J]. Appl PhysLett,1962,1(4):91-92
    [8] R. Hall, G. Fenner, J. Kingsley et al.. Coherent Light Emission from Ga-AsJunctions[J]. Phys. Rev. Lett,1962,9366
    [9] M. I. Nathan, W. P. Dumke, G. Burns et al.. Stimulated emission of radiation fromGaAs p‐n junctions[J]. Appl Phys Lett,1962,1(3):62-64
    [10] N. Holonyak,S. Bevacqua. Oscillations in Semiconductors due to Deep Levels[J].Appl Phys Lett,1963,2(4):71-73
    [11] R. Hall. Coherent light emission from p-n junctions[J]. Solid-State Electronics,1963,6(5):405-408
    [12] M. Panish, S. Sumski, I. Hayashi. Preparation of multilayer LPE heterostructureswith crystalline solid solutions of AlxGa1xAs: Heterostructure lasers[J].Metallurgical Transactions,1971,2(3):795-801
    [13] H. Kressel,H. Nelson. Close-confinement gallium arsenide pn junction laserswith reduced optical loss at room temperature(Close confinement GaAs p-n junctionlasers with reduced optical loss at room temperature)[J]. RCA review,1969,30106-113
    [14] Z. L. Alferov, V. Andreev, M. Kagan et al.. Solar cells based on heterojunctionp-AlGaAs-n-GaAs[J]. Fiz. i Tekhn. Polupr,1970,42378-2379
    [15] Y. Qu, S. Yuan, C. Y. Liu et al.. High-power InAlGaAs/GaAs and AlGaAs/GaAssemiconductor laser arrays emitting at808nm[J]. Photonics Technology Letters,IEEE,2004,16(2):389-391
    [16] C. Cao, L. Fan, I. Ai et al.., Recent development of high-power-efficiency50-WCW TE/TM polarized808-nm diode laser bar at Lasertel[C],Proc. SPIE,2010,75830L
    [17] H. K nig, G. Gr nninger, P. Brick et al.., Brilliant high power laser bars forindustrial applications[C],Lasers and Applications in Science and Engineering,(International Society for Optics and Photonics,2008),687616-687618
    [18] D. F. Welch. A brief history of high-power semiconductor lasers[J]. SelectedTopics in Quantum Electronics, IEEE Journal of,2000,6(6):1470-1477
    [19] F. Tian, H. Xie, H. Chen et al.. Diode-laser End-pumped Intra-cavity FrequencyDoubling NdBYVO4=LBO Continuous-wave8W Green Laser[J]. Acta PhotonicaSinica,2004,33(6):
    [20]张靖,刘刚明,田坤et al..大功率半导体激光器最新研究进展[J].半导体光电,2007,28(2):151-155
    [21] V. V. Parashchuk, A. Belyaeva, V. Baranov et al.. Improving the efficiency ofhigh-power diode lasers using diamond heat sinks[J]. Quantum Electron,2010,40(4):301
    [22] M. Kanskar, T. Earles, T. Goodnough et al..73%CW power conversionefficiency at50W from970nm diode laser bars[J]. Electron Lett,2005,41(5):245-247
    [23] P. A. Crump, M. Grimshaw, J. Wang et al..,85%power conversion efficiency975-nm broad area diode lasers at-50C,76%at10C[C],Quantum Electronics andLaser Science Conference,(Optical Society of America,2006), JWB24
    [24] M. Jansen, P. Bournes, P. Corvini et al.. High performance laser diode bars withaluminum-free active regions[J]. Opt Express,1999,4(1):3-11
    [25] R. W. Lambert, T. Ayling, A. F. Hendry et al.. Facet-passivation processes for theimprovement of Al-containing semiconductor laser diodes[J]. J Lightwave Technol,2006,24(2):956
    [26] L. Goldman, P. Hornby, R. Meyer et al.. Impact of the laser on dental caries[J].1964,
    [27] G. T. Absten. Physics of light and lasers[J]. Obstet Gyn Clin N Am,1991,18(3):407-427
    [28]苏华,李守春.半导体激光器在医疗上的应用及其前景展望[J].吉林大学学报:信息科学版,2006,24(5):501-506
    [29]李艳华,康志龙,胡黎明.半导体激光器在医疗领域的新应用[J].激光杂志,2010,(006):73-75
    [30] J.-F. Seurin, C. L. Ghosh, V. Khalfin et al.., High-power vertical-cavitysurface-emitting arrays[C],Lasers and Applications in Science and Engineering,(International Society for Optics and Photonics,2008),68760D-68769
    [31] M. Grabherr, M. Miller, R. J ger et al.., Commercial VCSELs reach0.1-W CWoutput power[C],Integrated Optoelectronic Devices2004,(International Society forOptics and Photonics,2004),174-182
    [32] M. Miller, M. Grabherr, R. King et al.. Improved output performance ofhigh-power VCSELs[J]. Selected Topics in Quantum Electronics, IEEE Journal of,2001,7(2):210-216
    [33] T. Li, Y. Ning, Y. Sun et al.. High-power InGaAs VCSEL's single devices and2-D arrays[J]. J Lumin,2007,122:571-573
    [34] L. A. D. Asaro, J.-F. Seurin, J. D. Wynn. High-power, high-efficiency VCSELspursue the goal[J]. Photon Spectra,2005,39(2):62-67
    [35] M. A. Mentzer,C. L. Ghosh, High brightness imaging system using verticalcavity surface-emitting laser micro-arrays-results and proposed enhancements[C],SPIE Defense, Security, and Sensing,(International Society for Optics and Photonics,2011),80141G-80146
    [36] J. F. Seurin, G. Xu, V. Khalfin et al.., Progress in high-power high-efficiencyVCSEL arrays[C],Proc. SPIE,2009),722903
    [37] R. Van Leeuwen, Y. Xiong, L. S. Watkins et al.., High power808nm VCSELarrays for pumping of compact pulsed high energy Nd: YAG lasers operating at946nm and1064nm for blue and UV light generation[C],SPIE LASE,(InternationalSociety for Optics and Photonics,2011),79120Z-79127
    [38] R. van Leeuwen, P. Zhao, T. Chen et al.., High power high repetition rateVCSEL array side-pumped pulsed blue laser[C],SPIE LASE,(International Societyfor Optics and Photonics,2013),85991I-85996
    [39] Y. Zhang, Y. Ning, L. Zhang et al.. Design and comparison of GaAs, GaAsP andInGaAlAs quantum-well active regions for808-nm VCSELs[J]. Opt Express,2011,19(13):12569-12581
    [40]张艳,宁永强,张金胜et al..808nmInGaAIAs垂直腔面发射激光器的结构设计[J].2011,38(9):37-42
    [41] Y.-Q. Hao, Y. Luo, Y. Feng et al.. Large aperture vertical cavity surface emittinglaser with distributed-ring contact[J]. Appl Optics,2011,50(7):1034-1037
    [42] Y. Hao, J. Ma, C. Yan et al.. A fundamental mode Nd: GdVO4laser pumped by alarge aperture808nm VCSEL[J]. Laser Physics Letters,2013,10(5):055003
    [43] G. Beister, J. Maege, D. Gutsche et al.. Simple method for examining sulphurpassivation of facets in InGaAs–AlGaAs (λ=0.98μm) laser diodes[J]. Appl PhysLett,1996,68(18):2467-2468
    [44] I. Petrescu-Prahova, P. Modak, E. Goutain et al..,High d/gamma values in diodelaser structures for very high power[C],SPIE LASE: Lasers and Applications inScience and Engineering,(International Society for Optics and Photonics,2009),71981I-71988
    [45] H. Zhou, K. Kennedy, E. Weiss et al.., High-efficiency and high-reliability9xx-nm bars and fiber-coupled devices at Coherent[C],Lasers and Applications inScience and Engineering,(International Society for Optics and Photonics,2006),610406-610409
    [46] A. Hodges, J. Wang, M. DeFranza et al.., A CTE matched hard solder passivelycooled laser diode package combined with nXLT facet passivation enables high power,high reliability operation[C],Defense and Security Symposium,(International Societyfor Optics and Photonics,2007),65521E-65529
    [47] B. Schmidt, N. Lichtenstein, B. Sverdlov et al.., Further development ofhigh-power pump laser diodes[C],ITCom2003,(International Society for Optics andPhotonics,2003),42-54
    [48] X. Wang, P. Crump, A. Pietrzak et al.., Assessment of the limits to peak powerof1100nm broad area single emitter diode lasers under short pulse conditions[C],SPIE LASE: Lasers and Applications in Science and Engineering,(InternationalSociety for Optics and Photonics,2009),71981G-71989
    [49] P. Crump, H. Wenzel, G. Erbert et al.. Passively Cooled TM Polarized808-nmLaser Bars With70%Power Conversion at80-W and55-W Peak Power per100-mStripe Width[J]. Photonics Technology Letters, IEEE,2008,20(16):1378-1380
    [50]胡理科.大功率半导体激光器腔面钝化技术的研究[J].2010,
    [51]李再金,李特,芦鹏et al..980nm半导体激光器腔面膜钝化新技术[J].发光学报,2012,33(5):525-528
    [52]李秀敏,高功率半导体激光器腔面膜的研究[D],长春理工大学,2006,Pages
    [53]朱立岩,付秀华.850nm高亮度半导体激光器腔面膜技术研究[J].长春理工大学学报,2007,30(1):18-20
    [54]田增霞,崔碧峰,徐晨et al..808nm半导体激光器腔面硫钝化工艺研究[J].固体电子学研究与进展,2006,26(2):201-204
    [55]彭海涛,家秀云,张世祖et al..大功率半导体激光器的腔面钝化[J].微纳电子技术,2009,46(10):591-594
    [56] D. Huffaker, L. Graham, H. Deng et al.. Sub-40μA continuous-wave lasing in anoxidized vertical-cavity surface-emitting laser with dielectric mirrors[J]. PhotonicsTechnology Letters, IEEE,1996,8(8):974-976
    [57] M. Grabherr, M. Miller, R. Jager et al.. High-Power VCSELs: single devices anddensely packed2-D-arrays[J]. Selected Topics in Quantum Electronics, IEEE Journalof,1999,5(3):495-502
    [58] H. J. Unold, S. Mahmoud, R. Jager et al.. Improving single-mode VCSELperformance by introducing a long monolithic cavity[J]. Photonics Technology Letters,IEEE,2000,12(8):939-941
    [59] I. Kardosh, F. Demaria, F. Rinaldi et al.. High-power single transverse modevertical-cavity surface-emitting lasers with monolithically integrated curved dielectricmirrors[J]. Photonics Technology Letters, IEEE,2008,20(24):2084-2086
    [60] A. Mooradian,High brightness cavity-controlled surface emitting GaInAs lasersoperating at980nm[C],Optical Fiber Communication Conference and Exhibit,2001.OFC2001,(IEEE,2001), PD17-PD17
    [61] M. Kuznetsov, F. Hakimi, R. Sprague et al.. High-power (>0.5W CW)diode-pumped vertical-external-cavity surface-emitting semiconductor lasers withcircular TEM/sub00/beams[J]. Photonics Technology Letters, IEEE,1997,9(8):1063-1065
    [62] I. Kardosh, F. Demaria, F. Rinaldi et al.. Electrically pumped frequency-doubledsurface emitting lasers operating at485nm emission wavelength[J]. Electron Lett,2008,44(8):524-525
    [63] J. Jewell, Y. Lee, S. Walker et al.. Low-threshold electrically pumpedvertical-cavity surface-emitting microlasers[J]. Electron Lett,1989,25(17):1123-1124
    [64] R. Geels, S. Corzine, J. Scott et al.. Low threshold planarized vertical-cavitysurface-emitting lasers[J]. Ieee Photonic Tech L,1990,2(4):234-236
    [65] M. Orenstein, A. Von Lehmen, C. Chang‐Hasnain et al.. Vertical‐cavitysurface‐emitting InGaAs/GaAs lasers with planar lateral definition[J]. Appl PhysLett,1990,56(24):2384-2386
    [66] B. Tell, Y. Lee, K. Brown‐Goebeler et al.. High‐power cw vertical‐cavity topsurface‐emitting GaAs quantum well lasers[J]. Appl Phys Lett,1990,57(18):1855-1857
    [67] D. Huffaker, D. Deppe, K. Kumar et al.. Native‐oxide defined ring contact forlow threshold vertical‐cavity lasers[J]. Appl Phys Lett,1994,65(1):97-99
    [68] R. A. Morgan, J. A. Lehman, M. K. Hibbs-Brenner, Vertical-cavitysurface-emitting lasers come of age[C],Photonics West'96,(International Society forOptics and Photonics,1996),18-29
    [69] K. D. Choquette,H. Q. Hou. Vertical-cavity surface emitting lasers: moving fromresearch to manufacturing[J]. Proc. Ieee,1997,85(11):1730-1739
    [70] K. Lear, K. Choquette, R. Schneider et al.. Selectively oxidised vertical cavitysurface emitting lasers with50%power conversion efficiency[J]. Electron Lett,1995,31(3):208-209
    [71] B. Weigl, M. Grabherr, C. Jung et al.. High-performance oxide-confined GaAsVCSELs[J]. Selected Topics in Quantum Electronics, IEEE Journal of,1997,3(2):409-415
    [72] K. Takaki, N. Iwai, S. Kamiya et al.., Experimental demonstration of low jitterperformance and high reliable1060nm VCSEL arrays for10Gbpsx12ch opticalinterconnection[C],OPTO,(International Society for Optics and Photonics,2010),761502-761502-761508
    [73] S. W. Corzine, R. Yan, L. Coldren. A tanh substitution technique for the analysisof abrupt and graded interface multilayer dielectric stacks[J]. Quantum Electronics,IEEE Journal of,1991,27(9):2086-2090
    [74] K. J. Ebeling, Integrated optoelectronics: waveguide optics, photonics,semiconductors[M]. Springer-Verlag,1993
    [75] P. Yeh, Optical waves in layered media[M]. Wiley New York,1988
    [76]张金胜,宁永强,张金龙et al..大功率半导体激光器腔面膜的场强分布优化[J].2014,41(1):107001-107001
    [77] T. Ge-tao, L. Guo-guang, Y. Shun et al.. Optimized Design of Cavity FacetCoatings of808nm High Power Semiconductor Laser [J][J]. SemiconductorOptoelectronics,2007,6008
    [78] J. Tang, P. Gu, X. Liu et al.. Modern optical thin film technology[J]. Press ofZhejiang University, Hangzhou,2006,24-31
    [79] C. j. Wang, Y. x. Jin, Y. j. Wang et al.. High Laser-Induced Damage ThresholdAntireflection Coatings of1053nm Deposited by Ion Assisted Deposition[J]. ChineseJournal of Lasers,2006,33(5):683
    [80] R. Herrmann,A. Zoller, Automated control of optical layer fabricationprocesses[C],1983International Techincal Conference/Europe,(International Societyfor Optics and Photonics,1983),83-92
    [81]郑伟涛,薄膜材料与薄膜技术[M].化学工业出版社,2008
    [82] H. Manasevit,W. Simpson. The Use of Metal‐Organics in the Preparation ofSemiconductor Materials I. Epitaxial Gallium‐V Compounds[J]. J Electrochem Soc,1969,116(12):1725-1732
    [83] R. Dupuis,P. Dapkus. Ga(1x)AlxAs/Ga(1y)AlyAs double‐heterostructureroom‐temperature lasers grown by metalorganic chemical vapor deposition[J]. ApplPhys Lett,2008,31(12):839-841
    [84] C. Kuo, R. Fletcher, T. Osentowski et al.. High performance AlGaInP visiblelight‐emitting diodes[J]. Appl Phys Lett,1990,57(27):2937-2939
    [85] M. Ikeda, Y. Mori, H. Sato et al.. Room‐temperature continuous‐waveoperation of an AlGaInP double heterostructure laser grown by atmospheric pressuremetalorganic chemical vapor deposition[J]. Appl Phys Lett,1985,47(10):1027-1028
    [86]文尚胜,廖常俊.现代MOCVD技术的发展与展望[J].华南师范大学学报:自然科学版,1999,(3):99-107
    [87]杨树人,外延生长,丁墨元et al..外延生长技术[M].国防工业出版社,1992
    [88] M. Quirk,J. Serda, Semiconductor manufacturing technology[M]. Prentice HallUpper Saddle River, NJ,2001
    [89] R. DeJule. Trends in wafer cleaning[J]. Semiconductor international,1998,21(9):64-68
    [90] J. Q. Liu, C. Lee, J. M. Rosamilia et al.., SI3N4Particle Removal EfficiencyStudy[C],MRS Proceedings,(Cambridge Univ Press,1997),
    [91] G. Gale, A. Busnaina, F. Dai et al.. How to accomplish effective megasonicparticle removal[J]. Semiconductor International,1996,19(9):4
    [92] G. M. Gallatin. Alignment and overlay[J]. Microlithography: Science andTechnology,1998,317
    [93] Y. Cheng, P. D. Dapkus, M. H. MacDougal et al.. Lasing characteristics ofhigh-performance narrow-stripe InGaAs-GaAs quantum-well lasers confined by AlAsnative oxide[J]. Photonics Technology Letters, IEEE,1996,8(2):176-178
    [94] J. Lee, C. Abernathy, S. Pearton et al.. Etching of Ga-based III-V semiconductorsin inductively coupled Ar and-based plasma chemistries[J]. Plasma Sources Scienceand Technology,1997,6(4):499
    [95] D. Rawal, B. Sehgal, R. Muralidharan et al.. Experimental study of the influenceof process pressure and gas composition on GaAs etching characteristics inCl2/BCl3-based inductively coupled plasma[J]. Plasma Science and Technology,2011,13(2):223
    [96] T. Maeda, J. Lee, R. Shul et al.. Inductively coupled plasma etching of III–Vsemiconductors in BCl3-based chemistries: I. GaAs, GaN, GaP, GaSb and AlGaAs[J].Appl Surf Sci,1999,143(1):174-182
    [97] C. I. Ashby, J. P. Sullivan, K. D. Choquette et al.. Wet oxidation of AlGaAs: therole of hydrogen[J]. J Appl Phys,1997,82(6):3134-3136
    [98] K. D. Choquette, K. M. Geib, C. I. Ashby et al.. Advances in selective wetoxidation of AlGaAs alloys[J]. Selected Topics in Quantum Electronics, IEEE Journalof,1997,3(3):916-926
    [99] G. Almuneau, R. Bossuyt, P. Collière et al.. Real-time in situ monitoring of wetthermal oxidation for precise confinement in VCSELs[J]. Semicond Sci Tech,2008,23(10):105021
    [100]张金胜,宁永强,张金龙et al..808nm垂直腔面发射激光器列阵的温度特性分析[J].发光学报,2013,12019
    [101] J. P. Kim,A. M. Sarangan. Temperature-dependent Sellmeier equation for therefractive index of AlxGa1xAs[J]. Opt Lett,2007,32(5):536-538
    [102] J. Talghader,J. Smith. Thermal dependence of the refractive index of GaAs andAlAs measured using semiconductor multilayer optical cavities[J]. Appl Phys Lett,1995,66(3):335-337
    [103] S. F. Yu. Analysis and design of vertical cavity surface emitting lasers[J].Analysis and Design of Vertical Cavity Surface Emitting Lasers, by SF Yu, pp.464.ISBN0-471-39124-7. Wiley-VCH, August2003.,2003,1
    [104]张金胜,张金龙,宁永强.离子辅助沉积法制备SiO2介质薄膜的应力研究[J].发光学报,2013,33(12):1304-1308
    [105] C.-L. Tien,T.-W. Lin. Measurement of stress anisotropy in magnetic thin filmsby fast Fourier transform method[J]. Ieee T Magn,2011,47(10):3905-3908
    [106] G. Pei-Fu, Z. Zhen-Rong, Z. Yong-Jiang et al.. Study on the mechanism andmeasurement of stress of TiO2and SiO2thin-films[J].2006
    [107] C.-C. Yang, C. Witt, P.-C. Wang et al.. Stress control during thermal annealingof copper interconnects[J]. Appl Phys Lett,2011,98(5):051911
    [108] M. Taylor, J. Partridge, D. McCulloch et al.. The influence of deposition rate onthe stress and microstructure of AlN films deposited from a filtered cathodic vacuumarc[J]. Thin Solid Films,2011,519(11):3573-3577

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700