Mn掺杂ZnO室温铁磁性及金属—半导体电致电阻效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀磁半导体由于可以同时利用电子的自旋和电荷这两个自由度而引起了研究者的广泛关注。目前研究热点主要是寻找具有室温铁磁性的稀磁半导体材料和探讨其铁磁性的起源。ZnO基稀磁半导体材料作为宽禁带半导体,具有优异的电学和光学性能,同时表现出室温铁磁性,因此对ZnO基稀磁半导体的制备、铁磁性起源、自旋相关输运性质的研究具有重要的意义。目前,由于缺乏对锰掺杂氧化锌体系的系统研究,导致对ZnO基稀磁半导体的室温铁磁性的起源存在争议。
     电致电阻效应是当前研究的热点,可以应用到下一代的随机访问存储器件中。一些实验组对有关金属/SNTO(SrNbxTi1-xO3)输运以及电致电阻效应进行了研究,但是对于其阻变机理仍存在争议,响应时间比较慢,因此需要做更深入的研究。
     本论文针对上述问题展开研究,主要包括两大部分:一部分是锰掺杂氧化锌体系室温铁磁性研究,另一部分是Pt/SrNbxTi1-xO3的电致电阻效应研究。主要实验内容安排如下
     1.不同N2/H2退火温度的Zn0.98Mn0.02O薄膜室温铁磁性的研究
     为了研究锰掺杂氧化锌薄膜的室温铁磁性的起源,我们系统地研究不同N2/H2退火温度对Zn0.98Mn0.02O薄膜的结构和室温铁磁性的影响。通过射频磁控溅射法将Zn1-xMnxO薄膜沉积到硅衬底上,室温下表现为顺磁性。制备的薄膜在不同温度下(600℃-750℃)N2/H2(99.999%)气氛中退火1h。当退火温度超过640℃后,薄膜表面出现了泡沫状的非晶物质。磁性测量结果表明,退火的薄膜由室温顺磁性转变为室温铁磁性,并且随着退火温度的升高,饱和磁化强度逐渐增加直到退火温度达到750℃。XPS和PL光谱的解谱结果分析表明—价氧空位的浓度与低温退火的薄膜的室温铁磁性有直接关系。不同退火温度薄膜中铁磁性的起源是由两部分组成的:退火温度低于640℃的薄膜中,束缚磁极化子模型可以解释薄膜的室温铁磁性的来源;当温度高于640℃时,薄膜表面析出的泡沫状非晶物质可以增加晶界面积与晶粒体积的比值来提高磁化强度,此时铁磁性的增加是由薄膜表面的磁性的非晶物质导致的。
     2.多次退火对Zn0.98Mn0.02O薄膜的铁磁性的影响
     磁控溅射制备的薄膜分别在氧气和氮气气氛下不同温度预退火3h。当预退火温度未超过700℃时,退火过程能促进薄膜中的锰离子逐渐的取代了锌离子的位置,随着预退火温度的增加,通过SEM观察到薄膜表面出现了析出物,通过分析确定此析出物是ZnMn2O4。所有预退火的样品在N2/H2(99.999%)气氛下630℃退火1h后,预退火的薄膜由原来的室温顺磁性变成室温铁磁性,经比较后发现,在氮气700℃预退火的薄膜中铁磁性是最强的。对于多次退火的Zn0.98Mn0.02O薄膜的铁磁性起源可以用束缚磁极化子模型来解释。最后我们讨论了ZnMn2O4出现在薄膜的表面的原因。
     3. Zn1-xMnxO纳米颗粒的室温铁磁性的研究
     首先,利用共沉淀法制备不同锰掺杂浓度的Zn1-xMnxO纳米颗粒,研究锰掺杂浓度对纳米颗粒结构和室温铁磁性的影响。然后Zn0.92Mn0.08gO纳米颗粒分别放入氧气,氩气,一氧化碳,氢气中700℃退火0.5h。样品的吸收光谱和Raman光谱测量结果证明更多的氧空位出现在H2和CO退火的样品中。对样品的PL光谱的黄绿发光峰进行高斯解谱的结果分析显示一价氧空位所占的浓度和比例越大的样品,对应的室温铁磁性越强,这为一价氧空位在诱导室温铁磁性中的重要作用提供了的证据。4.铌掺杂钛酸锶单晶的电致电阻效应
     研究了退火处理对SrTiO3:Nb单晶的电致电阻效应的影响。退火处理的条件是氧气气氛下400℃退火0.5h。通过分析样品的I-V和C-F曲线发现Nb掺杂浓度,电成型过程和热处理都可以增加界面处的界面态,即缺陷态。退火处理通过增加样品表面的吸附氧的浓度来增加界面处的界面态,经过电成型后退火的样品的电致电阻效应的响应时间得到进一步缩短。电致电阻效应产生的原因可以归因为在Pt/SNTO界面处发生的电子的捕获和脱离过程。上述结果有利于更深入的理解电致电阻效应。
Diluted magnetic semiconductor (DMS) has been received extensive attention from researchers due to their feasibility of manipulation of both charge and spin. They are considered as one of the most promising materials for future spintronics technology. The hotspot of current research focused on searching the DMS materials and further discussing the origin of the ferromagnetism of DMS. ZnO-based DMSs with wide band gap have superior electrical and optical performances and show ferromagnetism at room temperature. So it is important to study material preparation, ferromagnetic mechanism and spin-dependent transport properties. Because of lack of comprehensive and systematic study in the Mn-doped ZnO systems, the origin of ferromagnetism of Mn-doped ZnO is contradictory.
     Due to potential application to next generation nonvolatile memories, resistance switching has attracted intensive attention. Many experimental groups have studied the transport property and resistance switching of metal/SrNbxTi1-xO3. However the mechanism of resistance switching still unclear and the further comprehensive studies are needed.
     In response to the problems described above, some studies are planned. The main content includes two parts:room temperature ferromagnetism of Mn doped ZnO and resistance switching of Pt/SrNbxTi1-xO3. The main content and conclusions are as follows:
     1. Room-temperature ferromagnetism investigation on Zn0.98Mn0.02O thin film annealed in N2/H2at different temperatures.
     In order to investigate the origin of room-temperature ferromagnetism of Mn-doped ZnO, influence of N2/H2-annealed temperature on the structure and magnetism of Zn0.9Mn0.02O film has been systemically studied. Zn1-xMnxO films were prepared on single crystal silicon substrates by radio frequency (RF) magnetron sputtering. All as-deposited films show paramagnetism behavior at room temperature by analyzing the VSM results. As-deposited films were annealed in N2/H2(99.999%) at different temperatures (600℃-750℃). When the annealing temperature (Tan) is above640℃, foamlike amorphous materials form on the surface of the films. All of the N2/H2-annealed films exhibit room temperature ferromagnetism. With increasing annealed temperature, the ferromagnetism of annealed films increase until Tan reaches750℃. By spectral decomposition of XPS and PL spectral, we found that the singly ionized oxygen vacancy has close relationships with the ferromagnetism. The origin of ferromagnetism in annealed films is consistd with two sections. The bound magnetic polaron is responsible for the ferromagnetism of (Tan≤640℃) annealed film with oxygen vacancies. The foamlike amorphous material could increase the ratio of grain-boundary area to grain volume, leading to the ferromagnetism. Magnetic amorphous material could induce the ferromagnetism of (Tan>640℃) annealed film.
     2. Influence of a multistep annealing on tuning the ferromagnetism in Mn-doped ZnO film.
     As-deposited films were pre-annealed at different temperatures (600℃-900℃) in O2and N2for3h, respectively. When pre-annealed temperature(Tpa) is not above700℃, the Mn2+ion has gradually substituted into the Zn2+ion site in Mn-doped ZnO film by annealing. At Tpa>700℃, precipitates were observed on the surface of film by observed by SEM. By analyzing experiment results, we can confirm that the precipitates are spinel ZnMn2O4. All O2pre-annealed and N2pre-annealed films are paramagnetism. All O2pre-annealed and N2pre-annealed films were annealed in N2/H2(99.999%) at630℃for1h and these samples show the room temperature ferromagnetism.700℃N2pre-annealed film annealed in N2/H2has strongest ferromagnetism. BMP model applies to ferromagnetism of annealed films as well. At last we have discussed the reason that ZnMn2O4appeared in the surface of film.
     3. Room temperature ferromagnetism investigation of Zn1-xMnxO nanoparticles.
     First, Zn1-xMnxO nanoparticles were prepared by co-precipitation technique. We study Mn doping concentration effect on the structure and ferromagnetism of Zn1-xMnxO nanoparticles. Subsequently, Zno.92Mn0.08O nanoparticles annealed in O2, Ar, CO and H2at700℃for0.5h, respectively. The absorption spectra and Raman spectra of the samples reveal that a high concentration of oxygen vacancies appears in CO-annealed and H2-annealed Zno.92Mn0.08O nanoparticles. By Gaussian fitting PL spectra of the samples, a broader green-yellow emission band decomposed into the green emission band and yellow emission band. We find the larger the ratio and integral area of singly ionized oxygen vacancies, the stronger room temperature ferromagnetism of annealed nanoparticles, providing the evidence that singly ionized oxygen vacancies may play an important role in the origin of room temperature ferromagnetism of nanoparticles。
     4. Resistance switching of SrTiO3:Nb single crystal
     The influence of thermal treatment on the resistance switching of SrTiO3:Nb (0.05and0.5wt%Nb)(SNTO) single crystals has been investigated. The condition of thermal treatment is in O2at400℃for0.5h. Analyzing current-voltage and capacitance-frequency curves of samples demonstrate that Nb doping concentration, electroforming and thermal treatment could increase interface state (defect state) in the interface. The thermal treatment could increase interface state by improving the chemisorbed oxygen concentration on the surface. Switching time of Pt/SNTO junction with both the thermal treatment and the electroforming would be further shortened. The model of resistance switching effect is attributed to the trapping/detrapping electrons at the interface of Pt/SNTO. These results above are useful for further comprehension of resistance switching mechanism.
引文
[1]S.J. Pearton, C.R. Abernathy, D.P. Norton, A.F. Hebard, Y.D. Park, L.A. Boatner, J.D. Budai, Mater. Sci. Eng., R,40 (2003) 137.
    [2]M.N. Baibich, J.M. Broto, A. Fert, F.N. Van Dau, F. Petroff, Phys. Rev. Lett.,61 (1988) 2472-2475.
    [3]G Binasch, P. Grunberg, F. Saurenbach, W. Zinn, Phys. Rev. B,39 (1989) 4828-4830.
    [4]S.A. Wolf, Science,294 (2001) 1488-1495.
    [5]T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science,287 (2000) 1019-1022.
    [6]Y. Matsumoto, Science,291 (2001) 854-856.
    [7]J.K. Furdyna, J. Appl. Phys.,64 (1988) R29.
    [8]T. Dietl, Solid State Sci.,24 (1981) 344.
    [9]H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, Y. lye, Appl. Phys. Lett.,69 (1996) 363.
    [10]H. Ohno, H. Munekata, S. von Molnar, L.L. Chang, J. Appl. Phys.,69 (1991) 6103.
    [11]H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno, K. Ohtani, Nature, 408 (2000) 944.
    [12]H. Ohno, Science,281 (1998) 951.
    [13]T. Dietl, Science,287 (2000) 1019-1022.
    [14]C. Zener, Phys. Rev.,82 (1951) 403-405.
    [15]K. Sato, H. Katayama-Yoshida, Semicond. Sci. Technol.,17 (2002) 367.
    [16]A. Kaminski, S. Das Sarma, Phys. Rev. Lett.,88 (2002).
    [17]A. Durst, R. Bhatt, P. Wolff, Phys. Rev. B,65 (2002).
    [18]J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Nat. Mater.,4 (2005) 173-179.
    [19]T. Dietl, J. Spalek, Phys. Rev. Lett.,48 (1982) 355-358.
    [20]X.J. Liu, C. Song, F. Zeng, X.B. Wang, F. Pan, J. Phys. D:Appl. Phys.,40 (2007) 1608-1613.
    [21]S. Dhar, T. Kammermeier, A. Ney, L. P6rez, K.H. Ploog, A. Melnikov, A.D. Wieck, Appl. Phys. Lett.,89 (2006) 062503.
    [22]Y.W. Heo, M.P. Ivill, K. Ip, D.P. Norton, S.J. Pearton, J.G Kelly, R. Rairigh, A.F. Hebard, T. Steiner, Appl. Phys. Lett.,84 (2004) 2292.
    [23]T. Chanier, M. Sargolzaei, I. Opahle, R. Hayn, K. Koepernik, Phys. Rev. B,73 (2006) 134418.
    [24]S.J. Hu, S.S. Yan, M.W. Zhao, L.M. Mei, Phys. Rev. B,73 (2006) 245205.
    [25]C. Song, K. Geng, F. Zeng, X. Wang, Y. Shen, F. Pan, Y. Xie, T. Liu, H. Zhou, Z. Fan, Phys. Rev. B,73 (2006) 024405.
    [26]C. Song, S.N. Pan, X.J. Liu, X.W. Li, F. Zeng, W.S. Yan, B. He, F. Pan, J. Phys.:Condens. Matter,19 (2007) 176229.
    [27]N. Khare, M. Kappers, J.M. Wei, M.G. Blamire, J.L. MacManus-Driscoll, Adv. Mater.,18 (2006) 1449.
    [28]X.H. Xu, H.J. Blythe, M. Ziese, A.J. Behan, J.R. Neal, A. Mokhtari, R.M. Ibrahim, A.M. Fox, GA. Gehring, New J. Phys.,8 (2006) 135-135.
    [29]K. Kittilstved, D. Schwartz, A. Tuan, S. Heald, S. Chambers, D. Gamelin, Phys. Rev. Lett.,97 (2006)037203.
    [30]X.-L. Li, Z.-L. Wang, X.-F. Qin, H.-S. Wu, X.-H. Xu, GA. Gehring, J. Appl. Phys.,103 (2008)023911.
    [31]A. Behan, A. Mokhtari, H. Blythe, D. Score, X.H. Xu, J. Neal, A. Fox, G Gehring, Phys. Rev. Lett.,100 (2008) 047206.
    [32]D.P. Norton, Y.W. Heo, M.P. Ivill, K. Ip, S.J. Pearton, M.F. Chisholm, T. Steiner, Mater. Today,7 (2004) 34-40.
    [33]E. Francesco Pecora, T.I. Murphy, L. Dal Negro, Appl. Phys. Lett.,101 (2012) 191115.
    [34]Y. Pu, F. Xu, Z. Jiang, Z. Ma, F. Lu, D. Chen, Appl. Phys. Lett.,101 (2012) 191903.
    [35]J.T. Luo, Y.C. Yang, X.Y. Zhu, G. Chen, F. Zeng, F. Pan, Phys. Rev. B,82 (2010) 014116.
    [36]K. Sato, H. Katayama-Yoshida, Jpn. J. Appl. Phys.,40 (2001) 334.
    [37]G. Das, B. Rao, P. Jena, Phys. Rev. B,69 (2004) 214422.
    [38]H. Liu, X. Zhang, L. Li, Y.X. Wang, K.H. Gao, Z.Q. Li, R.K. Zheng, S.P. Ringer, B. Zhang, X.X. Zhang, Appl. Phys. Lett.,91 (2007) 072511.
    [39]H. Saeki, H. Tabata, T. Kawai, Solid State Commun.,120 (2001) 439.
    [40]C.B. Fitzgerald, M. Venkatesan, J.G. Lunney, L.S. Dorneles, J.M.D. Coey, Appl. Surf. Sci., 247(2005)493-496.
    [41]X. Liu, F. Lin, L. Sun, W. Cheng, X. Ma, W. Shi, Appl. Phys. Lett.,88 (2006) 062508.
    [42]M. Venkatesan, C. Fitzgerald, J. Lunney, J. Coey, Phys. Rev. Lett.,93 (2004) 177206.
    [43]X.X. Wei, C. Song, K.W. Geng, F. Zeng, B. He, F. Pan, J. Phys.:Condens. Matter,18 (2006) 7471-7479.
    [44]D.L. Hou, X.J. Ye, H.J. Meng, H.J. Zhou, X.L. Li, C.M. Zhen, G.D. Tang, Appl. Phys. Lett., 90 (2007).
    [45]S.J. Han, J.W. Song, C.H. Yang, S.H. Park, J.H. Park, Y.H. Jeong, K.W. Rhie, Appl. Phys. Lett.,81 (2002) 4212.
    [46]H. Pan, J. Yi, L. Shen, R. Wu, J. Yang, J. Lin, Y. Feng, J. Ding, L. Van, J. Yin, Phys. Rev. Lett., 99(2007)127201.
    [47]Y.C. Yang, C.F. Zhong, X.H. Wang, B. He, S.Q. Wei, F. Zeng, F. Pan, J. Appl. Phys.,104 (2008) 064102.
    [48]Y.B. Lin, J.P. Xu, W.Q. Zou, L.Y. Lv, Z.H. Lu, F.M. Zhang, Y.W. Du, Z.G Huang, J.G Zheng, J. Phys. D:Appl. Phys.,40 (2007) 3674-3677.
    [49]B. Chen, Q.X. Yu, Q.Q. Gao, Y. Liao, GZ. Wang, Appl. Phys. Lett.,102 (2013) 132405.
    [50]P. Radovanovic, D. Gamelin, Phys. Rev. Lett.,91 (2003) 157202.
    [51]D.B. Buchholz, R.P.H. Chang, J.H. Song, J.B. Ketterson, Appl. Phys. Lett.,87 (2005) 082504.
    [52]K. Ueda, H. Tabata, T. Kawai, Appl. Phys. Lett.,79 (2001) 988.
    [53]G Lawes, A. Risbud, A. Ramirez, R. Seshadri, Phys. Rev. B,71 (2005) 045201.
    [54]A. Risbud, N. Spaldin, Z. Chen, S. Stemmer, R. Seshadri, Phys. Rev. B,68 (2003) 205202.
    [55]T. Fukumura, Z.W. Jin, M. Kawasaki, T. Shono, T. Hasegawa, S. Koshihara, H. Koinuma, Appl. Phys. Lett.,78 (2001) 958.
    [56]D.J. Keavney, D.B. Buchholz, Q. Ma, R.P.H. Chang, Appl. Phys. Lett.,91 (2007) 012501.
    [57]H. Schmidt, M. Diaconu, H. Hochmuth, M. Lorenz, A. Setzer, P. Esquinazi, A. Poppl, D. Spemann, K.W. Nielsen, R. Gross, G Wagner, M. Grundmann, Superlattices Microstruct.,39 (2006) 334-339.
    [58]S. Ramachandran, A. Tiwari, J. Narayan, J.T. Prater, Appl. Phys. Lett.,87 (2005) 172502.
    [59]A.C. Mofor, A. El-Shaer, A. Bakin, A. Waag, H. Ahlers, U. Siegner, S. Sievers, M. Albrecht, W. Schoch, N. Izyumskaya, V. Avrutin, S. Sorokin, S. Ivanov, J. Stoimenos, Appl. Phys. Lett., 87(2005)062501.
    [60]S. Gilliland, A. Segura, J.F. Sanchez-Royo, L.M. Garcia, F. Bartolome, J.A. Sans, G Martinez-Criado, F. Jimenez-Villacorta, J. Appl. Phys.,108 (2010) 073922.
    [61]C.N.R. Rao, F.L. Deepak, J. Mater. Chem.,15 (2005) 573.
    [62]M.H. Kane, K. Shalini, C.J. Summers, R. Varatharajan, J. Nause, C.R. Vestal, Z.J. Zhang, I.T. Ferguson, J. Appl. Phys.,97 (2005) 023906.
    [63]C. Zener, Phys. Rev.,81 (1951) 440-444.
    [64]V. Litvinov, V. Dugaev, Phys. Rev. Lett.,86 (2001) 5593-5596.
    [65]Z.W. Jin, T. Fukumura, M. Kawasaki, K. Ando, H. Saito, T. Sekiguchi, Y.Z. Yoo, M. Murakami, Y. Matsumoto, T. Hasegawa, H. Koinuma, Appl. Phys. Lett.,78 (2001) 3824.
    [66]T. Fukumura, Z.W. Jin, A. Ohtomo, H. Koinuma, M. Kawasaki, Appl. Phys. Lett.,75 (1999) 3366.
    [67]S.J. Han, T.H. Jang, Y.B. Kim, B.G Park, J.H. Park, Y.H. Jeong, Appl. Phys.Lett.,83 (2003) 920.
    [68]S. Kolesnik, B. Dabrowski, J. Appl. Phys.,96 (2004) 5379.
    [69]Z.W. Jin, Y.Z. Yoo, T. Sekiguchi, T. Chikyow, H. Ofuchi, H. Fujioka, M. Oshima, H. Koinuma, Appl. Phys. Lett.,83 (2003) 39.
    [70]K. Samanta, S. Dussan, R.S. Katiyar, P. Bhattacharya, Appl. Phys. Lett.,90 (2007) 261903.
    [71]H.B. Ruan, L. Fang, D.C. Li, M. Saleem, GP. Qin, C.Y. Kong, Thin Solid Films,519 (2011) 5078-5081.
    [72]J. Zhang, R. Skomski, D.J. Sellmyer, J. Appl. Phys.,97 (2005) 10D303.
    [73]S.W. Jung, S.J. An, G.-C. Yi, C.U. Jung, S.-I. Lee, S. Cho, Appl. Phys. Lett.,80 (2002) 4561.
    [74]A. Tiwari, C. Jin, A. Kvit, D. Kumar, J.F. Muth, J. Narayan, A. Nuruddin, Solid State Commun.,121(2002)371.
    [75]L. Petit, T. Schulthess, A. Svane, Z. Szotek, W. Temmerman, A. Janotti, Phys. Rev. B,73 (2006).
    [76]Q.Y. Xu, H. Schmidt, L. Hartmann, H. Hochmuth, M. Lorenz, A. Setzer, P. Esquinazi, C. Meinecke, M. Grundmann, Appl. Phys. Lett.,91 (2007) 092503.
    [77]P. Sharma, A. Gupta, K.V. Rao, F.J. Owens, R. Sharma, R. Ahuja, J.M.O. Guillen, B. Johansson, GA. Gehring, Nat. Mater.,2 (2003) 673-677.
    [78]W.J. Liu, X.D. Tang, Z. Tang, J. Appl. Phys.,114 (2013) 123911.
    [79]W.S. Yan, Z.H. Sun, Q.H. Liu, Z.R. Li, T.F. Shi, F. Wang, Z.M. Qi, G.B. Zhang, S.Q. Wei, H.W. Zhang, Z.Z. Chen, Appl. Phys. Lett.,90 (2007) 242509.
    [80]H.Y. Xu, Y.C. Liu, C.S. Xu, Y.X. Liu, C.L. Shao, R. Mu, Appl. Phys. Lett.,88 (2006) 242502.
    [81]S.Y. Park, P.J. Kim, Y.P. Lee, S.W. Shin, T.H. Kim, J.H. Kang, J.Y. Rhee, Adv. Mater.,19 (2007) 3496-3500.
    [82]S. Mal, S. Nori, S. Mula, J. Narayan, J.T. Prater, J. Appl. Phys.,112 (2012) 113917.
    [83]D.C. Kundaliya, S.B. Ogale, S.E. Lofland, S. Dhar, C.J. Metting, S.R. Shinde, Z. Ma, B. Varughese, K.V. Ramanujachary, L. Salamanca-Riba, T. Venkatesan, Nat. Mater.,3 (2004) 709-714.
    [84]M. Garcia, M. Ruiz-Gonzalez, A. Quesada, J. Costa-Kramer, J. Fernandez, S. Khatib, A. Wennberg, A. Caballero, M. Martin-Gonzalez, M. Villegas, F. Briones, J. Gonzalez-Calbet, A. Hernando, Phys. Rev. Lett.,94 (2005) 217206
    [85]A. Sawa, Mater. Today,11 (2008) 28-36.
    [86]X.T. Zhang, Q.X. Yu, Y.P. Yao, X.G Li, Appl. Phys. Lett.,97 (2010) 222117.
    [87]J.J. Yang, M.D. Pickett, X. Li, D.A.A. Ohlberg, D.R. Stewart, R.S. Williams, Nat. Nanotechnol.,3 (2008) 429-433.
    [88]M.J. Lee, Y. Park, D.S. Suh, E.H. Lee, S. Seo, D.C. Kim, R. Jung, B.S. Kang, S.E. Ahn, C.B. Lee, D.H. Seo, Y.K. Cha, I.K. Yoo, J.S. Kim, B.H. Park, Adv. Mater.,19 (2007) 3919-3923.
    [89]H.K. Henisch, Appl. Phys. Lett.,24 (1974) 589.
    [90]P.E. Schmidt, J.G. Mena, R.C. Callarotti, Thin Solid Films,55 (1978) 9.
    [91]H.K. Henisch, J.A. Meyers, Thin Solid Films,51 (1978) 265.
    [92]R. Waser, M. Aono, Nat. Mater.,6 (2007) 833.
    [93]M. Rozenberg, I. Inoue, M. Sanchez, Phys. Rev. Lett.,92 (2004) 178302.
    [94]D. Jeong, H. Schroeder, R. Waser, Phys. Rev. B,79 (2009) 195317.
    [95]T.W. Hickmott, J. Appl. Phys.,33 (1962) 2669.
    [96]K.L. Chopra, Appl. Phys. Lett.,36 (1965) 184.
    [97]J.C. Bruyere, B.K. Chakraverty, Appl. Phys. Lett.,16 (1969) 40.
    [98]L.O. Chua, IEEE Trans Circuit Theory,18 (1971) 507.
    [99]A. Asamitsu, Y. Tomioka, H. Kuwahara, Y. Tokura, Nature,388 (1997) 50.
    [100]A. Beck, J.G Bednorz, C. Gerber, C. Rossel, D. Widmer, Appl. Phys. Lett.,77 (2000) 139.
    [101]K. Szot, W. Speier, G Bihlmayer, R. Waser, Nat. Mater,5 (2006) 312-320.
    [102]V.V. Zhirnov, R.K. Cavin, Nat. Nanotech.,3 (2008) 77.
    [103]D.-H. Kwon, K.M. Kim, J.H. Jang, J.M. Jeon, M.H. Lee, G.H. Kim, X.-S. Li, G-S. Park, B. Lee, S. Han, M. Kim, C.S. Hwang, Nat. Nanotech.,5 (2010) 148.
    [104]R. Waser, M. Aono, Nat. Mater.,6 (2007) 833.
    [105]J.Y. Son, Y.H. Shin, Appl. Phys. Lett.,92 (2008) 222106.
    [106]U. Russo, D. lelmini, C. Cagli, A.L. Lacaita, S. Spiga, C. Wiemer, M. Perego, M. Fanciulli, Int El Devices Meet, (2007) 775.
    [107]Y.C.P. Yang, F. Liu, Q., M.Z. Liu, F. Zeng, Nano Lett.,9 (2009) 1636.
    [108]X. Guo, C. Schindler, S. Menzel, R. Waser, Appl. Phys. Lett.,91 (2007) 133513.
    [109]D.-H. Kwon, K.M. Kim, J.H. Jang, J.M. Jeon, M.H. Lee, G.H. Kim, X.-S. Li, G-S. Park, B. Lee, S. Han, M. Kim, C.S. Hwang, Nat. Nanotech.,5 (2010) 148.
    [110]A. Sawa, T. Fujii, M. Kawasaki, Y. Tokura, Appl. Phys. Lett.,85 (2004) 4073.
    [111]J.-K. Lee, S. Jung, J.Park, S.-W. Chung, J. Sung Roh, S.-J. Hong, I. Hwan Cho, H.-I. Kwon, C. Hyeong Park, B.-G Park, J.-H. Lee, Appl. Phys. Lett.,101 (2012) 103506.
    [112]S.D. Ha, S. Ramanathan, J. Appl. Phys.,110 (2011) 071101.
    [113]R.Waser, R. Dittmann, G Staikov, K. Szot, Adv. Mater.,21 (2009) 2632-2663.
    [1]T. Fukumura, Z.W. Jin, A. Ohtomo, H. Koinuma, M. Kawasaki, Appl. Phys. Lett.,75 (1999) 3366.
    [2]S.W. Jung, S.J. An, G-C. Yi, C.U. Jung, S.-I. Lee, S. Cho, Appl. Phys. Lett.,80 (2002) 4561.
    [3]D.P. Norton, Y.W. Heo, M.P. Ivil, K. Ip, S.J. Pearton, M.F. Chisholm, T. Steiner, Mater. Today, 7 (2004) 34-40.
    [4]D.P. Norton, S.J. Pearton, A.F. Hebard, N. Theodoropoulou, L.A. Boatner, R.G. Wilson, Appl. Phys. Lett.,82 (2003) 239.
    [5]殷景华,功能材料概论[M]哈尔滨工业大学出版社,(2009).
    [6]郑伟涛,薄膜材料与薄膜技术[M],化学工业出版社,(2007).
    [7]范雄,金属x射线学[M],机械工业出版社,(1989).
    [8]Y. Cai, Y. Pan, J. Xue, G Su, Appl. Surf. Sci.,255 (2009) 4066-4073.
    [9]王建棋,吴文辉,冯大明,电子能谱学引论[M],国防工业出版社,(1999).
    [10]章晓中,电子显微镜[M],清华大学,(1999).
    [11]张庆军,河北理工学院学报[J],20(3),(1998),10.
    [12]方容川,固体光谱学[M],中国科学技术大学,(2001).
    [1]U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoc,J. Appl. Phys.,98 (2005) 041301.
    [2]T. Fukumura, Z.W. Jin, A. Ohtomo, H. Koinuma, M. Kawasaki, Appl. Phys. Lett.,75 (1999) 3366.
    [3]T. Fukumura, Z.W. Jin, M. Kawasaki, T. Shono, T. Hasegawa, S. Koshihara, H. Koinuma, Appl. Phys. Lett.,78 (2001) 958.
    [4]K. Masuko, A. Ashida, T. Yoshimura, N. Fujimura, J. Appl. Phys.,103 (2008) 043714.
    [5]P. Sharma, A. Gupta, K.V. Rao, F.J. Owens, R. Sharma, R. Ahuja, J.M.O. Guillen, B. Johansson, G.A. Gehring, Nat. Mater.,2 (2003) 673-677.
    [6]T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science,287 (2000) 1019-1022.
    [7]J.B. Wang, GJ. Huang, X.L. Zhong, L.Z. Sun, Y.C. Zhou, E.H. Liu, Appl. Phys. Lett.,88 (2006) 252502.
    [8]U. Philipose, S.V. Nair, S. Trudel, C.F. de Souza, S. Aouba, R.H. Hill, H.E. Ruda, Appl. Phys. Lett.,88 (2006) 263101.
    [9]M.E. Overberg, K.H. Baik, GT. Thaler, C.R. Abernathy, S.J. Pearton, J. Kelly, R. Rairigh, A.F. Hebard, W. Tang, M. Stavola, J.M. Zavada, Electrochem. Solid-State Lett.,6 (2003) G131.
    [10]K.H. Baik, R.M. Frazier, GT. Thaler, C.R. Abernathy, S.J. Pearton, J. Kelly, R. Rairigh, A.F. Hebard, W. Tang, M. Stavola, J.M. Zavada, Appl. Phys. Lett.,83 (2003) 5458.
    [11]Z.H. Wang, D.Y. Geng, S. Guo, WJ. Hu, Z.D. Zhang, Appl. Phys. Lett.,92 (2008) 242505.
    [12]Y.B. Lin, J.P. Xu, W.Q. Zou, L.Y. Lv, Z.H. Lu, F.M. Zhang, Y.W. Du, Z.G. Huang, J.G. Zheng, J. Phys. D:Appl. Phys.,40 (2007) 3674-3677.
    [13]C. Park, D. Chadi, Phys. Rev. Lett.,94 (2005) 127204.
    [14]S. Lee, D.Y. Kim, Y. Shon, C.S. Yoon, Appl. Phys. Lett.,89 (2006) 022120.
    [15]S. Deka, P.A. Joy, Appl. Phys. Lett.,89 (2006) 032508.
    [16]GY. Ahn, S.I. Park, S.J. Kim, B.W. Lee, C.S. Kim, IEEE Trans. Magn.,41 (2005) 2730.
    [17]B. Chen, Q.X. Yu, Q.Q. Gao, Y. Liao, GZ. Wang, Appl. Phys. Lett.,102 (2013) 132405.
    [18]C.G Van de Walle, Phys. Rev. Lett.,85 (2000) 1012.
    [19]V.K. Sharma, GD. Varma, J. Appl. Phys.,102 (2007) 056105.
    [20]W. Lee, M.-C. Jeong, J.-M. Myoung, Acta Mater.,52 (2004) 3949-3957.
    [21]Y.M. Chiang, D.P.I. Birnie, W.D. Kingery, Phys. Ceramics, Wiley, (1997).
    [22]Y.G Wang, S.P. Lau, H.W. Lee, S.F. Yu, B.K. Tay, X.H. Zhang, K.Y. Tse, H.H. Hng, J. Appl. Phys.,94 (2003) 1597.
    [23]T. Droubay, D. Keavney, T. Kaspar, S. Heald, C. Wang, C. Johnson, K. Whitaker, D. Gamelin, S. Chambers, Phys. Rev. B,79 (2009) 155203.
    [24]C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E.M. Kaidashev, M. Lorenz, M. Grundmann, Appl. Phys. Lett.,83 (2003) 1974.
    [25]T. Damen, S. Porto, B. Tell, Phys. Rev.,142 (1966) 570-574.
    [26]R. Callender, S. Sussman, M. Selders, R. Chang, Phys. Rev. B,7 (1973) 3788-3798.
    [27]J. Calleja, M. Cardona, Phys. Rev. B,16 (1977) 3753-3761.
    [28]Y. Zhang, H.B. Jia, R.M. Wang, C.P. Chen, X.H. Luo, D.P. Yu, C.J. Lee, Appl. Phys. Lett.,83 (2003)4631.
    [29]R. Cusco, E. Alarcon-Llad6, J. Ibafiez, L. Artus, J. Jimenez, B. Wang, M. Callahan, Phys. Rev. B,75 (2007) 165202.
    [30]J. Scott, Phys. Rev. B,2 (1970) 1209-1211.
    [31]程光煦,拉曼布里渊散射-原理及应用[M],北京:科学出版社.
    [32]K. Samanta, S. Dussan, R.S. Katiyar, P. Bhattacharya, Appl. Phys. Lett.,90 (2007) 261903.
    [33]J.D. Ye, S. Tripathy, F.-F. Ren, X.W. Sun, GQ. Lo, K.L. Teo, Appl. Phys. Lett.,94 (2009)
    011913.
    [34]J.G Ma, Y.C. Liu, R. Mu, J.Y. Zhang, Y.M. Lu, D.Z. Shen, X.W. Fan, J. Vac. Sci. Technol., B, 22(2004)94.
    [35]M. Chen, X. Wang, Y.H. Yu, Z.L. Pei, X.D. Bai, C. Sun, R.F. Huang, L.S. Wen, Appl. Surf. Sci.,158 (2000) 134-140.
    [36]Z.B. Gu, C.S. Yuan, M.H. Lu, J. Wang, D. Wu, S.T. Zhang, S.N. Zhu, Y.Y. Zhu, Y.F. Chen, J. Appl. Phys.,98 (2005) 053908.
    [37]S. Gilliland, A. Segura, J.F. Sanchez-Royo, L.M. Garcia, F. Bartolome, J.A. Sans, G Martinez-Criado, F. Jimenez-Villacorta, J. Appl. Phys.,108 (2010) 073922.
    [38]Q.Y. Xu, H. Schmidt, L. Hartmann, H. Hochmuth, M. Lorenz, A. Setzer, P. Esquinazi, C. Meinecke, M. Grundmann, Appl. Phys. Lett.,91 (2007) 092503.
    [39]S. Banerjee, K. Rajendran, N. Gayathri, M. Sardar, S. Senthilkumar, V. Sengodan, J. Appl. Phys.,104 (2008) 043913.
    [40]X.M. Cheng, C.L. Chien, J. Appl. Phys.,93 (2003) 7876.
    [41]X.H. Zhang, Y. Zhang, J. Xu, Z. Wang, X.H. Chen, D.P. Yu, P. Zhang, H.H. Qi, Y.J. Tian, Appl. Phys. Lett.,87 (2005) 123111.
    [42]J. Zhang, X.Z. Li, J. Shi, Y.F. Lu, D.J. Sellmyer, J. Phys.:Condens. Matter,19 (2007) 036210.
    [43]V. Selvaraj, O. Naoki, S. Isao, A. Yutaka, O. Takeshi, R. Haruki, H. Hajime, J. Appl. Phys., 102(2007)014905.
    [44]L.N. Tong, T. Cheng, H.B. Han, J.L. Hu, X.M. He, Y. Tong, C.M. Schneider, J. Appl. Phys., 108(2010)023906.
    [45]J.E. Jaffe, T.C. Droubay, S.A. Chambers, J. Appl. Phys.,97 (2005) 073908.
    [46]C. Liu, F. Yun, H. Morkoc, J. Mater. Sci:Mater. Electron.,16 (2005) 555-597.
    [47]Y. Fukuma, F. Odawara, H. Asada, T. Koyanagi, Phys. Rev. B,78 (2008) 104417.
    [48]A. Hugot-Le Goff, S. Joiret, B. Satani, R. Wiart, J. Electroanal. Chem.,263 (1989) 127-135.
    [49]Z.Q. Chen, A. Kawasuso, Y. Xu, H. Naramoto, X.L. Yuan, T. Sekiguchi, R. Suzuki, T. Ohdaira, J. Appl. Phys.,97 (2005) 013528.
    [50]S. Venkataraj, N. Ohashi, I. Sakaguchi, Y. Adachi, T. Ohgaki, H. Ryoken, H. Haneda, J. Appl. Phys.,102 (2007) 014905.
    [51]W.B. Mi, H.L. Bai, H. Liu, C.Q. Sun, J. Appl. Phys.,101 (2007) 023904.
    [52]H.Y. Xu, Y.C. Liu, C.S. Xu, Y.X. Liu, C.L. Shao, R. Mu, Appl. Phys. Lett.,88 (2006) 242502.
    [53]S.R.S. Kumar, M.N. Hedhili, H.N. Alshareef, S. Kasiviswanathan, Appl. Phys. Lett.,97 (2010) 111909.
    [54]S. Jeong, Y.G. Ha, J. Moon, A. Facchetti, T.J. Marks, Adv. Mater.,22 (2010) 1346-1350.
    [55]E.M.C. Fortunato, L.M.N. Pereira, P.M.C. Barquinha, A.M. Botelho do Rego, G. Goncalves, A. Vila, J.R. Morante, R.F.P. Martins, Appl. Phys. Lett.,92 (2008) 222103.
    [56]W. Shan, W. Walukiewicz, J.W. Ager, K.M. Yu, H.B. Yuan, H.P. Xin, G. Cantwell, J.J. Song, Appl. Phys. Lett.,86 (2005) 191911.
    [57]B. Panigrahy, M. Aslam, D.S. Misra, M. Ghosh, D. Bahadur, Adv. Funct. Mater.,20 (2010) 1161-1165.
    [58]S. Zhang, S.H. Wei, A. Zunger, Phys. Rev. B,63 (2001) 075205.
    [59]Z.L. Lu, H.S. Hsu, Y.H. Tzeng, F.M. Zhang, Y.W. Du, J.C.A. Huang, Appl. Phys. Lett.,95 (2009) 102501.
    [60]B. Straumal, A. Mazilkin, S. Protasova, A. Myatiev, P. Straumal, G Schutz, P. van Aken, E. Goering, B. Baretzky, Phys. Rev. B,79 (2009) 205206.
    [1]T. Fukumura, Z.W. Jin, A. Ohtomo, H. Koinuma, M. Kawasaki, Appl. Phys. Lett.,75 (1999) 3366.
    [2]J. Zhang, X.Z. Li, J. Shi, Y.F. Lu, D.J. Sellmyer, J. Phys.:Condens. Matter,19 (2007) 036210.
    [3]S. Venkataraj, N. Ohashi, I. Sakaguchi, Y. Adachi, T. Ohgaki, H. Ryoken, H. Haneda, J. Appl. Phys.,102 (2007) 014905.
    [4]B.B. Straumal, A.A. Mazilkin, S.G Protasova, A.A. Myatiev, P.B. Straumal, B. Baretzky, Acta Mater.,56 (2008) 6246-6256.
    [5]翟章印,淮阴师范学院学报,10(2011)22.
    [6]S.Q. Zhou, K. Potzger, G. Zhang, A. Miicklich, F. Eichhorn, N. Schell, R. Grotzschel, B. Schmidt, W. Skorupa, M. Helm, J. Fassbender, D. Geiger, Phys. Rev. B,75 (2007) 085203.
    [7]K. Samanta, S. Dussan, R.S. Katiyar, P. Bhattacharya, Appl. Phys. Lett.,90 (2007) 261903.
    [8]J.D. Ye, S. Tripathy, F.-F. Ren, X.W. Sun, GQ. Lo, K.L. Teo, Appl. Phys. Lett.,94 (2009) 011913.
    [9]L. Malavasi, P. Galinetto, M.C. Mozzati, C.B. Azzoni, G. Flor, Phys. Chem. Chem. Phys.,4 (2002) 3876-3880.
    [10]J.B. Wang, H.M. Zhong, Z.F. Li, W. Lu, J. Appl. Phys.,97 (2005) 086105.
    [11]J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Nat. Mater.,4 (2005) 173-179.
    [12]T.L. Phan, R. Vincent, D. Cherns, N.X. Nghia, M.H. Phan, S.C. Yu, J. Appl. Phys.,101 (2007) 09H103.
    [13]T. Chanier, M. Sargolzaei, I. Opahle, R. Hayn, K. Koepernik, Phys. Rev. B,73 (2006)
    134418.
    [14]H. Zeng, W. Cai, J. Hu, G. Duan, P. Liu, Y. Li, Appl. Phys. Lett.,88 (2006) 171910.
    [15]T.-L. Phan, P. Zhang, D.S. Yang, N.X. Nghia, S.C. Yu, J. Appl. Phys.,110 (2011) 063912.
    [16]U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, MA. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoc, J. Appl. Phys.,98 (2005) 041301.
    [17]W. Shan, W. Walukiewicz, J.W. Ager, K.M. Yu, H.B. Yuan, H.P. Xin, G Cantwell, J.J. Song, Appl. Phys. Lett.,86 (2005) 191911.
    [18]B. Panigrahy, M. Aslam, D.S. Misra, M. Ghosh, D. Bahadur, Adv. Funct. Mater.,20 (2010) 1161-1165.
    [19]S. Zhang, S.H. Wei, A. Zunger, Phys. Rev. B,63 (2001) 075205.
    [20]Y. Fukuma, F. Odawara, H. Asada, T. Koyanagi, Phys. Rev. B,78 (2008) 104417.
    [21]S.H. Jeong, B.S. Kim, B.T. Lee, Appl. Phys. Lett.,82 (2003) 2625.
    [22]Z.L. Lu, H.S. Hsu, Y.H. Tzeng, F.M. Zhang, Y.W. Du, J.C.A. Huang, Appl. Phys. Lett.,95 (2009)102501.
    [23]P. Sharma, A. Gupta, K.V. Rao, F.J. Owens, R. Sharma, R. Ahuja, J.M.O. Guillen, B. Johansson, G.A. Gehring, Nat. Mater.,2 (2003) 673-677.
    [24]T. Droubay, D. Keavney, T. Kaspar, S. Heald, C. Wang, C. Johnson, K. Whitaker, D. Gamelin, S. Chambers, Phys. Rev. B,79 (2009) 155203.
    [25]J. Zhang, R. Skomski, D.J. Sellmyer, J. Appl. Phys.,97 (2005) 10D303.
    [26]Y. Wang, Z. Zeng, X. Han, X. Zhang, X. Sun, Z. Zhang, Phys. Rev. B,75 (2007) 214424.
    [27]D.C. Reynolds, D.C. Look, B. Jogai, Phys. Rev. B,57 (1998) 12151-12155.
    [28]A.L. Greer, N. Karpe, J. Bottiger, J. Alloys Compd.,194 (1993) 199.
    [29]D.C. Kundaliya, S.B. Ogale, S.E. Lofland, S. Dhar, C.J. Metting, S.R. Shinde, Z. Ma, B. Varughese, K.V. Ramanujachary, L. Salamanca-Riba, T. Venkatesan, Nat. Mater.,3 (2004) 709-714.
    [30]Y. Wang, J. Zou, Y.J. Li, B. Zhang, W. Lu, Acta Mater.,57 (2009) 2291-2299.
    [31]M. Peiteado, A.C. Caballero, D. Makovec, J. Solid State Chem.,180 (2007) 2459-2464.
    [32]A. Feltz, M. Jager, React. Solids,6 (1988) 119.
    [33]J.J. Liu, K. Wang, M.H. Yu, W.L. Zhou, J. Appl. Phys.,102 (2007) 024301.
    [34]M. Garcia, M. Ruiz-Gonzalez, A. Quesada, J. Costa-Kramer, J. Fernandez, S. Khatib, A. Wennberg, A. Caballero, M. Martin-Gonzalez, M. Villegas, F. Briones, J. Gonzalez-Calbet, A. Hernando, Phys. Rev. Lett.,94 (2005) 217206.
    [1]N.S. Sabri, A.K. Yahya, M.K. Talari, J. Lumin.,132 (2012) 1735-1739.
    [2]B. Panigrahy, M. Aslam, D.S. Misra, M. Ghosh, D. Bahadur, Adv. Funct. Mater.,20 (2010) 1161-1165.
    [3]Z.H. Wang, D.Y. Geng, Z.D. Zhang, Solid. State. Commun,149 (2009) 682-684.
    [4]Z. Wang, D. Geng, W. Hu, Z. Zhang, J. Appl. Phys.,105 (2009) 123902.
    [5]L.B. Duan, GH. Rao, J. Yu, Y.C. Wang, W.G Chu, L.N. Zhang, J. Appl. Phys.,102 (2007) 103907.
    [6]K. Samanta, S. Dussan, R.S. Katiyar, P. Bhattacharya, Appl. Phys. Lett.,90 (2007) 261903.
    [7]S.K. Mandal, A.K. Das, T.K. Nath, D. Karmakar, Appl. Phys. Lett.,89 (2006) 144105.
    [8]K.R. Kittilstved, D.R. Gamelin, J. Appl. Phys.,99 (2006) 08M112.
    [9]T.-L. Phan, P. Zhang, D.S. Yang, N.X. Nghia, S.C. Yu, J. Appl. Phys.,110 (2011) 063912.
    [10]U. Ilyas, R.S. Rawat, T.L. Tan, P. Lee, R. Chen, H.D. Sun, L. Fengji, S. Zhang, J. Appl. Phys., 111(2012)033503.
    [11]Z.H. Wang, D.Y. Geng, Z.D. Zhang, Solid State Commun.,149 (2009) 682-684.
    [12]J. Zhang, R. Skomski, D.J. Sellmyer, J. Appl. Phys.,97 (2005) 10D303.
    [13]S. Banerjee, K. Rajendran, N. Gayathri, M. Sardar, S. Senthilkumar, V. Sengodan, J. Appl. Phys.,104 (2008) 043913.
    [14]Y.M. Chiang, D.P.I. Birnie, W.D. Kingery, Phys. Ceramics, Wiley, (1997).
    [15]Z.B. Gu, C.S. Yuan, M.H. Lu, J. Wang, D. Wu, S.T. Zhang, S.N. Zhu, Y.Y. Zhu, Y.F. Chen, J. Appl. Phys.,98 (2005) 053908.
    [16]H.Y. Xu, Y.C. Liu, C.S. Xu, Y.X. Liu, C.L. Shao, R. Mu, Appl. Phys. Lett.,88 (2006) 242502.
    [17]S.R.S. Kumar, M.N. Hedhili, H.N. Alshareef, S. Kasiviswanathan, Appl. Phys. Lett.,97 (2010) 111909.
    [18]J.G. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z.Z. Ye, Y.J. Zeng, Y.Z. Zhang, L.P. Zhu, H.P. He, B.H. Zhao, J. Appl. Phys.,101 (2007) 083705.
    [19]J. Wu, W. Walukiewicz, W. Shan, K. Yu, J. Ager, E. Haller, H. Lu, W. Schaff, Phys. Rev. B, 66(2002)201403.
    [20]C.T. Lee, Q.X. Yu, B.T. Tang, H.Y. Lee, A. Nuruddin, Thin Solid Films,386 (2001) 105.
    [21]R. Cusc6, E. Alarc6n-Llad6, J. Ibanez, L. Artus, J. Jimenez, B. Wang, M. Callahan, Phys. Rev. B,75 (2007)165202.
    [22]J.B. Wang, GJ. Huang, X.L. Zhong, L.Z. Sun, Y.C. Zhou, E.H. Liu, Appl. Phys. Lett.,88 (2006)252502.
    [23]C.L. Du, Z.B. Gu, M.H. Lu, J. Wang, S.T. Zhang, J. Zhao, G.X. Cheng, H. Heng, Y.F. Chen, J. Appl. Phys.,99 (2006) 123515.
    [24]A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H.R. Alves, D.M. Hofmann, B.K. Meyer, Appl. Phys. Lett.,80 (2002) 1909.
    [25]B. Cheng, Y. Xiao, G. Wu, L. Zhang, Appl. Phys. Lett.,84 (2004) 416.
    [26]C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E.M. Kaidashev, M. Lorenz, M. Grundmann, Appl. Phys. Lett.,83 (2003) 1974.
    [27]J. Alaria, P. Turek, M. Bernard, M. Bouloudenine, A. Berbadj, N. Brihi, G Schmerber, S. Colis, A. Dinia, Chem. Phys. Lett.,415 (2005) 337-341.
    [28]N. Brihi, A. Bouaine, A. Berbadj, G Schmerber, S. Colis, A. Dinia, Thin Solid Films,518 (2010) 4549-4552.
    [29]X. Zhang, Y. Zhang, J. Xu, Z. Wang, X. Chen, D. Yu, P. Zhang, H. Qi, Y. Tian, Appl. Phys. Lett.,87(2005)123111.
    [30]Y. Sun, G.M. Fuge, N.A. Fox, D.J. Riley, M.N.R. Ashfold, Adv. Mater.,17 (2005) 2477-2481.
    [31]L.N. Tong, T. Cheng, H.B. Han, J.L. Hu, X.M. He, Y. Tong, C.M. Schneider, J. Appl. Phys., 108(2010)023906.
    [32]H.S. Kang, GH. Kim, S.H. Lim, H.W. Chang, J.H. Kim, S.Y. Lee, Thin Solid Films,516 (2008)3147-3151.
    [33]K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, J. Appl. Phys.,79 (1996) 7983.
    [34]I. Shalish, H. Temkin, V. Narayanamurti, Phys. Rev. B,69 (2004) 245401.
    [35]A.V. Dijken, E.A. Meulenkamp, D. Vanmaekelbergh, A. Meijerink, J. Lumin.,90 (2000) 123-128.
    [36]J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Nat. Mater.,4 (2005) 173-179.
    [37]J.T. Ji, A.M. Zhang, T.L. Xia, Q. Cao, GL. Liu, D. Hou, Q.M. Zhang, Phys. Rev. B,82 (2010) 014408.
    [38]S. Ramachandran, J. Narayan, J.T. Prater, Appl. Phys. Lett.,88 (2006) 242503.
    [39]K. Yuan, Q.X. Yu, Q.Q. Gao, J. Wang, X.T. Zhang, Appl. Surf. Sci.,258 (2012) 3350-3353.
    [1]D.S. Shang, J.R. Sun, L. Shi, J. Wang, Z.H. Wang, B.G. Shen, Appl. Phys. Lett.,94 (2009) 052105.
    [2]A. Sawa, Mater. Today,11 (2008) 28-36.
    [3]R. Waser, R. Dittmann, G Staikov, K. Szot, Adv. Mater.,21 (2009) 2632-2663.
    [4]K. Szot, W. Speier, G Bihlmayer, R. Waser, Nat. Mater.,5 (2006) 312-320.
    [5]T. Fujii, M. Kawasaki, A. Sawa, H. Akoh, Y. Kawazoe, Y. Tokura, Appl. Phys. Lett.,86 (2005) 012107.
    [6]Y.Z. Wu, C.R. Zhang, D.J. Zhang, Appl. Phys. Lett.,95 (2009) 033508.
    [7]X.G Chen, X.B. Ma, Y.B. Yang, L.P. Chen, G.C. Xiong, GJ. Lian, Y.C. Yang, J.B. Yang, Appl. Phys. Lett.,98 (2011) 122102.
    [8]T. Menke, P. Meuffels, R. Dittmann, K. Szot, R. Waser, J. Appl. Phys.,105 (2009) 066104.
    [9]J.J. Yang, M.D. Pickett, X. Li, D.A.A. Ohlberg, D.R. Stewart, R.S. Williams, Nat. Nanotechnol,3 (2008) 429-433.
    [10]S. Karg, GI. Meijer, D. Widmer, J.G Bednorz, Appl. Phys. Lett.,89 (2006) 072106.
    [11]J. Joshua Yang, F. Miao, M.D. Pickett, D.A.A. Ohlberg, D.R. Stewart, C.N. Lau, R.S. Williams, Nanotechnology,20 (2009) 215201.
    [12]T. Fujii, M. Kawasaki, A. Sawa, Y. Kawazoe, H. Akoh, Y. Tokura, Phys. Rev. B,75 (2007) 165101.
    [13]T. Susaki, N. Nakagawa, H.Y. Hwang, Phys. Rev. B,75 (2007) 155110.
    [14]S.M. Sze, Physics of Semiconductor Devices,2nd ed., John Wiley & Sons, Inc. Hoboken, New York,1981.
    [15]S. Karatas, S. Altindal, Solid-State Electron.,49 (2005) 1052-1054.
    [16]A. Ruotolo, C. Lam, W. Cheng, K. Wong, C. Leung, Phys. Rev. B,76 (2007) 075122.
    [17]S. Mangal, P. Banerji, J. Appl. Phys.,105 (2009) 083709.
    [18]X. Guo, Appl. Phys. Lett.,101 (2012) 152903.
    [19]S.M. Sze, K.K. Ng, Physics of Semiconductor Devices, third ed., Wiley, Hoboken,2007.
    [20]R.Tung, Mater. Sci. Eng. R.,35 (2001) 1.
    [21]C. Park, Y. Seo, J. Jung, D.W. Kim, J. Appl. Phys.,103 (2008) 054106.
    [22]T.C. Lee, T.P. Chen, H.L. Au, S. Fung, C.D. Beling, Semicond. Sci. Technoi.,8 (1993) 1357.
    [23]F.A. Padovani, R. Stratton, Solid-State Electron.,9 (1966) 695.
    [24]D.K. Schroder, Semiconductor Material and Device Characterization 2nd ed. (JOHN WILEY & SONS, INC), p137.
    [25]C.Y. Yu, Y. Shimizu, H. Arai, J. Mater. Sci. Lett.,8 (1989) 765.
    [26]S. Bansal, D.K. Pandya, S.C. Kashyap, Appl. Phys. Lett.,104 (2014) 082108.
    [27]P. Madhu Kumar, S. Badrinarayanan, M. Sastry, Thin Solid Films,358 (2000) 122-130.
    [28]L.Q. Jing, Z.L. Xu, X.J. Sun, J. Shang, W.M. Cai, Appl. Surf. Sci.,180 (2001) 308-314.
    [29]Y. Nakano, N. Ichinose, J. Mater. Res.,5 (1990) 2910.
    [30]Q. Xu, D.P. Huang, W. Chen, H. Wang, B.T. Wang, R.Z. Yuan, Appl. Surf. Sci.,228 (2004) 110-114.
    [31]J.P. Gambino, W.D. Kingery, GE. Pike, H.R. Philipp, L.M. Levinson, J. Appl. Phys.,61 (1987)2571.
    [32]M.E. Yacoubi, R. Evrard, N.D. Nguyen, M. Schmeits, Semicond. Sci. Technol.,15 (2000) 341-348.
    [33]M.C. Ni, S.M. Guo, H.F. Tian, Y.G. Zhao, J.Q. Li, Appl. Phys. Lett.,91 (2007) 183502.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700