秸秆覆盖保护性种植的土壤养分效应和作物生理生化响应机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
秸秆覆盖是一种高效节水的作物栽培技术,在改变农田下垫面性质和能量平衡、调节土壤温度及改善土壤水分状况等方面具有显著作用,具有达到提高经济产量、减少水分无效消耗、提高水分利用效率的目的。秸秆覆盖是保护性耕作的重要方面,对农业生产和农业可持续发展具有重要意义。秸秆覆盖可以蓄水保墒;改善土壤微环境;减少水土流失;调节土壤水、肥、气、热;促进作物生长发育和光合作用。本文研究了秸秆覆盖保护性种植油菜的农田土壤养分动态变化及干旱胁迫下大豆生理生化响应机制。主要结果如下
     1.秸秆覆盖保护性种植油菜农田土壤养分效应和油菜生长发育和产量的研究
     本文旨在研究秸秆覆盖保护性种植下油菜的生长发育、整个生育期内土壤养分动态变化以及产量效应。试验在西南大学试验农场进行,设置8个处理:①无秸秆覆盖,②水稻秸秆3750kg/hm2覆盖,③水稻秸秆7500kg/hm2覆盖,④玉米秸秆3750kg/hm2覆盖,⑤玉米秸秆7500kg/hm2覆盖,⑥水稻秸秆7500kg/hm2覆盖无农作物,⑦水稻秸秆7500kg/hm2覆盖+速腐剂无农作物,⑧水稻秸秆7500kg/hm2覆盖+速腐剂。于油菜生长的不同时期,分层取样。通过土壤养分动态变化分析和油菜生长和产量效应的研究得出以下结论:
     (1)不同类型秸秆覆盖处理下土壤有机质,0—10cm和10—20cm土层的土壤有机质含量变化相近,各个水平梯度间的差异不明显,有速腐剂处理的有机质含量要相对较高,变化差异也相对较大;秸秆覆盖处理下,土壤全氮0—10cm土层与10—20cm土层呈“增加——降低——增加”的趋势;不同类型秸秆覆盖处理下土壤碱解氮0—10cm和10—20cm士层变化相似,呈“下降——增长——下降”的变化趋势;秸秆覆盖不同处理土壤全磷在0—10cm和10—20cm土层变化相似,均出现波动增高的趋势;土壤有效磷0—10cm和10—20cm土层变化—致,前期微小增长,接着下降,结实成熟期增高;土壤全钾在0—10cm出现先增后降的趋势,10—20cm土层,先增长后下降然后增长;土壤速效钾的变化与全钾各土层变化一致;土壤的pH值在0—10cm和10—20cm土层变化一致,随着作物生长季节的推移,出现波动增长。
     收获后期秸秆覆盖农田十壤养分的研究揭示出:在有作物生长的情况下,秸秆覆盖对耕层土壤有机质的积累没有明显作用;秸秆覆盖对耕层土壤氮素的供应有明显的影响,总体上全氮随着秸秆覆盖量的增加而增加:同水平玉米秸秆覆盖处理较水稻秸秆覆盖处理对碱解氮的积累作用较明显;秸秆覆盖处理大部分可以提高耕层土壤全钾;不同秸秆对耕层土壤钾素的影响不同,水稻秸秆覆盖处理对土壤有效磷、全钾和速效钾的效果优于玉米秸秆覆盖。无农作物的条件下,全量覆盖耕层士壤的有机质含量出现积累。速腐剂的使用对有机质积累没有影响;速腐剂的使用可以增加土壤全氮的累积,而碱解氮的积累与速腐剂的使用关系不大;速腐剂的使用对补充土壤全磷有重要作用;无农作物的情况下速腐剂可以增加耕层土壤全钾的积累。
     (2)秸秆覆盖对油菜的营养生长和生殖生长有显著促进作用。秸秆覆盖可以显著提高油菜的株高,增加分枝数和花序数,速腐剂的加施对营养生长的效果明显,但对生殖生长的效果未显现出来。
     (3)秸秆覆盖保护性种植可以提高油菜的产量,速腐剂对油菜产量的增加尤为明显。同种秸秆不同水平覆盖处理下,油菜的产量随覆盖量的增加有增长趋势。
     2.秸秆覆盖大豆生理生化响应机制的研究
     为了研究秸秆覆盖下大豆生长、光合作用、叶绿素、可溶性蛋白、游离脯氨酸、丙二醛(MDA)以及抗氧化物酶系统对干旱的响应机制,小麦秸秆不同量覆盖大豆的生理生化响应机制研究中,设置无覆盖,3750 kg/hm2,7500 kg/hm2,11000 kg/hm2和14750 kg/hm2五个处理。秸秆不同类型不同量覆盖大豆的生理生化响应机制研究中设置无覆盖,小麦秸秆11000kg/hm2覆盖,小麦秸秆14750 kg/hm2覆盖,玉米秸秆11000 kg/hm2和14750 kg/hm2覆盖五个处理。通过对大豆生长发育指标和生理生化响应机制的探讨得出:
     (1)秸秆覆盖可以促进细胞伸长,显著提高大豆的株高,且“晋豆21号”株高总体上高于“西豆7号“,但二者在秸秆覆盖不同处理下增长程度和增长量不同。小麦秸秆覆盖和玉米秸秆覆盖均可以促进大豆叶片数的增加,且随着秸秆覆盖量的增加而增加,但其增加量因秸秆类型的差异而不同,就大豆叶片数而言,小麦秸秆覆盖的效果优于玉米秸秆覆盖。小麦秸秆覆盖处理下大豆的叶面积在一定程度随秸秆覆盖量的增加呈增加趋势,但并不是无限增加。秸秆覆盖利于大豆茎的横向生长,秸秆覆盖提高了大豆的茎粗,且随着秸秆覆盖量的增加而增加。
     (2)秸秆覆盖在水分匮乏的情况下能促进大豆的光合作用,且与秸秆覆盖量有很大关系。小麦秸秆覆盖保护性种植条件下,大豆的蒸腾速率在一定程度上随着秸秆覆盖量持续增加,但当秸秆覆盖量继续增加,则出现下滑,这与同条件下净光合速率的研究一致。秸秆覆盖可提高大豆叶片的气孔导度,且总体上气孔导度随着秸秆覆盖量的增加而加大。胞间CO2浓度减少到一定程度随着秸秆覆盖量的增长而增加,这与净光合速率和蒸腾速率的研究结果正好相反。空气和叶片的温差,随着秸秆覆盖量的增加而加大。
     (3)秸秆覆盖处理下大豆叶片叶绿素含量的变化同时受干旱进程、秸秆覆盖量和覆盖物类型的影响;总体上玉米秸秆覆盖对叶绿素a的调节作用明显。秸秆覆盖对叶绿素的变化具有调节作用,其调节作用和限度与秸秆覆盖量、干旱时间的长短以及作物本身的耐受性相关。
     (4)小麦秸秆不同量覆盖下,大豆可溶性蛋白含量随着干旱的加强持续下降,但秸秆覆盖可溶性蛋白含量的下降得到明显缓解。秸秆不同类型不同量覆盖大豆叶片可溶性蛋白含量随着干旱胁迫的增强而增加。在干旱胁迫下可溶性蛋白含量变化不一致,秸秆覆盖可溶性蛋白含量的变化因秸秆覆盖量、秸秆类型、作物品种和胁迫时间而存在差异。
     (5)大豆在干旱胁迫过程中,叶片游离脯氨酸含量随着胁迫程度的增强持续增长。秸秆覆盖在大豆防御干旱方面起重要作用,可以降低脯氨酸含量的积累,降低量与秸秆覆盖类型和覆盖量有关。
     (6)小麦秸秆不同量覆盖处理下,MDA含量随干旱程度的加强呈现增长趋势,随着秸秆覆盖量的增加,MDA含量在总体上降低。干旱胁迫丙二醛含量的变化与水分胁迫历时有关,小麦秸秆覆盖对大豆丙二醛具有补偿效应,可以在一定程度上缓解细胞膜脂氧化反应对细胞膜以及作物的伤害。
     干旱胁迫下不同秸秆不同量覆盖处理,干旱初期大豆叶片丙二醛含量随玉米秸秆覆盖量的增大而增加,小麦秸秆覆盖处理大豆叶片丙二醛随秸秆覆盖量的增加而下降;中期丙二醛含量随着干旱时间的延长不断积累,即干旱时间越长植物受到的膜脂过氧化伤害越大,而秸秆覆盖可以在一定程度上降低丙二醛含量的积累,而且降低的程度与秸秆覆盖量和覆盖类型相关。
     (7)秸秆覆盖在保护膜系统免受自由基伤害上具有重要调节作用,轻度干旱下调节作用明显。超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)三种保护酶在大豆干旱胁迫下起协调作用,哪一种酶调节起主导作用因大豆品种、胁迫程度、胁迫时间和秸秆覆盖的差异而改变。
     (8)通过模糊综合评价得出:小麦秸秆不同量覆盖处理小麦秸秆11000 kg/hm2覆盖处理“西豆7号”抗旱能力最强,对照无覆盖处理大豆抗旱能力最差;秸秆不同类型不同量覆盖中玉米秸秆14750 kg/hm2“晋豆21号”抗旱能力最强,玉米秸秆11000 kg/hm2覆盖处理次之。
Straw mulch is a highly effective water-saving technology, which plays significant role in changing underlying surface properties and balance, regulating soil temperature and improving soil moisture status. The main objective of using straw mulch is to increase economic output, reduce water loss and improve the water use efficiency. It is widely used for successful crop production under water-limiting condition, leads to sustainable development, and is an important aspect of conservation tillage. Straw mulch could hold soil water, improve soil micro-climate, reduce soil erosion, adjust soil water fertilizer gas heat, which is conducive for crop growth, and increased photosynthesis. In the present study we evaluated the performance of straw mulch cultivation on soil nutrients dynamic changes in rapeseed and its possible role in physiological and biochemical responses in soybean under drought stress. Main results are as follows: 1. The effect of straw mulch conservative cultivation on soil nutrients, growth and yield components in rapeseed
     The study aimed to investigate the growth, soil nutrient dynamic change and yield of rapeseed under straw mulch conservative cultivation. The research work was carried out at the experimental farm of Southwest University, which comprised of a set of 8 treatments viz.:①no straw mulch,②3750kg/hm2 rice straw mulch.③7500kg/hm2 rice straw mulch,④3750kg/hm2 maize straw mulch,⑤7500kg/hm2 maize straw,⑥7500kg/hm2 rice straw mulch no crop treat,⑦7500 kg/hm2 rice straw mulch+rottening agent and no crop treat.⑧7500 kg/hm2 Rice straw mulch+rottening agent. Soil sampling was carried out at various developmental stages of rapeseed from varying soil depths. The analysis of the soil nutrient dynamic change, growth and yield of rapeseed indicated that:
     (1) Under different straw mulch treatments the change of soil organic matter on 0-10cm and 10-20cm layer was similar, and the differences between the various levels of straw mulch were not significant. The treatment where rottening agent was used had significantly higher organic matter contents. The soil total N under straw mulch followed the "increased-decreased-increased" trend. whereas the alkali-hydro nitrogen contents followed the "down-up-down" trend. The soil total P in 0-10cm and 10-20cm soil layer were volatility elevated and soil available P layer were first increased then declined. The trend of total K in 0-10cm was" increase-decrease" and in 10-20cm soil layer was opposite. The readily-available potassium in 0-10cm and 10-20cm soil layer followed the same trends as of total potassium. The soil pH value in 0-10cm and 10-20cm soil layer was consistent, which followed the increasing trend as the crop grew.
     (2) When we investigating the soil nutrients after harvest under straw mulch, the experimental results revealed that application of straw mulch had non-significant effect on the soil organic matter accumulation; the total nitrogen with the straw mulch increased;the same level of maize straw mulch treatments have more pronounced effect on the accumulations of nitrogen than rice straw mulch treatments; the straw mulch treatments improved the soil total potassium; the impact of different straw mulch treatments on soil potassium was variable, the various rice straw mulch treatments resulted in better soil available phosphorus, total potassium and readily-available potassium than the effects of maize straw mulch treatments; the use of rottening agent had no effect on accumulation of soil organic matter and alkali-hydrolysable nitrogen, but it resulted in increased accumulation of total soil nitrogen and total phosphorus, in the case of non-crop the rottening agent increased the accumulation of soil potassium.
     (3) Straw mulching had a significant effect on promoting the vegetative and reproductive growth of rapeseed. In our study, straw mulching significantly improved the rapeseed plant height, number of branches per plant and inflorescence, whereas rottening agent significantly improved the vegetative growth. The effect rottening agent on reproductive growth was not considerable. Rottening agent produced significantly higher yield than the same level of straw mulch treatments. Within one type of straw the yield of rapeseed was continuously enhanced follow the quantity of straw mulch.
     2. Physio-biochemical response of soybean to straw mulch To investigate the influence of straw mulch on growth, gas exchange, chlorophyll contents, soluble protein, free proline, lipid peroxidation and the activities of antioxidative enzymes in soybean under drought stress, a pot experiment was carried out in rain-protected wire-house of Southwest University. Chongqing. China. Soybean plants were supplied with varying wheat straw mulch treatments at true leaf stage viz:control (no straw mulch).3750 kg/hm2,7500 kg/hm2,11000 kg/hm2 and 14750 kg/hm2 and subjected to drought stress at blooming stage. An other pot experiment was carried out to investigate the response of soybean to varying type and different quantity of wheat and maize straw mulch treatments under water-deficit conditions, with following treatments: 11000kg/hm2 wheat straw mulch,14750 kg/hm2 wheat straw mulch,11000 kg/hm2 maize straw mulch and 14750kg/hm2 wheat straw mulch. The observations indicated that: Straw mulch promoted the cell elongation significantly which ultimately resulted in increased soybean plant height. The height of "Jin dou 21" was higher than the "xi dou 7". but between two varieties the increment of plant height under different mulch treatments was non-significant. Wheat straw and corn straw mulch both increased the number of soybean leaves per plant depending upon the type and quantity of straw mulch, but the effect of wheat straw mulch was more pronounced than maize straw mulch. Wheat straw mulch treatments enhanced the leaf area of soybean, the leaf area increased follow the quantity of straw mulch. The stem diameter of soybean plants grew following the amount of straw mulch applied.
     (2) Straw mulch significantly enhanced the photosynthesis (Pn), intercellular CO2 concentration (Ci), transpiration rate (E), stomatal conductance (Gs) and D-value (Ta-T1) (difference between air temperature and leaf temperature) over control treatment. All these gas exchange parameters were improved depending upon the quantity of wheat straw mulch; significantly highest Pn and E was observed in the treatment where wheat straw was applied at the rate of 11000kg/hm
     (3) The chlorophyll contents in soybean leaves altered noticeably during drought stress depending upon the type and the quantity of straw mulch. The observations indicated that chlorophyll contents proportionally decreased with the progression of drought stress but linearly increased with increase in straw mulch quantity.
     (4)Under varying levels of wheat straw, the contents of soluble protein in soybean continued to decline along with the prolongation of drought stress, but the straw mulch significantly alleviated the decrease of soluble protein content. The soluble protein increased with the drought stress under different type and amounts of straw mulch. The change of soluble protein content under drought stress was inconsistent and it was different because of types of straw mulch, crop varieties and stress time.
     (5) During drought stress in soybean, free proline content increased with the drought stress level. Straw mulch played an important role in drought-resistance of soybean by reducing the accumulation of proline content, but the amount of reducing was relevant to type and quantity of straw mulch.
     (6) The activities of Malondialdehyde (MDA) in leaves gradually increased as the water stress prolonged and decreased following the straw quantity in the treatments of different amount of wheat straw mulch. The contents of MDA changed with the progression of water stress. Wheat straw mulch led to drought ameliorating effect in drought-stressed soybean plants by decreasing the MDA contents which ultimately played a significant role in mitigation of lipid peroxidation on cell and crop.
     Under drought stress depending upon different type and quantity of straw mulch, the contents of MDA were increased at beginning of stress by following the amount of maize straw mulch and declined with the quantity of wheat straw mulch. In the middle of water deficit MDA content increased with the prolongation of drought, that the longer the plant suffered drought the greater lipid peroxidation damage. Straw mulch up to certain extent reduced the accumulation of MDA and the reduction was related to the quantity and type of straw mulch.
     (7) Straw mulch was able to enhance the activities of antioxidative system to mitigate the drought-induced oxidative damage in soybean plants. The effect of straw mulch on protective antioxidative system under slight drought conditions was significant. Superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were coordinated to play a positive role in soybean under drought stress depending upon soybean varieties, stress level, timing of stress and the different quantity of straw mulch.
     (8) Through the comprehensive evaluation it is clear that different amounts of wheat straw mulch contributed to drought resistance of "xi dou 7",11000 kg/hm2 got highest and control in worst. Among the different types and quantity of straw mulch the treatment of 14750 kg/hm2 maize straw mulch played a significant role in drought resistance, followed by 11000 kg/hm2 maize straw mulch in "jin dou 21"
引文
[1]艾克拜尔.伊垃洪,周抑强,华天懋.土壤水分对不同品种棉花叶绿素含量及光合速率的影[J].中国棉花,,2000,,27(2):21-22.
    [2]白宝璋,勒占忠,李德春.植物生理生化测定技术[M].北京:中国科学技术出版社.1995.
    [3]白大鹏,赵建强,陈明昌等.整秸覆盖免耕条件下黄土高原旱地的养分消长研究[J].土壤学报,1997,34(1):103-106.
    [4]鲍思伟,陈彤.水分胁迫对蚕豆(Vicia faba L)生长的影响[J].台州师专学报,,2001,23(3):59-61.
    [5]曹慧.水分胁迫对短枝型苹果叶片活性氧清除酶类活性的影响[J].山西农业科学,,2000,28(4):48-51.
    [6]曹锡清.膜脂过氧化对细胞与机体的作用[J].生物化学与生物物理进展,1986,2:17-23.
    [7]陈京,谈锋.甘薯品种抗旱性的主成分分析[J].西南农业大学学报,1994,16(2):156-159.
    [8]陈立松,刘星辉.水分胁迫对荔枝叶片活性氧代谢的影响[J].园艺学报,1998,25(3):241-246.
    [9]陈少裕.膜脂过氧化与植物逆境胁迫[J].植物学通报,1989,6(4):211-217.
    [10]陈素英,张喜英.秸秆覆盖对夏玉米生长过程及水分利用的影响[J].干旱地区农业研究,2002,20(4):55-57.
    [11]陈锡时,郭树凡,汪景宽,张键.地膜覆盖栽培对土壤微生物种群和生物活性的影响[J].应用生态学报,1998,9:435-439.
    [12]陈献勇,廖镜思.水分胁迫对果梅光合色素和光合作用的影响[J].福建农业大学报,2000,29(1):35-39.
    [13]陈阳,曾福礼.黄瓜叶片光合电子传递对水分胁迫的响应[J].西北植物学报,2001,21(3):456-461.
    [14]陈一舞,邵桂花,常汝镇.盐胁迫对大豆幼苗子叶各细胞器超氧化物歧化酶的影响[J].作物学报,1997,23(2):214-219.
    [15]段德玉,刘小京,李伟强,李存祯.夏玉米地膜覆盖栽培的生态效应研究[J].干旱地区农业研究,,2003,21(4):6-9.
    [16]杜尧东,刘作新,赵国强,等.冬小麦田秸秆覆盖的小气候效应[J].生态学杂志,.2000,19(3):20-23.
    [17]范丙全,李春勃.旱地棉田秸秆覆盖的增产效果及其机理的研究[J].土壤通报. 1996,27(2):73-75.
    [18]范丙全,刘巧玲.保护性耕作与秸秆还田对土壤微生物及其溶磷特性的影响[J].中国生态农业学报,,2005,13(3):130—132.
    [19]范明生,刘学军,江荣风,张福锁,吕世华,曾祥忠.覆盖旱作方式和施氮水平对稻-麦轮作体系生产力和氮素利用的影响[J].生态学报,2004,24:2591-2596.
    [20]逢焕成,秸秆覆盖对土壤环境及冬小麦产量状况的影响[J],土壤通报,1999,,30(4):174-175.
    [21]高云超,朱文珊,陈文新.秸秆覆盖免耕土壤微生物生物量与养分转化的研究[J].中国农业科学,1994,27(6):41—49.
    [22]高占旺,庞万福,宋伯符.水分胁迫对马铃薯的生理反应[J].马铃薯杂志,1995,9(1):1-6.
    [23]顾和平,朱成松,陈新,等.大豆抗旱性和抗光氧化特性相互关系的研究[J].中国油料作物学报,1998,20(3):51-55.
    [24]郭程瑾.不同生态型小麦品种光合作用特性及其对水分胁迫的反应[D].河北农业大学.硕士论文,2002.
    [25]郭卫东,沈向,李嘉瑞,等.植物抗旱分子机理[J].西北农业大学学报,1999,27(4):102-106.
    [26]韩宾.保护性耕作措施对农田土壤健康状况的影响及作物响应研究[D].东农业大学.博士学位论文,2007.
    [27]韩蕊莲,李丽霞,梁宗锁.干早胁迫下沙棘叶片细胞膜透性与渗透调节物质研究[J].西北植物学报,2003,23(1):23-27.
    [28]郝永生,刘迪秋,陈丽梅,等.水分胁迫对蚕豆生理生化特性的影响[J].湖北农业科学,2008(9):1013-1016.
    [29]胡定宇主编.土壤学[M].陕西杨凌:天则出版社,1990.
    [30]胡芬,陈尚模.寿阳试验区玉米地农田水分平衡及其覆盖调控试验[J].农业工程学报,2000,16(4):146-148.
    [31]胡能书,万贤国主编.同工酶技术及应用[M].湖南科学技术出版社,1985.
    [32]冀宪领等.干早胁迫对桑树生理生化特性的影响[J].蚕业科学,2004,30(2):117-112.
    [33]贾虎森等.水分胁迫下苹果叶片的H2O2代谢[J].植物生理学报,2001,27(4):321-324.
    [34]贾永莹.世界干旱地区概貌[J].干旱地区农业研究,1995,13(1):121-125.
    [35]姜心禄.郑家国.袁勇.水稻本田期不同生育阶段受旱对产量的影响[J].西南农业学报,2004.17(4):435-438.
    [36]晋凡生,张宝林.旱塬地玉米农田免耕覆盖的土壤环境效应[J].水土保持研究,2000,7(4):60-64.
    [37]荆家海,丁钟蓉(X.H.波钦诺克著).植物生物化学分析方法[M].北京:科学出版社,1981,95-101.
    [38]井春喜,张怀刚,师生波,等.土壤水分胁迫对不同耐早性春小麦品种叶片色素含量的影响[J].西北植物学报,2003,23:811-814.
    [39]居辉,兰霞,李建民等.不同灌溉制度下冬小麦产量效应与耗水特性研究[J].中国农业大学学报,2000,5(5):23-29.
    [40]康定明.不同灌溉量对小麦生长的影响[J].石河子农学院学报,1996,14(2):19-22.
    [41]康华建,刘星辉.水分胁迫对枇杷光合特性的影响[J].果树科学,1999,16(2):126-130.
    [42]柯世省.土壤干旱胁迫对云锦杜鹃水分利用效率的影响[J].河南师范大学学报(自然科学版),2007,35(2):150-153.
    [43]莱谢姆A Y,哈勒维A H,法伦克尔C等.植物衰老过程和调控[M].第一版.胡文玉,译.辽宁科学技术出版社,1990.
    [44]李春勃,范丙全,孟春香等.麦秸覆盖旱地棉田少耕培肥效果[J].生态农业研究,1995,3(3):52-55.
    [45]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2001:164-261.
    [46]李俊庆,芮文利,齐敏忠等.水分胁迫对不同抗旱性花生生长发育及生理特性的影响[J].中国农业气象,1996,17(1):11-13.
    [47]李莉,钟章成.诸葛菜对水分胁迫的生理生化反应和调节适应能力[J].西南师范大学学报(自然科学版),2002,25(1):33-37.
    [48]李名扬.植物学[M].北京:中国林业出版社,2003:9.
    [49]李秋洪.论农田“白色污染”的防治技术[J].农业环境与发展,1997,(2):17-19.
    [50]李文卿,潘廷国,柯玉琴,等.土壤水分胁迫对甘薯光合作用的影响及其与耐旱性的关系[J].福建农业大学学报,1999,28(3):263-269.
    [51]李奕松,黄仲青.两系釉型杂交水稻齐穗后光合作用和衰老特性的研究[J].中国水稻科学,2002,16(2):141-145.
    [52]李毅,邵明安.新疆农田作物覆膜地温极值的时空变化[J].应用生态学报,2004,15(11):2039-2044.
    [53]李友军,吴金芝,黄明,等.不同耕作方式对小麦旗叶光合特性和水分利用效率的影响[J].农业工程学报.2006.22(12):44-48.
    [54]李芸瑛,梁广坚.GB对低温胁迫黄瓜叶绿体及SOD、POD同工酶的影响[J].生物技术,2005,15(3):25-27.
    [55]梁永超,胡锋,杨茂成,朱遐亮,王广平,王永乐.水稻覆膜旱作高产节水机理研究[J].中国农业科学,1999,32:26-32.
    [56]林启美,赵海英,赵小蓉.溶磷细菌和真菌溶解磷矿粉的特性[J].微生物学通报,2002,29(6):24—28.
    [57]刘庚山,郭安红,任三学,安顺清,阳园燕,毛飞,赵花荣.不同覆盖对夏玉米叶片光合和水分利用效率日变化的影响[J].水土保持学报,2004,18(2):152-156.
    [58]刘建新.覆草对果园土壤肥力及苹果产量与品质的影响[J].干旱地区农业研究,2004,.22(1):102-105.
    [59]刘少华.水分胁迫对高产杂交稻功能叶光合及抗氧化系统特性的影响[D].西南师范大学硕士论文,2003.
    [60]刘忠民,山仑,马国忠.提高宁南半干旱区旱地春小麦产量及水分利用的综合技术途径研究[J].水土保持研究,1998,5(1):55-64.
    [61]刘祖琪,张石诚.植物抗性生理学[M].北京:中国农业出版社,1994.101-111.
    [62]罗华建,刘星辉.水分胁迫对枇杷光合特性的影响[J].果树科学,1999,16(2):126-130.
    [63]马虹霞,郁继华,颉建明,等.水分胁迫处理对青花菜幼苗叶片生理生化特性的影响[J].甘肃农业大学学报,,2009(1):93-97.
    [64]梅旭荣.赵聚宝,吕学都.等.屯留试验区农田水分供需特征及秸秆覆盖的效果分析[J].中国农业气象,1991.12(1):31-33.
    [65]穆兴民,王飞,冯浩,张睿,鲁向晖,高鹏.西南地区旱灾的人为因素初探[J],水土保持通报,,2010,30(2):1-4.
    [66]牛明功,王贤,陈龙.干旱、渍涝和低温胁迫对小麦生理生化特性的影响[J].种子,2003,4:19-21.
    [67]欧志英,林桂珠,彭长连.超高产杂交水稻培矮范和两优培剑叶对高温的响应[J].中国水稻科学,2005,19(3):249-254.
    [68]彭立新,李德伞,束怀瑞.植物在渗透胁迫下的渗透调节作用[J].天津农业科学,,2002,8(1):40-43.
    [69]卜玉山.不同覆盖物的农田生态效应与作物增产机理研究[D],山西农业大学博士论文,2004.
    [70]卜玉山.苗果园.绍海林,周乃建,王建程.地膜和秸秆覆盖土壤肥力效应分析与比较[J].中国农业科学.2006.39(5):1069-1075.
    [71]任安芝,高玉葆,刘爽.青菜幼苗体内几种保护酶的活性对Pb, Cd, Cr胁迫的反 应研究[J].应用生态学报,2002,13:510-512.
    [72]任东涛,赵松岭.水分胁迫对半干早区春小麦旗叶蛋白质代谢的影响[J].作物学报,1997,23(4):468-473.
    [73]石浩来.山东青石山区主要经济树种抗旱特性和旱作栽培措施研究[D].山东农业大学硕士论文,1998.
    [74]石元春,刘昌明,龚元石.节水农业应用基础研究进展[M].北京:中国农业出版社:1995.
    [75]时忠杰,胡哲森,李容生.水分胁迫与活性氧代谢[J].贵州大学学报,2002,21(2):140-145.
    [76]时忠杰.板栗等树种对水分胁迫的适应机理及板栗叶片POD动力学研究[D].福建农林大学硕士论文,2002.
    [77]宋道军,余增亮.生物体衰老的部分生化机理[J].大自然探索,1997,2(16):60.
    [78]宋秋华,李凤民,王俊,刘洪升,李世清.覆膜对春小麦农田微生物数量和土壤养分的影响[J].生态学报,2002,22:2125-2132.
    [79]汤日圣,郑建初,陈留根,张大栋,金之庆,童红玉.高温对杂交水稻籽粒灌浆和剑叶某些生理特性的影响[J].植物生理与分子生物学学报,2005,31(6):657-662.
    [80]汤章城.不同抗旱品种高粱苗中脯氨酸累积的差异[J].植物生理学报,1986,12(2):154-162.
    [81]汤章城.逆境下植物脯氨酸的累积及其可能的意义[J].植物生理学通讯,1984,1:15-21.
    [82]唐连顺,李广敏.水分胁迫下玉米叶肉细胞超微结构的变化及其与膜脂过氧化伤害的关系[J].植物学报,1994,36:43-49.
    [83]唐启义,冯明光.实用统计分析及其DPS数据处理系统[M].中国农业出版社,1997.
    [84]唐治锋,定光凯.旱薄山地枣园不同覆草类型对土壤及产量的影响[J].林业科技通讯,2000,(2):30-31.
    [85]陶玲.甘肃省紫花苜蓿地方类型抗早等级分类的研究[J].草业科学,1998,15(6):7-10.
    [86]王宝山.生物自由基与植物膜伤害[J].植物生理学通讯,1988,6:12-16.
    [87]王法宏,王旭清,任德昌.土壤深松对小麦根系活性的垂直分布及旗叶衰老的影响[J].核农学报.2003,17(1):56-61.
    [88]王龙昌,马林,赵惠青.旱区农作制度研究现状与发展趋势[J].干旱地区农业研究.2004.22(2):188-193.
    [89]王启明.徐心诚,马原松等.干旱胁迫下大豆开花期的生理生化变化与抗旱性的 关系[J].干旱地区农业研究,2005,23(4):98-100.
    [90]王庆石.统计指标间信息重迭的消减办法[J].统计研究,1994,1:57-61.
    [91]王韶唐主编.植物生理学实验指导[M].西安:陕西科学技术出版社,1986,103-105.
    [92]王霞,侯平,尹林克.土壤水分胁迫对柽柳体内膜保护酶及膜脂过氧化的影响[J].干旱地区研究,2002,19(3):17-20.
    [93]王耀林主编.新编地膜覆盖栽培技术大全[M].中国农业出版社,1998,1-34.
    [94]王有宁,王荣堂,董秀荣.地膜覆盖作物农田光温效应研究[J].中国生态农业学报,2004,,12(3):134-136.
    [95]王育红,姚宇卿,吕军杰.花生抗旱性与生理生态指标关系的研究[J].杂粮作物,2002,22(3):147-149.
    [96]王玉坤等.袁庄麦田秸秆覆盖保墒措施的研究[J],灌溉排水,1991,10(1).
    [97]王中英,杨佩芳,古润泽,等.秸秆覆盖对黄土高原旱地苹果园的影响[J].中国农业科学,1992,,25(5);42-49.
    [98]魏书奎,于继洲,宣有林,等.核桃叶片的叶绿素含量与光合速率关系的研究[J].北京农业科学,1994,12(5):31-33.
    [99]魏秀俭.玉米自交系耐旱性的模糊隶属函数法分析[J].山东农业科学,2005,(2):25-27.
    [100]魏永霞,张文娥,严昌荣.保护性耕作技术对大豆光合特性、产量及水分利用效率的影响[J].中国农村水利水电,2007(2):66-69.
    [101]温随良,刘军.陇中旱地少免耕覆盖对提高土壤养分效应的研究[J].甘肃农业大学学报,1996,31(1):27-31.
    [102]吴平,陈昆松主编:植物分子生理学进展[M].浙江大学出版社,2000,207-215.
    [103]夏阳.水分逆境对果树脯氨酸和叶绿素含量变化的影响[J].甘肃农业大学学报,1993,(1):26-31.
    [104]谢文.玉米作物秸秆覆盖试验示范研究[J].耕作与栽培,2001,(2):9-10.
    [105]辛国荣,董美玲.水分胁迫下植物乙烯、脯氨酸积累、气孔反应的研究现状[J].草业科学,1997,,14(1):62-65.
    [106]徐坤,李明国.地面覆草对生姜光合特性的影响[J].中国蔬菜,2000,(2):18-20.
    [107]徐坤,郑国生.水分胁迫对生姜光合作用及保护酶活性的影响[J].园艺学报,2000,27(1):47-51.
    [108]薛少平.朱琳.姚万生.韩文霆.麦草覆盖与地膜覆盖对旱地可持续利用的影响[J].农业工程学报.2002.18(6):71-73.
    [109]严平,任杰,梅雪英,等.节水栽培对小麦生育期及生理生化的影响[J].安徽农业科学,2004,32(6):1129-1131.
    [110]杨朝选,焦国利,郑先波.重水胁迫下苹果树茎叶水势的变化[J].果树科学,2002,19(2):71-74.
    [111]杨敏生,秦安臣,丛金山.白杨双交无性系抗旱性鉴定研究[J].河北农业大学学报,1997,20(1):17-23.
    [112]杨青华,韩锦峰.棉田不同覆盖方式对土壤微生物和酶活性的影响[J].土壤学报,2005,42:348-351.
    [113]杨书运,严平,梅雪英.水分胁迫对冬小麦抗性物质可溶性糖与脯氨酸的影响[J].中国农学通报,2007,23(12):229-233.
    [114]杨学明,张晓平,方华军等.北美保护性耕作及对中国的意义[J].应用生态学报,2004,15(2):335—340.
    [115]姚允聪,曲泽洲.不同浇水处理过程中柿幼树SOD、CAT和脂质过氧化作用的变化[J].北京农学院学报,1994,9(1):22-27.
    [116]姚允聪,张大鹏,王有年等.水分胁迫下苹果幼苗叶绿体抗氧化代谢研究[J].果树科学,2000,17(1):1-6.
    [117]叶金山,王章荣.水分胁迫对杂种马褂木与双亲重要生理性状的影响[J].林业科学,2002,38(3):20-26.
    [118]于同泉等.水分胁迫对板栗幼苗抗氧化酶及丙二醛的影响[J].北京农学院学报,1996,11(1):48-52.
    [119]于同泉等.渗透胁迫板栗苗可溶性糖的积累及组分变化的研究[J].北京农学院学报,1996,11(6):43-47.
    [120]余叔文,汤章城.植物生理和分子生物学[M].北京科学出版社,1999.739-745.
    [121]袁家富.麦田秸秆覆盖效应及增产作用[J].生态农业研究,1996,4(3):61-65.
    [122]曾福礼,李玉峰.干旱胁迫下小麦叶片微粒体活性氧自由基的产生及其对膜的伤害[J].植物学报,英文版.1997,(39),12:1105-1109.
    [123]曾庆平等.植物的逆境应答与系统抗性诱导[J].生命的化学,1997,17(3):31-33.
    [124]张电学,韩志卿,刘微等.不同促腐条件下秸秆直接还田对土壤养分时空动态变化的影响[J].土壤通报,2005,36(3):360—364.
    [125]张桂莲,陈立云,张顺堂,黄明,唐文邦,雷东阳,李梅华,贺治洲.高温胁迫对水稻花器官和产量构成要素及稻米品质的影响[J].湖南农业大学学报(自然科学版).2007.33(2):132-136.
    [126]张国村,鞠华,安志信.地膜覆盖栽培技术[M].天津科学技术出版社,1998,1-4.
    [127]张吉祥,汪有科,员学锋,张立强,于晓蕾.不同麦秆覆盖量对夏玉米耗水量和生理性状的影响[J].灌溉排水学报,2007,,26(3):69-71.
    [128]张继澍.植物生理学[M].北京:高等教育出版社,,2006.
    [129]张明生,谈锋.水分胁迫下甘薯叶绿素a/b比值的变化及其与抗旱性的关系[J].种子,2001,116(4):23-25.
    [130]张木清,陈如凯等.作物抗旱分子生理与遗传改良[M].北京:科学出版社,2005.
    [131]张振华,蔡焕杰.水分亏缺对覆膜玉米生长发育及产量的影响[J].灌溉排水,2001,20(2):13-16.
    [132]张振华,严少华,胡永红.覆盖对滨海盐化土壤水盐运动和大麦产量影响的研究[J].土壤通报,1996.27(3):136-138.
    [133]张振贤,郑国生,赵德婉.大白菜光合特性的研究[J].园艺学报,1993a,20(1):38-44.
    [134]张振贤,于贤昌,陈利平,史金玉,梁书华.水分状况与大白菜光合作用关系的研究[J].园艺学报,1993b,.20(4):358-362.
    [135]张志国,徐琪,,Blevins R.L.长期免耕覆盖对土壤某些理化性质及玉米产量的影响[J].土壤学报.1998,35(3):384—391.
    [136]张志良主编.植物生理学实验指导(修订2版)[M].北京:高等教育出版社.1990.
    [137]赵洪亮.不同冬小麦品种节水抗旱生理特性差异研究及评价[D].沈阳:沈阳农业大学,2006:5-15.
    [138]赵聚宝,李克煌.干旱与农业[M].中国农业出版社.1995,254-232.
    [139]赵素荣,张书荣,徐霞等.农膜残留污染研究[M].农业环境与发展,998,(3):7-10.
    [140]赵四申,段汝浩,宁吉洲等.玉米秸秆整株深埋还田技术研究[J].农业工程学报,,2002,18(2):58—61.
    [141]郑丕尧,蒋钟怀,王经武.夏播“京早七号”玉米叶片叶绿素含量消长规律的研究[J].华北农学报,1988,.3(1):21-27.
    [142]郑若良.宋志荣.干旱胁迫对辣椒生理机制的影响研究[J].河北农业科学,2003.7(1):11-15.
    [143]郑小林.董任瑞.水稻热激反应的研究:Ⅰ.幼苗叶片的膜透性和游离脯氨酸的含量变化.湖南农业大学学报.1997.23(2):109-112.
    [144]中国科学院可持续发展战略研究组.中国可持续发展战略报告[M].科学出版社,2001.
    [145]中国科学院综考会.中国自然资源手册[M].科学出版社,2001.
    [146]周凌云,周刘宗,徐梦雄.农田秸秆覆盖节水效应研究[J].生态农业研究,1996,4(3):49-52.
    [147]周竹青.不同类型小麦品种(系)农艺性状、生理指标与产量关系的多元统计分析[J].种子,2002,3:18-23.
    [148]朱钟麟,卿明福,郑家国,等.免耕和秸秆覆盖对小麦、油菜水分利用效率的影响[J].西南农业学报,,2005,18(5):565-568.
    [149]朱自玺,方文松,赵国强,等.麦秸和残茬覆盖对夏玉米农田小气候的影响[J].干旱地区农业研究,2000,18(2):19-24.
    [150]邹聪明.“旱三熟”种植区保护性耕作的效应及模式研究[D],西南大学硕士学位论文,2010.
    [151]Amako K., Chen G.X. Asade K. (1994):Separate assays specific for ascorbate peroxidase and guaiacol peroxidase and for the chloroplastic and cytosolic isozymes of ascorbate peroxidase in plants [J]. Plant Cell Physiology,35:497-504
    [152]Angers D.A..Bolinder,M.A.,Carter,M.R.,et al(1997).Impact of tillage practices on organic carbon and nitrogen storage in cool,humid soils of eastern Canada[J].Soil and TillageResearch,41:191-201.
    [153]Ashraf M. Foolad M.R. (2007):Role of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59:206-216.
    [154]Bhaskaran S. Smith R.H. Newton R.J. (1985):Physiological changes in cultured sorghum cell in response to induced water stress.Free proline. Plant Physiology,79:266-269.
    [155]Blevins R.L., Thomas G.W., Smith M.S., et al (1983). Changes in soil properties after 10 years continuous non-tilled and conventionally tilled [J].Soil and Tillage Research,3:135-146.
    [156]Blum A. Ebercon A. (1976):Genotypic responses in sorghum to drought stress.3. Free proline accumulation and drought resistance. Crop Science,1976: 16:428-431
    [157]Borowitzka, L.J. (1981):Solute accumulation and regulation of cell water activity. In:Paley LG,Aspinall D (eds),The Physiology and Biochemistry of Drought Resistance in Plant. Academic Press. Sydney.
    [158]Bradford M N. (1976):A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Chemistry,72:248-254.
    [159]Brewbaker J.L. (1975):Polymorphisms of the major peroxidase of maize Isozymes III Developmental Biology (Edited by Markert). N.Y:Academic Press. G37-G57.
    [160]Chaves M.M. Oliveira M.M. (2004):Mechanisms underlying plant resilience to water deficits:prospects for water-saving agriculture. Journal of Experimental Botany,55:2365-2384.
    [161]Cong T.U. Ristation J.B. Hu S.J. (2006):Soil microbial biomass and activity in organic tomato farming systems:Effects of organic inputs and straw mulching.Soil Biology & Biochemistry,38,247-255.
    [162]Fridovich (1975):Suneroxide dismutasc. Ann. Rev. Bioehem,44:147-159.
    [163]Fuhrer J. (2003):Agroecosystem responses to combinations of elevated CO2, ozone, and global climate change. Agriculture Ecosystems and Environment 97: 1-20.
    [164]Guo F.Q. Okamoto M. Crawford M.J. (2003):Identifcation of a plant nitric oxide synthase gene involved in hormonal signaling. Science,302:100-103.
    [165]Herbinger K. Tausz M. Wonisch A. Soja G. Sorger A. Grill D. (2002): Complex interactive effects of drought and ozone stress on the antioxidant defence systems of two wheat cultivars. Plant Physiology and Biochemistry,40:691-696.
    [166]Hugo A.P. Fabio M.D. Agnaldo R.M. et al. (2004):Drought tolerance in relation to protection against oxidative stress in clones of Coffea canephora subjected to long-term drought. Plant Science,167:1307-1314
    [167]Hugo B. (?)Osmotic adjustment in transgenic citrus rootstock Carrizo citrange (Citrus sinensis Osb. X Poncirus trifoliata L. Raf.) over producing proline. Plant Science,167 (6):1375-1381.
    [168]Jevitt J. (1980):Response of Plants to Environmental Stresses. New York: Academic Press,325-358.
    [169]Jung S. (2004):Variation in antioxidant metabolism of young and mature leaves of Arabidopsis thaliana subjected to drought. Plant Science,166:459-466.
    [170]Subrahmaniyan K. Zhou W.J. (2007):Soil Temperature Associated with Degradable. Non-Degradable Plastic and Organic Mulches and Their Effect on Biomass Production. Enzyme Activities and Seed Yield of Winter Rapeseed (Brassica napus L.). Journal of Sustainable Agriculture,32:611-627
    [171]Kaiser W.M. Kaiser G. Schoner S. Neimanis S. (1981):Photosynthesis under osmotic stress. Differential recovery of photosynthetic activities of stroma enzymes, intact chloroplasts, and leaf slices after exposure to high solute concentrations. Planta 153:430-435.
    [172]Michalski W.P. Kaniuga Z. (1982):Biochim. Biophys.Acta 680,250-257.
    [173]Kar R.K. Choudhuri M.A. (1987):Possible mechanisms of light-induced chlorophyll degradation in senescing leaves of hydrilla verticillata. Physiologiae plantarum,70:729.
    [174]Karamanos A.I. Drossopopulos I.B. Niabis K.A. (1985):Free proline accumulation during development in the organ of two wheat cultivars subjected to different degree of water stress. Crop Physiology abstracts,11:428 No.3575.
    [175]Kayum M.A. Asaduzzaman M. Haque M.Z. (2008):Effects of indigenous mulches on growth and yield of tomato. Journal of Agriculture and Rural Development,6:1-6.
    [176]Kemble A.R. Macpherson H.T. (1954):Liberation of amino acid in perennial rye grass during wetting. Biochemistry,58:46-49
    [177]Lar R. (1995):Tillage and mulching effects on maize yield for seventeen conservation seasons on a tropical alfisol. Journal of Sustainable Agriculture,5: 79-93.
    [178]Liang Y. Hu F. Mao cheng Y., Yu J. (2003):Antioxidative defenses and water deficit induced oxidative damage in rice (Oryza sativa L.) growing on non-flooded paddy soils with ground mulching. Plant and Soil,257:407-416.
    [179]Linnell E. Burney J.R. Richter G. MacRae A.H. (2008):Evaluation of compost and straw mulching on soil-loss characteristics in erosion plots of potatoes in Prince Island. Canada. Agriculture Ecosystems and Environment.81, 217-222.
    [180]Masahiro N. Tomoya A. Ken-Ichi H. (1975):Genetic variation and geographic cline of esterase Isozymes is native rice varieties. Japan J. Genetics. 50(5):373-382.
    [181]McCord J.M. (1969):Superoxide Dismtase:An enrymic function for erytlvocuprein. Biological Chemistry 224:6049-6055.
    [182]Miguel A.Z. (2004):Integration of drought tolerance mechanisms in Mediterranean sclerophylls:a function interpretation of leaf gas exchange simulators. Ecological Modeling,176:211-226.
    [183]Motto M.F et al. (1979):Evaluation of genclic purity in hybrid corn seed production through Zein Isoelecrtophoretic Patterns. Maydica.24:223-233.
    [184]Nanarizzo F. Quartacci M F. Izzo R. (1989):Lipid changes in maize seedling in responses to field water deficits.Botany,40:675-680.
    [185]Omran R G. (1980):Peroxide levels and the activities of catalase,peroxidase, and indoleacetic acid oxidase during and after chilling cucumber seedlings Plant Physiol.65:407-409.
    [186]Pathan M.S. Lee J.D. Shannon J.G. Nguyen H.T. (2007):Recent advances in breeding for drought and salt stress tolerance in soybean. M.A. Jenks, P.M. Hasegawa, and S.M. Jain (eds). In:Advances in molecular breeding toward drought and salt tolerant crops. Springer Netherlands. pp 739-773.
    [187]Pongsa-Anutin T. Suzuki H. Matsui T. (2007):Effects of mulching on the activity of acid invertase and sugar contents in Japanese radish. Asian Journal of Plant Science.6:470-476.
    [188]Qin J.T. Hu F. Zhang B. Wei Z.G. Li H.X. (2006):Role of straw mulching in non-continuously flooded rice cultivation. Agricultural Water Management,83: 252-260.
    [189]Rachid M. Najib S. Azeddine E.B. (2001):Total, particulate organic matter and structural stability of a Calcixeroll soil under different wheat rotations and tillage systems in a semiarid area of Morocco. Soil and Tillage Research, 57(4):225-235.
    [190]Rahman M.J. Uddin M.S. Bagum S.A. Mondol A.T.M.A.I. Zaman M.M. (2006):Effect of mulches on the growth and yield of tomato in the costal area of Bangladesh under rainfed condition. Internatioanl Journal of Sustainable Crop Production 1:6-10.
    [191]Reddy A.R. Chiatanya K.V. Vivekanandan M. (2004):Drought induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology,161:1189-1202.
    [192]Scandalios J.G. (1993):Oxygen stress and superoxide dismutase. Plant Physiology,101:7-12.
    [193]Schwartz D. (1960):Genetic studies on mutant enzymes in maize:Synthesis of hybrid enzymes by heterozygotes. Proceedings of National Acedemy of Sciences. USA.46:1210-1215.
    [194]Seel W.E. Henry G.A.F. Lee J.A. (1992):Effects of desiccation on soma activated oxygen processing enzymes and antioxidants in mosses.Journal of Experimental Botany,43:1031-1035.
    [195]Sharma P. Dubey R.S. (2005):Lead toxicity in plants. Brazilian Journal of Plant Physiology,17:35-52.
    [196]Silva M.A. Jifon J.L. Da Silva J.A.G. Sharma V. (2007):Use of physiological parameters as fast tools to screen for drought tolerance in sugarcane. Brazilian Journal of Plant Physiology,19:193-201.
    [197]Sing C.F. (1969):Isozymes of a polyploid series of wheat. Genetics.61: 391-398
    [198]Smith J.S. (1988):Diversity of united states hybrid maize germpiasm: isozymic and chromatographic evidence. Crop Science.28:63-67
    [199]Stewart C.T. (1980):Accumulation of amino acid and related compounds in relation to environments stress. In:Miflin BJ (ed), The Biochemistry of Plant. Vol5, New York:Acad Press.
    [200]Subrahmaniyan K. Zhou W.J. (2008):Soil temperature associated with degradable, non-degradable plastic and organic mulches and their effect on biomass production, enzyme activities and seed yield of winter rapeseed (Brassica napus L.). Journal of Sustainable Agriculture,32:611-627.
    [201]Surya J.N. Puranik J.B. Zadode S.D. Deshmukh S.D. (2000):Effect of wheat straw incorporation on yield of green gram and wheat, soil fertility and microbiota. Journal of Maharashtra Agricultural University,25:158-160.
    [202]Tan B.H. Halloran G.M. (1982):Variation and correlation of proline accumulation in spring wheat cultivars. Crop Science,22:459.463
    [203]Teare P. (1983):Crop Water Relation. A Wiley Interscience Publieation. John Wiley & Sons.
    [204]Thakur P.S. Thakur A. Kanaujia S.P. (2000):Reversal of water stress effects. I. Mulching impacts on the performance of Capsicum annum under water stress deficit. Indian Journal of Horticulture,57:250-254.
    [205]Tolk J.A. Howell T.A. Evett S.R. (1999):Effect of mulch, irrigation, and soil type on water use and yield of maize. Soil and Tillage Research,50:137-147.
    [206]Shikanai, T., Takeda, T., Yamauchi, H., Sano, S., Tomizawa, KI, Yokota. A. and Shigeoka. S. (1998):Inhibition of ascorbate peroxidase under oxidative stress in tobacco having bacterial catalase in chloroplasts. FEBS Letters.428(1-2):47-51.
    [207]Turner N.C. (1979):Drought Resistance and Adaptation to Water Deficits in Crop Plant. New York:John Wiley Sons,343-372.
    [208]Ullah R.A. Rashid A. Khan A. Ghulam S. (1998):Effect of different mulching materials on the growth and production of wheat crop. Sarhad Journal of Agriculture.14:21-25.
    [209]Unger P.W. (1986):Wheat residue management effects on soil water storage and corn production.Soil Science Society of America Journal,1986,50:764-770.
    [210]Wang F.Z. Wang Q.B. Kwon S.Y. Kwak S.S. Su W.A. (2005):Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. Journal of Plant Physiology,162:465-472.
    [211]Wang F.Z. Wang Q.B. Kwon S.Y. Kwak S.S. Su W. (2005):Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. Journal of Plant Physiology,162:465-472.
    [212]Wang J. Li D.Q. Gu L.S. (2002):The response to water stress of the antioxidant system in maize seedling roots with different drought resistance. Acta Botanica Boreali-Occidentalia Sinica,22:285-290.
    [213]Willekens H. Chamnongpol S. Davey M. Schraudner M. Langebartels C. Van Montagu M., Inze'D., Van Camp W. (1997):Catalase is a sink for H2O2 and is indispensable for stress defense in C3 plants. The EMBO Journal,16:4806-4816.
    [214]Wu Q.S. Xia R.X. Zou Y.N. (2006):Reactive oxygen metabolism in mycorrhizal and non-mycorrhizal citrus (Poncirus trifoliata) seedlings subjected to water stress. Journal of Plant Physiology,163:1101-1110.
    [215]Yang Y.M. Liu X.J. Li W.Q. Cunzhen L. (2006):Effect of different mulch materials on winter wheat production in desalinized soil in Heilonggang region of North China. Journal of Yang Zhejiang University Science B,7:858-867.
    [216]Yamouchi N. Minamide T. (1985):Chlorophyll degradation by peroxidase in parsley. Journal of the Japanese Society of Horticultural Sciences,54:265.
    [217]Yang L. Xu H.B. Effects water stress on the chloroplasts in leaves of Citrus medica var. sarcofactyls. Chinese Agri Sci Bulletin,2001,17(1):20-22.
    [218]Younis M.E. El-Shahaby O.A. Abo-Hamed S.A. Ibrahim A.H. (2000):Effects of water stress on growth. pigments and 14CO2 assimilation in three sorghum cultivars. Journal of Agronomy and Crop Science,185:73-82.
    [219]Yue S.S. Yu Z.W. Yu S.L.(1996):Senescence of flag leaf and root in wheat. Acta Agron Sci.22:55-58.
    [220]Zhai S. Liang Y. Wang J. Dai Q. Du S. You H. Chen J. (2006):Effects of soil surface mulching on the growth and physiological characteristics of grafted and non-grafted cucumbers in solar greenhouse. Journal of Xidian University.17: 1039-104.
    [221]Zhang J. Jia W. Yang J. Ismail A.M. (2006):Role of ABA in integrating plant responses to drought and salt stresses, Field Crops Research,97:111-119.
    [222]Zhang Q.T. Ahmed O.A.B. Inoue M. Saxena M.S. Inosako K. Kondo K. (2009):Effects of mulching on evapotranspiration, yield and water use efficiency of Swiss chard (Beta vulgaris L. var. flavescens) irrigated with diluted seawater. Journal of Food Agriculture and Environment 7:650-654.
    [223]Zhao C.Z., L. Lu, C. Bai-Hong, P. Cun-Zhi,Effect of straw mulching on leaf physiological properties, size and growth curves of pear fruit in an arid desert area, International Symposium on Asian Pears, Commemorating the 100th Anniversary of Nijisseiki Pear, ISHS Acta Horticulturae 587.
    [224]Zheng Y.Z. Han Y.H. (1997):Effect of high temperature and/or drought stress on the activities of SOD and POD of intact leaves in two soybean cultivars. Soybean Genetics Newsletter,24:39-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700