松辽盆地北部中浅层水化学场特征及共与成岩作用关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在全面搜集和整理松辽盆地北部中浅层的分析实验数据的基础上,总结归纳了松辽盆地北部中浅层地下水在垂向和平面上的分布规律以及主要的砂岩成岩特征。
     通过对松辽盆地北部中浅层地层水化学垂向分布规律的研究,认识到可以将松辽盆地地层水划分为自由交替带(0~800m),交替阻滞带(800~1350m),交替停止带(>1350m),以及成岩水淡化带(主要分布在1350~1650m,个别层段淡化强烈时,淡化带范围有所扩大)。各带因自由水交替、成岩水淡化、水岩反应等因素的影响,水化学特征表现出有规律地变化。通过对平面上分布规律的研究看出,地质条件与水化学性质之间有着密切的关系,地质条件相似,水化学特征也相近。同时发现,在成岩过程中由于水岩作用的不断进行,砂岩颗粒、杂基、胶结物、孔隙空间的变化与成岩特征中的碳酸盐胶结、硅质胶结、钠长石化、粘土胶结以及砂岩溶蚀密切相关。
     针对现今地层水中的pH值失真的问题,本文建立了醋酸溶解平衡模型,应用有机酸恢复法对地层水的原位pH值进行了恢复,此方法在使用上有一定的局限性,只适用于以有机酸分解为主要缓冲体系的地层。通过对恢复和实测pH值的比较发现,恢复的pH值比实测的pH值小,其分布范围较窄。同时,利用恢复后的pH值所得的氢离子浓度求得了长石溶解的反应商,将其与长石的溶解平衡常数比较,对地下的长石溶解状态进行了判断,结果发现,在以有机酸分解为主要缓冲体系的地层中,长石溶解处于平衡(或近似平衡)的状态。
     通过对水化学特征及成岩作用特征的研究,在蒙皂石和高岭石向伊利石转变的过程中消耗钾离子,在松辽盆地北部中浅层中这一过程主要是由于钾离子浓度的过高促使了蒙皂石和高岭石向伊利石转化。地层水中钙、镁离子浓度的变化特征与碳酸盐胶结作用的形成过程相对应,主要发生在早成岩的B期和中成岩的A期,这与松辽盆地北部中浅层方解石的成岩演化特征是一致的。地层水中钠离子的矿化机制与氯离子相似,都是以蒸发浓缩作用为主,它为钾长石和钙长石的钠长石化提供了丰富的来源。
Based on comprehensive collecting and sorting the analysis data in the middle-shallow strata of northern songliao basin, summarized the characteristics of formation water in vertical peace and surface distribution regularity and the main diagenetic characteristics of the sandstone.
     Through the research, we found that formation water can be vertically divided into three zones: free exchanging zone (0~800m), exchanging-retarded zone (800~1350m), a exchanging-stagnant zone (>1350m) and diagenetic water desalting zone (1350~1650m). The result of free water changing, diagenetic water desalting, water-rock reacting and other factors, chemistry characteristics of formation water changed regularly. Researching the distribution laws of plane, recognized that there is a close relationship between geological conditions and water chemistry, geological conditions similar, hydrochemistry characteristic also similar. Also found that during diagenesis sandstone particle, miscellaneous base, cementation, content and pore space changes closely related with diagenetic features of carbonate cementation, siliceous cementation, albitization, clay cementation and sandstone dissolution.
     For now the pH value of the formation water distortion, this paper established the acetic acid dissolution balance model, the application of organic acid recovery act of formation water in situ pH value, this method have certain limitation, it only applies to with organic acid decomposition for main buffer system formation. Through the recovery and measured the pH value of the comparison, its distribution area of the recovery pH value than the measured pH value is small to narrow. At the same time, use after restoring pH value income obtained the hydrogen ions concentration of dissolved feldspar with the contractor, reaction equilibrium constant comparison dissolution of feldspar, the dissolved state judge found in with organic acid decomposition for the main buffer system stratum, feldspar dissolved in balance.
     Through reseach the hydrochemistry characteristic and diagenesis characteristics, this process was mainly because potassium ion concentration of exorbitant prompting smectite and kaolinite to illite transformation in the middle-shallow strata of northern songliao basin. Formation water calcium and magnesium ions concentration change characteristics and carbonate cementation, the formation process of the corresponding with northern songliao basin in the diagenetic evolution characteristics of shallow calcite is consistent.
     Formation water sodium ions mineralization mechanism and chloride ions similar are mainly evaporation and concentration effect, it provides a rich source for potash feldspar and calcium feldspar albitization.
引文
[1]沈照理.水文地球化学研究的几个问题,全国水文地球化学学术讨论会,1982:57-69
    [2]李佩成.试论人类水事活动的新思维[J].中国工程科学,2000,2(2):5-9
    [3] HounslowAW. WaterQualityData:Analysis and Interpretation[M]. BoeaRaton:Lewis Pu11sher, 1995,38-126
    [4] R.Stephen Fisher. Hydrochemical Evolution of Sodium-Sulfate and Sodium-Chloride Ground water Beneath the Northern Chihuahuas Desert, Trans-Pecos, Texas, USA [J]. Hydrogeology Journal. 1997,2(3):4-16
    [5] M. Afyin. Hydrochemicalevolution and water quality along the groundwater flow path in the SandLklLplain, Afyon, Turkey[J]. Environmental Geology. Volume 31,June 16,1997:221-230
    [6] V. P. Parnachev. ect. Hydrochemical evolution of Na-SO4-Cl ground waters in a cold, semi-arid region of southern Siberia [J]. Hydrogeology Journal. Volume 7, December 10, 1999:546-560
    [7] R.Favara, etc. Hydrochemical evolution and environmental features of Salso Rivercatchment, central Sicily (Italy) [J]. Environmental Geology Volume 39, October 13, 2000:1205-1215
    [8] W. M. Edmunds, J.J.Carrillo-Rivera, Cardona.Geochemical evolution of groundwater beneath Mexico City[J]. Hydrogeology Journal. 2002:120-135
    [9]曹玉清.白城地区开采含水层水的化学成分及其形成问题的探讨[J].水文地球化学理论与方法的研究,地质出版社,1985:42-49
    [10]沈照理.水文地球化学基础[M].地质出版社,1983:147-158
    [11]张宗祜,沈照理,钟佐燊,等.华北平原地下水环境演化[J].地质出版社,2000:5-8
    [12]郭永海,沈照理,钟佐燊.河北平原地下水化学环境演化的地球化学模拟[J].中国科学,1997,27(4):360-365
    [13]刘爱菊,郭平战.朝邑滩地下水水化学分带性及其形成机制之探讨[J].地下水,1997,19(2):56-62
    [14]任增平,闰俊萍.内蒙古达拉特旗平原区地下水水化学特征及形成机制分析[J].中国煤田地质,1999,11(3):30-33
    [15]陈京生,鲁静.天山北麓阜康-准东山前倾斜平原地下水化学形成特点分析[J].勘察科学技术,1999:50(8):6-9
    [16]陈新军,石万忠.惠民凹陷油田水化学场分布特征与油气聚集关系[J].天然气地球科学,2002,12(11):8-10.
    [17]郭占荣.三屯河平原区地下水化学组成特征及变化[J].勘察科学技术,2002,3:334-38
    [18]周邦炜.双塔灌区地下水化学特征及分区确定[J].甘肃水利水电技术,2002,38:9-11
    [19]赵建.海(咸)水入侵与浅层地下水水化学特征及变化研究[J].地理科学,1999,19(3):13-19
    [20]宋保平.长江河口地区第四系地下水化学演化机制[J].地理学报,2000,55(2):208-218
    [21]姜桂华,王文科,杨晓婷,等.关中盆地潜水硝酸盐污染分析及防治对策[J].水资源保护,2002(2):5-7
    [22]孙熠.关中盆地浅层地下水水化学场演化及其相关环境问题研究[D].长安大学,2003
    [23]高文冰.反向模拟方法在鄂尔多斯盆地环河组地下水演化中的应用[D].长安大学硕士学位论文,2005,5
    [24]李锐.广西北海市地下水水动力场和水化学场演化的研究[D].中国地质大学(北京)硕士学位论文,2006,6:2-5
    [25]刘成林,朱筱敏,朱玉新,等.不同构造背景天然气储层成岩作用及孔隙演化特点[J].石油与天然气地质,2005,29(6):746-7531
    [26]陈永峤,于兴河,周新桂,等.东营凹陷各构造区带下第三系成岩演化与次生孔隙发育规律研究[J].天然气地球科学,2004,15(1):68-741
    [27] Charlotte Vinchon Dennis Giot, Fabienne Orsag-Sperber, ect. Changes in reservoir quality determined from the digenetic evolution of Triassic and Lower Liassedim entary successions (Balazucborehole, Adduce, France) [J]. Marine and petroleum geology, 1996,13(6):685-694
    [28]寿建峰,朱国华,张惠良.构造侧向挤压与砂岩成岩压实作用-以塔里木盆地为例[J].沉积学报,2003,21(1):90-951
    [29]罗元华,孙雄.不同应力状态下地层渗透系数的变化及其对流体运移影响的数值模拟研究[J].地球学报,1998,19(2):144-1491
    [30] Abderrazzak El Albania, Richard Cloutier,Anne-Marie Candilier1 Early diagenesis of the Upper Devonian Escu2minac Formation in the Gasper Peninsula, Que′bec:sed2imentological and geochemical evidence [J]. sedimentary geology, 2002,146:209-223
    [31]刘立,彭晓蕾,高玉巧,等.东北及华北含油气盆地岩浆活动对碎屑岩的改造与成岩作用贡献[J].世界地质,,2003,22(4):319-3251
    [32] Xie X N, J iao J J, Cheng J M. Regional variation of for mation water chemistry and diagenesis reaction in under pressured system: example from Shiw depression of Songliao basin, NE China [J] . Journal of geochemical exploration, 2003,78:585-5901
    [33]李会军,程文艳,张文才,等.深层异常温压条件下碎屑岩成岩作用特征初探-以板桥凹陷下第三系深层碎屑岩地层为例[J].石油勘探与开发,2001,28(6):28-31
    [34]刘建清,赖兴运,于炳松,等.成岩作用的研究现状及展望[J].石油实验地质,2006,28(1):65-771
    [35]孟元林,肖丽华,杨俊生,等.成岩演化数值模拟及其应用[J].地学前缘,2000,7(4):4301
    [36]孟元林,王志国,杨俊生,等.成岩作用过程综合模拟及其应用[J].石油实验地质,2003, 25(2):211-2201
    [37]何东博,应凤祥,郑浚茂,等.碎屑岩成岩作用数值模拟及其应用[J].石油勘探与开发,2004,31(6):66-681
    [38]陈彦华,刘莺.成岩相-储集体预测的新途径[J].石油实验地质,1994,16(3):274-2811
    [39]邹才能,陶士振,周慧,等.成岩相的形成、分类与定量评价方法[J].石油勘探与开发,2008,35(5):526-5401
    [40]陈小龙,庄博,张秀芝.罗家地区沙河街组储集层成岩相与储集特征[J].石油勘探与开发,1998,25(6):16-191
    [41]杨小萍,陈丽华.陕北斜坡延长统低渗储集层成岩相研究[J].石油勘探与开发,2001,28(4):38-401
    [42]杨仁超,樊爱萍,韩作振,等.马家山-小涧子油田砂岩成岩作用及其对储层的影响[J].中国地质,2007,34(2):283-2881
    [43]杜业波,季汉成,吴因业,等.前陆层序致密储层的单因素成岩相分析[J].石油学报,2007,27(2):48-521
    [44]刘小洪,罗静兰,郭彦如,等.鄂尔多斯盆地陕北地区上三叠统延长组长,油层组的成岩相与储层分布[J].地质通报,2008,27(5):626-6321
    [45]朱筱敏,层序地层学原理及应用[M].北京:石油工业出版社,1998:21-391
    [46]陆永潮,向才富,陈平,等.层序地层学在碎屑岩成岩作用研究中的应用-以YA13-1气田下第三系为例[J].石油实验地质,1999,21(2):100-1031
    [47]张璞瑚.成岩体系与油气[J].石油实验地质,1992,14(2):333-3431
    [48]陈红汉,孙永传.莺-琼盆地的独特埋藏史[J].中国海上油气地质,1994,8(5):329-361
    [49]陈方鸿,谢庆宾,王贵文.碳酸盐岩成岩作用与层序地层学关系研究-以鄂尔多斯盆地寒武系为例[J].岩相古地理,1999,19(1):20-241
    [50]杨仁超,储层沉积学研究新进展[J].特种油气藏,2006,13(4):1-51
    [51]杨仁超.沉积盆地动力学研究新进展[J].特种油气藏,2006,13(5):10-141
    [52]梅洪明.一个多层的早期成岩作用模型[J].科学通报,1997,42(9):947-950
    [53]鲜本忠,吴战国,姜在兴,等.早期成岩作用研究进展及发展方向[J].石油大学学报,2004,28(6):133-1391
    [54]刘建明,刘家军,顾雪祥.沉积盆地中的流体活动及其成矿作用[J].岩石矿物学杂志,1997,16(4):341-3521
    [55] Kurt Kyser, Eric E Hiatt1 Fluids in sedimentary basins: an introduction [J]. Journal of Geochemical Exploration, 2003,80:139-1491
    [56]刘立,杨庆杰,于均民.大气水砂岩的相互作用[J].世界地质,1999,18(2):47-521
    [57] Georgia Pe-Piper, Lila Dolan sky, David J W Piper1Sedimentary environment and diagenesis of the Lower Cretaceous Chas wood Formation, southeastern Canada: The origin of kaolin-rich mudstones [J]. SedimentaryGeology, 2005,178:75-971
    [55]黄思静,武文惠,刘洁,等.大气水在碎屑岩次生孔隙形成中的作用-以鄂尔多斯盆地三叠系延长组为例[J].地球科学-中国地质大学学报,2003,28(4):419-4241
    [59]罗静兰,张晓莉,张云翔,等.成岩作用对河流-三角洲相砂岩储层物性演化的影响-以延长油区上三叠统延长组长砂岩为例[J].沉积学报,2001:18-25
    [60] Namk Cagatay M, Salih Saner, etc1.Diagenesis of the Safaniya Sandstone Member (mid-Cretaceous) in Saudi Arabia [J]. Sedimentary Geology, 1996,105:221-2391
    [61]黄福堂,松辽盆地油气水地球化学[M]. 1999:256-268
    [62]楼章华.松辽盆地地下流体地球化学特征研究[J].矿物学报,2002,12(22):11-19
    [63]楼章华,金爱民松辽盆地油田地下水化学场的垂直分带性与平面分区性[J].地质科学,2006,41(3):392- 403
    [64]田春志.松辽盆地北部深层天然气富集主控因素研究[D].大庆石油学院,2002:21-34
    [65]姜洪启.松辽盆地三肇凹陷区砂岩储层孔隙演化特征[J].大庆石油地质与开发,1990,9(2):7-11
    [66]王行信,辛国强,冯永才,等.松辽盆地粘土矿物研究[M].哈尔滨:黑龙江科学技术出版社,1990:155-168
    [67]王行信,周书欣.砂岩储层粘土矿物与油层保护[M].北京:地质出版社,1992:67-99
    [68]邢顺全,姜洪启.松辽盆地陆相砂岩储集层性质与成岩作用[M].哈尔滨:黑龙江科学技术出版社,1993:43-78
    [69]赵国泉.次生孔隙形成热力学机制[D].中国地质大学,2005:17-34
    [70]孟元林.松辽盆地北部中浅层成岩演化及有利储层发育区带预测[D].大庆石油学院,2008:20-29
    [71]修洪文.松辽盆地北部泉三四段成岩研究与储层评价[D].大庆石油学院,2008,3
    [72]刘建刚,吴顺华,郑克勋.基于活度计算的碳酸平衡研究[J].水科学进展,2004,15(5):640-642
    [73]陈家玮,鲍征宇.地球化学反应平衡模型的建模方法[J].地质科技情报,2001,20(3):41-45
    [74] DONALD LANGMUIR. The Geochemistry of Some Carbonate Ground Water in Central Pennsylvania[J]. Chemical Hydrogeology,1983,234-256.
    [75]刘再华.岩溶水文地球化学研究PH值野外测定的必要性[J].中国岩溶,1990,9(2):310-315
    [76] SURDAM R C, CROSSEY L J, SVENHAGEN E, et al. Organic-inorganic interactions and sandstone diagenesis [J]. AAPG Bull, 1989,73(1):1-23
    [77] FISHER J B. Distribution and occurrence of aliphatic acid anions in deep subsurface waters [J]. Geochim. Cosmochim. Acta, 1987,51:2459-2468
    [78]于晓彩,孙亚光,高恩君.两点电位滴定法测定醋酸电离平衡常数及其热力学参数[J].沈阳师范学院学报(自然科学版),2000,18(2):51-52

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700